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Abstract- Earlier Investigations have shown that speech processing 

to incorporate certain acoustic characteristics of clear speech in 

conversational speech can improve its intelligibility under adverse 

listening conditions. This processing needs detection of acoustic 

landmarks, the important regions in speech containing cues for 

phoneme identification. This paper presents a method for 

landmark detection in which energy and centroid frequency 

variations in a number of frequency bands are used to detect the 

landmarks, followed by a wavelet based decomposition for 

improving the time localization of the landmarks. The method was 

able to detect 98.1 % of release bursts in VCV syllables with a 

temporal resolution of 3 ms, and 86 % of stop consonant 

landmarks in sentence material with 20 ms resolution. 

 
I. INTRODUCTION 

 

 Speech produced by a speaker with an intention to improve 

intelligibility in a difficult communication environment 

(talking to a hearing impaired listener, noisy background, etc) 

is called “clear speech”, and it is reported to be about 17 % 

more intelligible than conversational style speech [1]. This 

intelligibility advantage is applicable for normal hearing and 

hearing impaired listeners under quiet and adverse listening 

conditions. Acoustic properties of clear speech are different 

from those of conversational speech at the sentence, word, and 

phonemic levels. Clear speech is characterized by reduced 

speaking rate, more frequent and lengthy pauses, increase in 

fundamental frequency and its excursions, less number of 

sound deletions, increased consonantal segment intensity and 

duration, and more targeted vowel formants [2]-[4].  

 Investigations on acoustic properties of clear speech have 

identified certain features responsible for its improved 

intelligibility. Processing techniques for incorporating these 

features in conversational speech are reported to be effective in 

improving its intelligibility under adverse listening conditions. 

Speaking rate reduction, time-scale modification of spectral 

transition segments along with reduction of steady state 

segments, and enhancement of consonant-vowel intensity ratio 

(CVR) are some of the acoustic modifications reported to have 

positive impact on intelligibility [5]-[7].  

 Automatic enhancement of speech intelligibility has become 

more relevant in the present scenario where communication 

devices like mobile phones are commonly used in 

environments with varying types and levels of background 

noise. Use of directional microphones and speech enhancement 

techniques (adaptive filtering, spectral subtraction, etc.) attempt 

to reduce the noise at the talker end, but are not helpful under 

adverse listening conditions. Processing based on the properties 

of clear speech provides a way of improving speech perception 

in the presence of background noise at the listener’s end, as 

well as for persons with moderate sensorineural hearing loss. 

 In most of the earlier investigations on intelligibility 

enhancement by using properties of clear speech, processing of 

conversational speech was carried out by modification of 

selected regions, manually located by inspection of speech 

waveforms and spectrograms. These annotation methods are 

time consuming and tedious and cannot be employed in real-

time processing. Speech intelligibility enhancement making 

use of the acoustic properties of clear speech consists of an 

automatic landmark detection stage for selecting the 

acoustically salient regions, followed by a speech modification 

stage. The difficulty in accurately locating the regions for 

modification in an automated fashion is one of the limiting 

factors in the use of these techniques [7]. 

 Landmarks are information rich areas in speech waveform, 

with concentration of acoustic cues for phoneme identification 

[8]. They generally coincide with regions of major spectral 

changes. Acoustically abrupt landmarks are produced by 

movement of a primary articulator or by sudden changes in the 

sound by glottal or velo-pharyngeal activity. Closures and 

releases of stops, fricatives, and nasals are acoustically abrupt. 

In an estimation on TIMIT database [9], about 68 % of the total 

landmarks were found to be acoustically abrupt, 29 % were 

vocalic, and 3 % were non-abrupt as in the case of semivowels 

and vowel-to-vowel transitions.  

 Landmark detectors with high detection rates and moderate 

temporal resolution may be adequate for applications like 

feature extraction for supporting speech recognition. But for 

intelligibility enhancement techniques in which specific 

modifications are applied on short-duration sub-phonemic 

segments, temporal resolution of detected landmarks are very 

important. In a technique reported by Colotte and Laprie [10], a 

spectral variation function based on mel-cepstral analysis was 

used to locate the regions for enhancement. It detected 82 % of 

the manually located landmarks with a temporal resolution of 

20 ms. Stop bursts and unvoiced fricatives were automatically 

located and enhanced by amplification and time-scale 

modification.  
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 Liu [8] reported an algorithm for detecting acoustically 

abrupt landmarks using energy variations in six frequency 

bands (0-0.4, 0.8-1.5, 1.2-2.0, 2.0-3.5, 3.5-5.0, 5.0-8.0 kHz). 

