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Abstract 

 

Impedance cardiography is a noninvasive technique for monitoring stroke volume, based on 

sensing variation in the thoracic impedance, z(t), due to the blood flow. Time derivative of the 

thoracic impedance is known as the impedance cardiogram (ICG) and is used for estimating 

ventricular ejection time (Tlvet), the ICG peak ((-dz/dt)max), stroke volume, and some other 

cardiovascular indices. Respiration and motion artifacts cause base line drift in the sensed 

impedance waveform, particularly during or after exercise, and this drift results in errors in 

estimation of the parameters. Objective of the research reported in this thesis is to investigate 

techniques for removal of the artifacts from ICG for estimation of stroke volume and other 

cardiovascular indices, without smearing the beat-to-beat variations.  

A baseline restoration circuit and signal processing technique for suppression of 

artifacts are developed and investigated. The baseline restoration circuit, based on amplitude 

tracking, is developed for partly removing the artifacts for effective utilization of the input 

dynamic range of the signal acquisition hardware. The signal processing techniques 

developed and investigated are based on adaptive filtering and wavelet based denoising. A 

signal related to respiration is sensed by a thermistor based airflow sensor and is used as the 

reference input for the respiratory artifact cancellation. For a better approximation of the 

respiratory artifact, cubic spline fitting is applied on the sensed impedance signal in 

synchronism with the respiratory phases. Adaptive filtering is not suitable for suppression of 

motion artifact because of practical difficulty in obtaining reference signal related to the 

various motions causing variation in the thoracic impedance. A wavelet based denoising 

technique, not requiring a reference signal, is investigated for removal of respiratory and 

motion artifacts. These artifact suppression techniques are evaluated on signals with 

simulated artifacts and signals acquired from several volunteers with normal health.  

For validation of the techniques under a clinical setting, Doppler echocardiography is 

used as the reference. The values of stroke volume estimated from impedance cardiography 

were compared with those obtained from Doppler echocardiography, on beat-to-beat basis, 

for subjects with normal health and ward referral patients. Artifact suppression resulted in 

increased correlation, low scatter from linear regression, and a decrease in the mean bias and 

the standard deviation of the differences, showing that the artifact suppression techniques can 

be used with impedance cardiography instrument for continuous monitoring of stroke volume 

and other cardiovascular parameters. 
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Chapter 1 

 

INTRODUCTION 

 

 

1.1 Problem overview 

The stroke volume is the amount of blood pumped by the left ventricle of the heart in one 

contraction. The cardiac output is the amount of blood pumped by heart in one minute, and 

hence it is given as the product of the stroke volume and the heart rate. It gives valuable 

diagnostic information about cardiovascular functioning (Kerr et al., 1998; Korhonen et al., 

1999; Siebert et al., 1999; Nelson and Janerot-Sjöberg, 2001; Siebert et al., 2004; Liu et al., 

2004). Unlike heart rate variability and blood pressure variability, stroke volume variability 

has not been widely used as a cardiac diagnostic tool, mainly because of the difficulty in 

getting accurate estimation of stroke volume on a beat-to-beat basis over a long period of 

time.  

Impedance cardiography is a noninvasive technique for monitoring changes in the 

impedance of the thorax due to blood flow. In this technique, a high-frequency (20-400 kHz) 

and low-amplitude current (< 5 mA) is injected into the thorax using a pair of electrodes. The 

resulting voltage waveform, sensed across the same or another pair of voltage sensing 

electrodes, gets amplitude modulated due to variations in the thoracic impedance. It is 

demodulated to obtain the impedance variation (z(t)) and it can be used, with the help of an 

appropriate impedance model of the thorax, for estimating stroke volume and several other 

cardiovascular indices (Kubicek et al., 1966; Kubicek et al., 1967; Kubicek et al., 1974; 

Kubicek, 1989; Patterson, 1989; Sramek, 1994). Several studies have shown that the values of 

the stroke volume and some of the indices estimated using impedance cardiography have a 

good correlation with those obtained using dye dilution, thermodilution, CO2 rebreathing, and 

Doppler echocardiography methods (Lababidi et al., 1971; Aust et al., 1982; Wang et al., 

1989; Northridge et al., 1990; Pappas et al., 1994; Kizakevich et al., 1994; Woltjer et al., 

1996; Verhoeve et al., 1998; Greenberg et al., 2000; Treister et al., 2004; Fortin et al., 2005). 