The algorithm was capable of locating glottal, sonorant, and 

burst onsets and offsets. Short-time spectral analysis was 

carried out and the rate-of-rise contours were computed by 

taking the derivative of energy of the largest spectral 

component in each of the six bands. Peaks in these contours 

were used to locate the landmarks. A two-pass strategy was 

used, a coarser pass to locate the vicinity of a spectral change 

and a finer pass to time-localize the landmarks. The temporal 

resolution with which landmarks were detected was evaluated 

by comparing with manually annotated speech material from 

TIMIT database. The algorithm detected 88 % of the total 

landmarks with a temporal resolution of 30 ms, 83 % with 20 

ms, 73 % with 10 ms, and 44 % with 5 ms. 

 Niyogi and Sondhi [11] reported a landmark detector for stop 

consonants using their phonetic properties. Three parameters 

extracted from the short-time spectrum were used: log energy, 

energy above 3 kHz, and a measure of spectral flatness. Linear 

and non-linear operators optimized for minimizing an empirical 

risk function were found better for extracting parameters, 

compared to derivative of log energy used in [8].  

 Salomon et al. [12] used temporal parameters and spectral 

information to locate acoustically abrupt landmarks. A Hilbert 

transform based envelope operator was used for extracting 

parameters, which performed better than simple smoothening 

operation, in capturing the abrupt information. As in [8], 

derivative of log energy was used to locate onsets and offsets. 

Adaptive time steps (5 ms for stop bursts, 30 ms for frication, 

and 2 pitch periods in periodic regions) were used to improve 

temporal resolution.  

 Alani and Deriche [13] reported a segmentation technique 

using dyadic wavelet decomposition of speech signal into 6 

bands (0-0.25, 0.25-0.5, 0.5-1.0, 1.0-2.0, 2.0-4.0, 4.0-6.0 kHz). 

Energy variations in these bands were used to detect the 

segment boundaries. This method was able to track fast 

transitions associated with stops as well as slow transitions 

associated with lengthy vowel sounds. This method detected 

90.9 % of the manually located landmarks, when evaluated 

using speech files from TIMIT database,  

 In an earlier investigation [14], we used properties of clear 

speech for improving speech perception by listeners with 

sensorineural impairment. A modified form of Liu’s landmark 

detection algorithm [8] was used for locating the boundaries of 

vowel-consonant transition segments, specifically for stops. 

Speech modification was performed by expanding the 

transition segments using harmonic plus noise model (HNM) 

based analysis-synthesis [15]-[17]. The overall speech duration 

was kept unaltered by appropriately compressing the steady-

state vowel segments. This method resulted in an improvement 

in recognition scores for VCV syllables by ~20 %, particularly 

at the lower SNR levels (below -6 dB), for time-scaling factors 

in the range of 1.5 to 1.8. The temporal resolution of the 

landmark detector used in [14] was found inadequate in 

detecting sub-phonemic events in VCV syllables and sentence 

material. The method is modified by adding a second pass 

using discrete wavelet transform based decomposition, for 

improving the time localization of the landmarks detected in 

the first pass. Multi-resolution feature of wavelet transforms 

facilitates time localization of sub-band spectral variations. The 

next section explains the technique and it is followed by results 

of evaluation, using VCV and sentence material. 