As impedance cardiography is a noninvasive and a low cost technique, it has a great potential 

in cardiovascular diagnostics.  
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 Negative derivative of the thoracic impedance, -dz/dt, is known as the impedance 

cardiogram (ICG). The stroke volume is generally calculated using Kubicek’s formula 

(Kubicek et al., 1966; Kubicek et al., 1967; Kubicek et al., 1974; Patterson, 1989; Kubicek, 

1989) or one of its several modifications (Sramek et al., 1983; Sherwood et al. 1990; Verdu, 

1994; Bernstein and Lemmens, 2005), using two parameters: (i) the left ventricular ejection 

time (Tlvet) and (ii) peak of the ICG ((-dz/dt)max). In Kubicek’s formula, it is assumed that the 

resistivity of blood is constant during the cardiac cycle and aortic blood flow is a square wave 

pulse lasting until the end of the systole. The product of (-dz/dt)max and Tlvet is thus directly 

proportional to the systolic pulsatile change in the aortic blood volume. However, actual 

aortic blood flow profile significantly differs from a square pulse, and it varies across 

individuals. Further, blood flow results in a change in the orientation of the erythrocytes and 

hence in a change in the blood resistivity during the cardiac cycle (Visser et al., 1976; 

Sakamoto and Kanai, 1979; Visser, 1989; Thomas et al., 1991; Sramek, 1994). Contribution 

of various blood vessels in the thoracic region is not well established. These factors have 

limited the development of a model for a precise and accurate estimation of the stroke volume 

and other indices for cardiovascular diagnosis.  

 Another problem with impedance cardiography is that sensing of the variation in the 

thoracic impedance due to blood flow is influenced by respiration and motion artifacts. 

Respiratory artifact is the variation in the sensed thoracic impedance caused primarily by 

changes in the thoracic cage during inhale and exhale phases of respiration. While, motion 

related artifacts are due to body movement and thoracic dimension changes. The spectra of 

the motion and respiratory artifacts partly overlap with that of the ICG. These artifacts have a 

large amplitude as compared to the impedance variation due to the blood flow, and cause a 

baseline drift in the sensed impedance waveform. Presence of these artifacts in the signal 

restricts proper use of the input dynamic range of the analog-to-digital (A/D) converter and 

severely affects the estimation of the various indices, particularly during stress test or during 

post-exercise relaxation. Ensemble averaging is generally employed for suppressing the 

artifacts, but it suppresses beat-to-beat variations. It also tends to suppress or blur some of the 

important points in the ICG waveform and may cause errors in the estimation of the various 

parameters.  

 

1.2 Research objective 

The research objective is to investigate techniques for suppression of the artifacts in the signal 

sensed by impedance cardiography, for the estimation of stroke volume and other 

cardiovascular indices without smearing the beat-to-beat variations.  
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A baseline restoration circuit is developed for fast estimation and partial removal of 

the baseline drift, before digitizing the signal, for effective utilization of the input dynamic 

range of the A/D converter. Signal processing techniques, based on adaptive filtering and 

wavelet based denoising, are investigated for cancellation of the artifacts in the acquired 

signals. In the adaptive filter based technique, a reference signal is needed for artifact 

cancellation. For removing respiratory artifact, respiration is sensed by a thermistor based 

airflow sensor placed in front of the nostrils. There are limitations in applying this technique 

for removal of motion artifacts, due to practical limitations in obtaining a reference signal 

related to various motions that may cause variation in thoracic impedance. Application of 

wavelet based denoising technique without involving a reference signal is investigated for 

removal of respiratory and motion artifacts.  

A quantitative evaluation of the artifact suppression is carried out by applying these 

techniques on the artifact-free ICG recordings added with simulated artifacts at different 

levels, for recordings from 23 healthy volunteers. Suppression of the actual artifacts is 

investigated by applying the techniques on the signals acquired under the conditions of high 

heart rate variability and artifacts, from 52 healthy volunteers during post-exercise relaxation. 

For the validation of the techniques, under a clinical setting, Doppler echocardiography is 

used as a reference technique. Simultaneous recordings of ICG and Doppler echocardiogram 

were carried out from nine subjects with normal health and five subjects with cardiovascular 

disorders. Agreement between the values of stroke volume and some of the indices as 

estimated from the two techniques are examined.  

 

1.3  Thesis outline 

Chapter 2 presents an overview of the fundamentals of impedance cardiography inluding 

impedance model of the thorax, electrode systems, and various artifacts present in the 

impedance signal. This is followed by a review of the signal processing techniques for artifact 

cancellation. At the end of this chapter, the techniques to be investigated and the methods for 

their evaluation and validation are presented. 

 Chapter 3 presents a baseline restoration circuit for effective utilization of the input 

dynamic range of the A/D converter. Chapter 4 presents the techniques based on adaptive 

filtering for removal of respiratory artifacts. The wavelet based denoising technique is 

presented in Chapter 5. Results from analysis of the recordings taken, in a clinical setting, 

from the subjects with normal health and those with cardiac disorders are presented and 

discussed in Chapter 6. The estimated stroke volume and some of the cardiac indices from 

impedance cardiography are compared with the values obtained from Doppler 

echocardiography, which provides a reference for beat-to-beat variations. Chapter 7 gives a 
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summary of the work done, conclusions drawn from the present research, and some 

suggestion for further work. 

 Extended results and supplementary information are provided in the appendices. An 

overview of some of the commercially available impedance cardiograph instruments are 

presented in Appendix A. Hardware details of the impedance cardiograph developed in our 

lab, and used for recording the signals during the research, are presented in Appendix B. 

Appendix C presents analysis results related to the techniques based on adaptive filtering for 

removing simulated respiratory artifacts, and on actual recordings from the healthy 

volunteers. Appendix D gives the analysis results for the wavelet based denoising technique. 

Detailed results from clinical evaluation of the signal processing techniques are given in 

Appendix E. Forms used for recording background information and consent of the 

participating subjects are presented in Appendix F. 



 

 

 

Chapter 2 

 

FUNDAMENTALS OF  

IMPEDANCE CARDIOGRAPHY 

 

 

2.1 Introduction 

The stroke volume is the amount of blood pumped by the left ventricle of the heart in one 

contraction (Vander et al., 1980; Guyton, 1991; Ross and Wilson, 2006). The cardiac output 

is the amount of blood pumped by heart in one minute, and hence it is given as the product of 

the stroke volume and the heart beat rate. Cardiac disorders like valvular heart disease, 

congenital heart disease, disorder in pacemaker cells, blockage in arteries, pulmonary edema, 

etc. may lead to a decrease in the stroke volume. Beat-to-beat variation in stroke volume and 

left ventricular ejection time provide diagnostic information about cardiovascular functioning 

(Kerr et al., 1998; Korhonen et al., 1999; Siebert et al., 1999; Nelson and Janerot-Sjöberg, 

2001; Siebert et al., 2004; Liu et al., 2004). Unlike heart rate variability and blood pressure 

variability, stroke volume variability has not been widely used as a cardiac diagnostic tool, 

mainly because of the difficulty in getting accurate estimation of stroke volume on a beat-to-

beat basis over a long period of time.  

The established methods for estimating stroke volume, Fick's dye dilution and thermo 

dilution methods, are invasive and need catheterization and provide only an average stroke 

volume (Lababidi et al., 1971; Wang et al., 1989; Pappas et al., 1994; Woltjer et al., 1996; 

Webster, 1998; Fortin et al., 2005). Electromagnetic flowmeters employ sensor probes across 

the thoracic aorta (Browning et al., 1969; Hirakawa et al., 1975; Webster, 1998). The 

measurements obtained are sensitive to the velocity distribution of the flowing blood. The 

CO2 rebreathing method is a noninvasive technique for measuring the cardiac output, but 

changes in the breathing rate and deep breathing during measurement can introduce error in 

the estimation of the cardiac output. Doppler echocardiography is used to noninvasively 

measure the stroke volume and some other cardiovascular indices (Fisher et al., 1983; 

Huntsman et al., 1983; Christie et al., 1987; Northridge et al., 1990; Arora et al., 2007). But 

this technique needs a radiologist or a skilled operator to operate the instrument and poses 
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technical difficulties in getting Doppler images during stress test and can not be used for 

monitoring the indices over extended periods (Daley et al., 1985; Gardin et al., 1986).  