 

II. LANDMARK DETECTION 
 

 Liu’s method [8] for landmark detection used rate-of-rise 

(ROR) of peak energy in different frequency bands. For 

improving detection rates and temporal resolution, specifically 

for stop consonants, we use band centroids in addition to peak 

energy. Due to relatively high SNR near formant peaks in 

spectrum, these two parameters are less likely to be affected by 

addition of noise. In the first pass, ROR’s are computed for 

peak energy and centroids and these are combined to get a 

single parameter called transition index, as indicator of the 

overall spectral variations. Locations of peaks in the transition 

index are marked as possible landmarks in the first pass of the 

method. In the second pass, wavelet decomposition is 

performed in a short duration window (40 ms), centered on 

these landmarks. Short-time energy and zero crossing rates are 

extracted from the lower decomposition levels (corresponding 

to higher frequency contents), and ROR’s are computed using 

short time-steps (3 ms). Landmarks are relocated to the 

prominent peak locations in ROR’s, in the second pass, to 

improve the temporal resolution.  
 

A. Pass 1: Landmark detection 

 The spectrum is divided into five bands: 0–0.4, 0.4–1.2, 1.2–

2.0, 2.0–3.5, 3.5–5.0 kHz. Band 1 primarily monitors glottal 

vibrations, bands 2-5 detect consonant closures and releases, 

onsets and offsets of aspiration/frication associated with stops, 

fricatives, and affricates [8]. Landmark detection is based on 

detecting combined variation of peak energy pE  and centroid 

frequency fc  in the five bands. Any significant spectral 

transition results in a noticeable change in peak energy and 

centroid frequency in at least some of the spectral bands. 

 
Fig. 1. Processing stages for landmark detection. 
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 Speech is sampled at 10 k samples/s and short-time 

magnitude spectra are computed using 512-point FFT on 6 ms 

frames, using Hanning window. The short window length gives 

a spectral envelope with the effect of harmonics suppressed. 

The frames are taken every 1 ms to track any abrupt spectral 

variations in the signal. A 20-point moving average is used 

along the frequency index k, for obtaining smoothened spectral 

components ( )nX k , with n  spaced every 1 ms. The log of 

largest spectral component in each band is used to form energy 

contours, ( , )pE b n for band b and frame n given by  
 

 ( )10 1 2

2
( , ) 10 log max ( ) ,E b n Xp n k k k k= ≤ ≤ 

  (1) 
 

where 1k  and 2k  are the lower and upper frequency indices for 

the band b. Centroid frequency contour is calculated as  
 

 
2 22 2

1 1

( , ) ( ) ( ) /
k k

f b n k X k X k f Nc n n sk k k k
∑ ∑=
= =

 
 
 

  (2) 

 

where fs  is the sampling frequency, and N  is the number of 

points in FFT computation. ROR of contours of Ep  and cf  are 

obtained as the magnitude of the first difference, every 1 ms.  
 

 ( )
'

, ( , ) ( , )E b n E b n K E b n Kp p p= + − −   (3) 

 
'
( , ) ( , ) ( , )f b n f b n K f b n Kc c c= + − −   (4) 

 

In the first pass, to improve detection rates, a high value of K 

(=25) is used to get a 50 ms time-step in the first difference 

computation. These ROR functions are normalized to the 0-1 

range (by shifting and scaling) as 
'

( , )pnE b n  and
'

( , )cnf b n . 

These normalized functions are used to get the energy based 

transition index  
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and energy and centroid based transition index 
 

 
5

' '

1

( ) (1 5) ( , ) ( , )ec pn cn
b

T n E b n f b n
=
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 These indices have positive values with low amplitude 

variations in the vowel segments and prominent peaks during 

the spectral transitions for plosives. Transition segment 

boundaries are located by comparing either of these indices 

with an empirically selected threshold. The waveform and 

ROR contours in lower three bands of the VCV syllable /uka/ 

are shown in Fig. 2. During the /k/ release burst, the ROR’s in 

energy show flat headed peaks compared to centroid ROR’s, 

illustrating the possibility of improvement in temporal 

resolution in localizing the landmarks by combining energy 

and centroid ROR’s. Figure 3 shows the results of landmark 

detection for the syllable /uka/. Waveform x(n), spectrogram, 

and the combined transition index ( )ecT n  are shown in the 

parts (a), (b), and (c) respectively. It is seen that in ( )ecT n , 

steady state vowel and silence segments show near-zero values, 

whereas spectral transitions corresponding to the onsets of 

vowels, stop closure, and release burst result in peaks. 