 The electrical resistivity of blood is lower than that of other body tissues (Geddes and 

Baker, 1967; Baker, 1989). The blood volume changes in the thoracic region during the 

cardiac cycle, while the volume of other body tissues remains almost the same. During 

systole, heart pumps blood into the pulmonary circulatory system and the systemic circulatory 

system. The pulmonary circulation supplies blood for oxygenation in the lungs, and the 

systemic circulation supplies the oxygenated blood, through the aortic artery, to various parts 

of the body. Due to the increase of blood volume in the thoracic region the impedance of the 

thorax decreases (Kubicek et al., 1966; Kubicek et al., 1967; Kubicek et al., 1974; Patterson, 

1989; Kubicek 1989). By sensing this signal, the stroke volume can be estimated and it can be 

used for estimating the stroke volume and the cardiac output.  

 Impedance cardiography is a non-invasive technique for monitoring cardiac related 

impedance changes in the thoracic impedance (Kubicek et al., 1966; Kubicek et al., 1967; 

Kubicek et al., 1974; Zhang et al., 1986; Qu et al., 1986; Patterson, 1989; Kubicek, 1989; 

Deshpande et al., 1990; Sramek, 1994; Jensen et al., 1995; Sherwood et al, 1998; Song and 

Kim, 2003; Bernstein and Lemmens, 2005). The impedance is generally measured using four 

band electrodes placed around the thorax, by passing a high frequency (20-400 kHz) low 

amplitude current (< 5 mA) between the outer two electrodes and picking up the resulting 

amplitude modulated voltage across the inner two electrodes. The voltage is demodulated to 

get the impedance signal Z(t). The maximum value of the impedance, with the lowest volume 

of blood in the thorax, is known as the basal impedance Zo. The variation in the impedance, 

z(t), from the basal value is related to the variation in the blood volume, and its negative 

derivative (−dz/dt) is known as the impedance cardiogram (ICG).  

 This chapter gives an overview of variation in the thoracic impedance, impedance 

model of the thorax, electrode systems and instrumentation for impedance cardiography, 

clinical studies related to impedance cardiography, and the artifacts present in the thoracic 

impedance signal, followed by a review of the signal processing techniques for artifact 

cancellation. At the end of the chapter, the techniques to be investigated are proposed, and the 

methods for their evaluation and validation are presented. 

 

2.2 Variations in the thoracic impedance 

Variations in the thoracic impedance are caused by several physiological events including 

blood volume change in the thorax, air volume change in the lungs, and heart movement 

(Kubicek et al., 1966; Kubicek et al., 1967; Karnegis and Kubicek, 1970; Kubicek et al., 

1974; Harley and Greenfield, 1969; Patterson, 1989; Wang et al., 1991; Sramek, 1994; Jensen 
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et al., 1995; Song and Kim, 2003). Bonjer et al. (1952) conducted an experiment in 

anaesthetized dogs by encasing the heart in an insulating sheet of rubber. They found that the 

volume changes in the heart itself generally play a very minor role in the variation in the 

thoracic impedance. Mohapatra (1981) has reported experiments to investigate the origin of 

the variation in thoracic impedance and has concluded that these variations reflect both a 

change in the blood velocity as well as a change in the blood volume. The heart by itself does 

not contribute to change in the thoracic impedance because its physical volume is less than 

10% of the thoracic volume and effects of variation in its impedance are shielded by aorta and 

vena cava (Bonjer et al., 1952; Lewis, 1974; Sramek, 1994). Geddes and Baker (1972) 

investigated the effect of 2 ml saline injection into the ventricles and the pulmonary artery of 

dogs on thoracic impedance changes. It was observed that injection into the ventricles 

produced a larger change in the impedance, and it was concluded that contraction of both the 

right and the left ventricle can cause a change in the thoracic impedance. In an another 

experiment, soon after the death of the dog, they artificially induced volume changes of the 

heart and rhythmic perfusion of the systemic and the pulmonary circulation with a mechanical 

fluid pump. The results showed that the changes in the impedance were due to expulsion of 

the blood from the heart during the ventricular contraction.  

Kubicek (1989) conducted studies on a dog whose left ventricle pumped only once 

every two ejections of the right ventricle (left mechanical alternas). A change in the thoracic 

impedance was observed when the left ventricle contracted. It was also observed that the (-

dz/dt)max was synchronized with the peak blood flow in the aorta, as measured by an 

electromagnetic flow-meter. Pappas et al. (1994) used thermodilution and impedance 

cardiography on eight rabbits, and found a high correlation between cardiac outputs estimated 

from the two techniques. Recently, Gaw et al. (2008) have reported a mathematical model to 

explain the flow dependence of the electrical conductivity of blood during pulsatile flow 

through rigid tubes.  

In the four-electrode arrangement for impedance cardiography as shown in Fig 2.1, 

current is injected through the outer electrodes. Electrically non-conducting ribs running 

perpendicular to the current path and the contents of the intra-thoracic space contribute to the 

basal impedance Zo. The two major conductive pathways vena cava and thoracic aorta are 

parallel with the current flow. These two vessels have high conductivity in comparison to the 

other thoracic tissues and it is estimated that they conduct more than 50% of the injected 

current (Sramek, 1994). The remaining injected current flows through the intercostal muscle 

and less conductive lung tissues. Change in the resistance of the lung is due to changing 

volume of air in the alveolar space. Variations in the thoracic impedance have several origins: 

(1) cardiovascular activity, (2) orientation of erythrocytes, (3) respiration, and (4) motion. 
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Fig 2.1 Four-electrode arrangement for 

impedance cardiography (adapted from 

Sramek, 1994). 

 (a)           (b) 

 
Fig 2.2 (a) Randomly oriented erythro-

cytes at the end of diastole, (b) Oriented 

erythrocytes at high blood velocity 

(adapted from Sramek, 1994). 

1) Cardiovascular activity: 

Most of the high frequency 

measurement current flows through 

the thoracic aorta and the inferior and 

the superior vena cave. The 

contraction of the ventricles results 

in pressure and volume change in the 

aorta and the pulmonary artery. Vena 

cava does not exhibit pulsating blood 

flow in synchronism to the heart 

beat. Hence, most of the variation in 

the thoracic impedance originates 

from the thoracic aorta and the 

pulmonary artery (Bonjer et al., 

1952; Kubicek et al., 1966; Kubicek 

et al., 1967; Kubicek et al., 1974; 

Patterson, 1989; Kubicek, 1989; 

Wang et al., 2001). 

2) Orientation of erythrocytes: 

During pulsating flow of the blood, 

its effective conductivity changes 

(Visser et al., 1976; Visser, 1989; Sramek, 1994). The erythrocytes (red blood cells) have a 

disc like shape. Prior to the aortic valve opening, the erythrocytes have arbitrary orientation 

within plasma and the current lines have extended path length as shown in Fig 2.2(a). Due to 

acceleration in blood flow, after opening of the aortic valve, erythrocytes generally get 

aligned with the flow direction. As the injected high frequency current is parallel to the main 

axis of the thoracic aorta, current lines become straight and shorter, as shown in Fig. 2.2(b), 

and the thoracic impedance decreases.  