 
 

 In Fig. 3(c), the peaks, localizing the landmarks, are marked 

as impulses with filled dots. The transition index ( )eT n , based 

on energy alone, is not plotted here, but its peaks are indicated 

as impulses with unfilled dots. The manually located position 

of release burst is at 236.0 ms. The locations obtained from 

peaks in ( )ecT n  and ( )eT n are at 233 ms and 231 ms, with errors 

of 3 ms and 5 ms respectively. The boundaries of transition 

segments are located by threshold comparison and these are 

marked in Fig. 3(d), and 3(e) as negative impulses for start of 

transition and positive impulses for end of transition (with 

filled and unfilled dots as obtained from the two indices 

( )ecT n and ( )eT n ). It is seen that landmarks located using 

energy based transition index result in late detection of vowel 

onsets and offsets, but early detection of the release bursts.  

 

B. Pass I1: Localizing landmarks 

 To improve the temporal resolution of the method, a second 

pass in which analysis was performed on 40 ms window 

Fig. 2. Waveform for /uka/ (a) and ROR's for band 1 (b), band 2 (c), 

and band 3(d). Solid: 
'

( , )pnE b n , dotted: 
'

( , )cnf b n . 

Fig. 3. Processing results for /uka/ : Waveform(a), spectrogram (b) 

transition index ecT (c), and transition segment boundaries using ecT  

(d), and using eT  (e). 
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centered at the landmark location obtained in Pass 1. The 

signal in this window is decomposed into 6 levels (l = 1 to 6) 
using discrete Meyer wavelet [18], [19]. The high frequency 

contents (above ~1 kHz) in the lower two levels are 

reconstructed and short-time energy ( , )E l n  and zero crossing 

rates ( , )Z l n of these two levels (l=1, 2) are computed every 1 

ms, using a short-time window of length 3 ms. The ROR 

contours of short-time energy '( , )E l n and zero crossing rates 

'( , )Z l n are formed by taking their derivatives with a time-step 

of 3 ms. As in Pass 1, these ROR’s are normalized and used to 

get a transition index,  
 

 
2

1

( ) (1/ 2) '( , ) '( , )ez n n
l

T n E l n Z l n
=

= ∑           (7) 

where '( , )nE l n  and '( , )nZ l n are the normalized ROR's for the 

windowed segment. Figure 4 shows the windowed segment 
around the closure release burst for the waveform of /uka/, 

ROR’s of the reconstructed signals in the lower two levels, and 

the transition index derived from the ROR’s. Windowed 

segment of 40 ms duration (213 to 253 ms) was taken for the 

burst location at 233.0 ms obtained in Pass 1. Transition index 

contour in Pass 2 shows a prominent peak at 236.4 ms, giving 

an excellent match to manual location of the burst at 236.0 ms. 

 

III. EVALUATION RESULTS  

 

 The landmark detection technique was evaluated in terms of 

detection rates and temporal resolution using VCV syllables 

and manually annotated continuous speech material from 

TIMIT database. 
 

A. Evaluation using VCV syllables 

 VCV syllables recorded from 2 speakers (one male and one 

female), consisting of unvoiced stops /p/, /t/, and /k/, in the 

context of vowels /a/, /i/, and /u/ were used for evaluation. 

There were a total of 54 utterances (2 speakers ×  3 initial 

vowels ×  3 stops ×  3 final vowels). The positions of the peaks 
corresponding to release bursts (first peak in the transition 

index contour after the onset of stop closure located by the 

method) were compared with the locations obtained by manual 

inspection of the waveforms and spectrograms.  

 The number of bursts missed in the detection for different 

time resolution limits are given in Table 1 and Table 2, for Pass 

1 and Pass 2 respectively. Each cell gives the number of errors 

for a stop for an initial vowel context, out of a maximum of 18 

detections. The last row in each table gives the percentage 

detection, for the total of 54 bursts. For a resolution limit of 30 

ms, Pass 1 is able to achieve 100 % detection. The detection 

marginally decreases at 20 and 10 ms. But there is a severe 

decrease in detection rate for resolution limit of 5 ms. By 

introducing Pass 2, 100 % detection is achieved for a resolution 

limit of 5 ms. Out of these, 98.1 % of the release bursts were 

detected with a resolution of 3 ms. 
 