3)  Respiration: Respiration also contributes to a change in the thoracic impedance 

(Miyamoto et al., 1981; Muzi et al., 1985; Zhang et al., 1986; Hurwitz et al., 1990; Raza et 

al., 1992; Wang et al., 1991; Barrows et al., 1995; Ouyang et al., 1998; Webster, 1998; 

Yamamoto et al., 1998; Ernst et al., 1999; Riese at al., 2003; Krivoshei et al., 2008). Due to 

respiration, the intra-thoracic pressure changes. During inspiration, the intra-thoracic pressure 

is negative, which in turn produces not only an inrush of air into the lungs but also an increase 

in venous return to the thorax. Changes in thoracic cage dimensions during inhalation and 

exhalation cause variation in the sensed thoracic impedance. This part of the variation in the 

thoracic impedance is known as respiratory artifact. For sensing the variation in the thoracic 
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impedance, impedance pneumography can be used for apnea monitor (Wilson et al., 1982; 

Sahakianh and Kuokh, 1985).  

4) Motion: Due to body movements and breathing, thoracic dimensions change, resulting 

in a change in the current distribution and a change in the position of electrodes with respect 

to thoracic cage. The resulting variation in the thoracic impedance is known as motion artifact 

(Qu et al., 1986; Barrows et al., 1995; Rosell and Webster, 1995).  

 

2.3 Impedance model of the thorax and estimation of the parameters 

Nyboer et al. (1950) proposed a bioimpedance model for use in impedance plethysmography 

for monitoring the electrical impedance of a cylindrical region of the body, e.g. an arm or a 

leg. Modeling the region as a cylindrical conductor, they derived a formula for calculating the 

increment in the blood volume from the corresponding decrease in the impedance (Nyboer et 

al., 1950; Nyboer, 1970). This technique later received clinical importance because of the 

work by Kubicek et al. (Kubicek et al., 1966; Kubicek et al., 1967; Kubicek et al., 1974; 

Patterson, 1989; Kubicek, 1989). Kubicek et al. modified the model for stroke volume 

estimation from thoracic impedance measurement, assuming that the source of impedance 

change were lungs, which receive the blood from right ventricle during the systole (Kubicek 

et al., 1966; Kubicek et al., 1974; Patterson, 1989; Kubicek, 1989).  

 The thoracic region is modeled as a conductor of fixed length L, variable cross-

sectional area S, with volume given as 

 =V L S   (2.1) 

With resistivity ρ, the resistance of the region is given as  

 ρ=
L

R
S

 (2.2) 

An increase in the volume of the blood in the region results in an effective increase in the 

cross-sectional area and hence a decrease in its resistance. By substituting value of S from 

Eqn. 2.2 into Eqn. 2.1, blood volume in the region is given as  

 

2
L

V
R

ρ=   (2.3) 

Hence, a fractional change in the volume is related to a fractional change in the resistance as  

 
∆ ∆

≈ −
V R

V R
  (2.4) 

Substituting the value of V from Eqn. 2.3 in Eqn. 2.4, we get 

 
2

2

L
V R

R
ρ∆ ≈ − ∆  (2.5) 
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Impedance is measured by injecting ac current using a pair of electrodes and measuring the 

resulting voltage. The impedance at the frequency used for sensing is nearly resistive (Rosell 

et al., 1995) and hence we can write  

 

2

2
( )

L
V Z

Z
ρ∆ = − ∆   (2.6) 

The value of the impedance with the lowest quantity of blood is known as the basal 

impedance Zo, and hence the time varying impedance can be written as  

 0( ) ( )Z t Z z t= +   (2.7) 

where z(t) ≤ 0 and |z(t)| << Zo. Hence the change in the blood volume can be estimated from 

the maximum change in the impedance ∆Z = -|z|max as  

 
2

2
0

(| | )max

L
V z

Z
ρ∆ =  (2.8) 

Fig. 2.3 Typical waveforms in impedance cardiography: -z(t) and –dz/dt 

along with electrocardiogram (ECG) and phonocardiogram (PCG); for 

calculation of ∆Z using forward-slope extrapolation method (adapted 

from Patterson, 1989).  

 

lvet

max

∆ max
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 Negative of the slope of the impedance variation, i.e., -dz/dt, is known as the 

impedance cardiogram. Figure 2.3 shows z(t) and -dz/dt waveforms along with the associated 

electrocardiogram (ECG) and phonocardiogram (PCG) waveforms. The ICG waveform has 

three characteristic points: B, C, and X. Point B and point X denote the aortic valve opening 

and closing respectively and these points are associated with the first and the second heart 

sounds. The point C corresponds to the point of maximum rate of impedance change 

(-dz/dt)max. The point O indicates the time of opening of the mitral valve and it represents a 

rapid ventricular diastole. The time interval between points B and X is the left ventricle 

ejection time (Tlvet) and it gives duration of the mechanical systole.  

 The basal impedance Zo is usually about 25 Ω and impedance changes z(t) caused by 

cardiovascular activity is less than about 2 % of the basal impedance (Witsoe et al., 1969; 

Kubicek et al., 1974; Patterson, 1989). The impedance change ∆Z (= |z|max) refers to the 

decrease in the impedance caused by the increase in blood volume. In order to take care of the 

blood that leaves the thoracic region during the ejection phase, a forward slope extrapolation 

method was developed by Kubicek et al. (Kubicek et al., 1966; Kubicek et al., 1974; 

Patterson, 1989). As shown in Fig 2.3, a straight line is drawn from the steepest part of z(t) 

signal until the end of the ejection phase. In this model, it is assumed that the blood flow is a 

square wave pulse, i.e., it is constant over the blood ejection phase, and blood starts 

significantly leaving the thoracic region sometime after the aortic valve opens. Hence, the 

maximum rate of change is proportional to the blood flow. Thus, ∆Z is obtained as the 

product of the ICG peak and the left ventricle ejection time, which is determined from the last 

upward crossing of ICG before the large systole peak to the second heart sound. Hence, Eqn. 

2.6, for estimating the stroke volume becomes, 

 

2

2
max

lvet

o

L dz
V T

dtZ
ρ

 
∆ = − 

 
 (2.9) 

where, V∆ = stroke volume (mL), ρ  = resistivity of blood (Ω-cm), L = the length of the 

modeled conductor (cm), Zo = the basal impedance (Ω), (-dz/dt)max = the maximum of the 

derivative of the impedance during the systole (Ω/s) , Tlvet = left ventricle ejection time (s). 

Equation 2.9 is generally known as the Kubicek’s formula for estimating the stroke volume.  

 There have been several questions on the validity of the fixed length conductor model 

of the thorax (Visser et al., 1976; Sakamoto and Kanai, 1979; Traugott, 1981; Visser, 1989; 

Thomas et al., 1991; Sramek, 1994; Raaijmakers et al., 1995). Several modifications have 

been proposed to correct the estimate, for different contributions of the different blood 

vessels, blood flow profiles, electrical current configurations, and changes in blood 
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conductivity due to change in the orientation of erythrocytes with the rate of blood flow. 

Sramek et al. (1983, cited in Van De Water et al., 2003) approximated L as 17% of the 

patient’s
 
height (H) and changed the cylindrical model to a frustum. The stroke volume is 

estimated as  

 

3

max

(0.17 ) 1

4.2
lvet

o

H dz
V T

Z dt

   
∆ = −       

 (2.10) 

where, H is the patient’s height in cm. In this formula, blood resistivity ρ has been eliminated. 

Also, this formula uses a percentage of body height and not the distance between sensing 

electrodes, hence inaccuracy due to error in measuring the distance between sensing 

electrodes is eliminated. For improving the accuracy of the estimated stroke volume, 

Bernstein (1986) introduced an empirically determined weight correction factor δ, derived by 

taking ratio of the actual weight and the ideal weight for the subject’s height, as follows 

  

3

max

(0.17 ) 1

4.2
lvet

o

H dz
V T

Z dt
δ
   

∆ = −       
 (2.11) 

It is to be noted that despite several modifications for estimation of stroke volume, these 

formulas use the same two parameters (-dz/dt)max and Tlvet.  