TABLE 1 

PASS 1: ERRORS IN RELEASE BURST DETECTION 
 

30 ms 20 ms 10 ms 5 ms 

Initial 

vowel 

Initial 

vowel 

Initial 

vowel 

Initial 

vowel 

 

Stop 

a i u a i u a i u a i u 

/p/ - - - - - - - - - 1 1 2 

/t/ - - - - - - - - - 1 1 2 

/k/ - - - 1 - - 1 - 1 3 3 3 

Det.% 100 98.1 96.3 68.5 

 
TABLE II 

PASS 2: ERRORS IN RELEASE BURST DETECTION 
 

10 ms 7 ms 5 ms 3 ms 

Initial 

vowel 

Initial 

vowel 

Initial 

vowel 

Initial 

vowel 

 

Stop 

a i u a i u a i u a i u 

/p/ - - - - - - - - - - - - 

/t/ - - - - - - - - - - 1 - 

/k/ - - - - - - - - - - - - 

Det.% 100 100 100 98.1 
 

B) Evaluation using sentences  

 The technique was applied for landmark detection in 50 

manually annotated sentences (5 speakers ×  10 sentences) 

from the TIMIT database. Figure 5 shows the waveform of a 

sentence, along with manual and automatically detected 

landmarks. The closure symbols for the stops b, d, g, p, t, k are 
bcl, dcl, gcl, pcl, tcl, and kcl, respectively. Landmarks 

involving abrupt transitions are detected accurately with good 

temporal resolution. Non-abrupt landmarks involving 

semivowel to vowel transition (/l/ to /a/) got deleted and it is 

labeled as a single segment (label 14). The detection rates of 
the method for Pass 1 and Pass 2, for different classes of 

phonemes are listed in Table 3, with the number of tokens for 

each class given in brackets. It is seen that detection rates for 

abrupt landmarks (stops and fricatives) is very high (94-95 %) 

Fig. 4. (a) Windowed segment used in second pass, (b) 

energy and ZCR ROR’s of level 1, (c) ROR’s of level 2, 

and (d) transition index ezT computed from ROR’s in (b) 

and (c). 
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for 30 ms time resolution. Pass 2 improves the overall 

detection rates by about 2 %. 
 The temporal resolution of the method in locating the onset 

of closure and burst locations for stop consonants was 

evaluated using 418 tokens present in the same set of 

sentences. The averaged localization errors for different types 

of stop landmarks for both passes are shown in Fig. 6. The 

second pass reduces the localization error, averaged across all 

types of landmarks by about 2 ms. 
 

 
TABLE III 

DETECTION RATES FOR TIMIT SENTENCES  
 

30ms 20 ms 10 ms Phoneme 

class Det. (%) Det. (%) Det. (%) 

Pass 1 2 1 2 1 2 

Stop (548) 94 96 82 86 62 66 

Fricative (266) 95 95 90 90 76 79 

Nasal (154) 80 79 70 70 53 51 

Vowel (614) 77 79 70 71 58 57 

S. vowel (213) 69 70 68 67 60 61 

Overall det. (%) 84.1 85.7 76.4 78.0 61.7 63.0 
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  Fig. 6. Avg. temporal resolution of acoustic landmarks. 

 

IV. CONCLUSION 
 

 An acoustic landmark detection technique is described with a 
two pass strategy to improve the detection rates and temporal 

resolution of landmarks, especially for stop consonants. Energy 

and centroid frequency variations in spectral bands are used to 

locate the landmarks and they are refined by wavelet transform 

decomposition. By restricting the window length and time-
steps used, it was possible to improve temporal resolution. The 

method needs to be evaluated in terms of detection rates and 

temporal resolution in the presence of various kinds of noise at 

different levels to ensure its practical usefulness for locating 

landmarks in conversational speech. 
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Fig. 5. (a) Waveform of the sentence ‘put the butcher block 

table’, (b) manual (TIMIT) landmarks, and (c) detected 

landmarks. Manual annotation: “bcl”- /b/ closure onset, “b”- 

/b/ release burst, etc. Automatic detection: landmarks 

numbered as 5, 6,..etc. 
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