 In addition to estimating (-dz/dt)max and Tlvet, the ICG waveform has been used for 

calculating several other indices (Summers et al., 1999; Modak and Banerjee, 2004; Peng et 

al., 2004; Thompson et al., 2004). The thoracic fluid index (TFI) is representative of total 

fluid volume in the thorax comprised of both the intra-vascular and the extra-vascular fluid 

(Saunders,1988), and it is defined as  

TFI = 1/Zo (2.12) 

The velocity index (VI) is related to the peak velocity of blood in the aorta, it is given as 

  

max

VI TFI
dz

dt

− 
=  
 

  (2.13) 

As mentioned earlier, the value of (-dz/dt)max has been found to be related to the peak aortic 

blood flow (Kubicek, 1989). The acceleration index (ACI) is the peak acceleration of blood 

flow in the aorta, which occurs within the first 10 - 20 ms after the opening of the aortic 

valve, and it is defined as 

2

2

max

ACI TFI
d z

d t

 
=  
 
 

  (2.14) 

 Pre-ejection period (PEP) is defined as the time interval from the beginning of the 

electrical stimulation of the ventricles to the opening of the aortic valve (electrical systole), 

i.e., time interval from the beginning of the Q wave of the ECG to the B point of the ICG. It is 
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the period of isovolumic ventricular contraction and hence it is a measure of contractility of 

the heart (Modak and Banerjee, 2004; Peng et al., 2004). Systolic time ratio (STR) is the ratio 

of the electrical systole (PEP) to the mechanical systole (Tlvet), and it is given as 

STR PEP / lvetT=   (2.15) 

A higher STR may indicate the presence of left ventricular dysfunction in chronic heart 

failure because the isovolumetric contraction time of the ventricles takes longer in relation to 

the ejection time of the ventricles (Modak and Banerjee, 2004; Thompson et al., 2004). STR 

are useful in diagnosing valve disease, angina pectoris, pericardial disease, coronary artery 

disease, and mitral valve disease (Lewis, 1975; Lewis et al., 1977). Heather index (HI) is 

defined as  

max

HI Q C

dz
T

dt
−

 
= − 
 

  (2.16) 

where TQ-C is the time interval between the Q-wave of ECG and the C-point of ICG. The 

STR, ACI, and HI provide a measure of systolic contractility (Lewis, 1975; Summers et al., 

1999; Peng et al., 2004). Summers et al. (1999) simultaneously measured HI and 

cardiothoracic ratio (longest observed length of the cardiac silhouette divided by the 

transthoracic length at the same level) for monitoring acute congestive heart failure.  

In the ICG waveform shown in Fig. 2.3, the characteristic points used for parameter 

estimation can be clearly identified. However, the waveform varies markedly across 

individuals (DeSouza and Panerai, 1981). Point B in the ICG, at the onset of rapid upstroke of 

ICG, denotes the onset of left ventricular ejection. Lababidi et al. (1971) showed that the 

point B corresponds to the maximum amplitude of the first heart sound. Other studies, using 

simultaneous recording of ICG and echocardiogram, have also indicated a correspondence 

between point B with onset of the left ventricle ejection (Rusmussen et al., 1975, cited in 

Buell, 1988; Petrovick et al., 1980; Stern et al., 1985). The lowest point in ICG, point X, 

corresponds to the closure of the aortic valve. It is usually seen as a sharp notch, as seen in 

Fig. 2.3, in synchronism with the second heart sound (Lababidi et al., 1970; Patterson, 1989) 

and generally can be easily recognized.  

Kubicek et al. (1966) introduced a method for determining left ventricle ejection time 

(Tlvet) from the zero crossing or a deflection point just preceding the (-dz/dt)max of ICG (point 

B) to the negative peak of the ICG waveform (point X). However, it was observed that the 

point B sometimes falls above zero crossing (Lamberts et al., 1984; DeMarzo and Lang, 

1996). Kubicek et al. (1970) modified the algorithm for detection of point B, by marking it as 

the instant of 15% of (-dz/dt)max value. Inaccuracy in the detection of onset of left ventricle 

ejection, from ICG, directly affects the estimation of stroke volume and some of the indices 

(DeMarzo et al., 1996). Reference to maximum deflection of first heart sound may be helpful 
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for avoiding ambiguity in locating the B-point. The value of (-dz/dt)max is the maximum rate 

of change of z(t) and is marked as the peak in ICG, within a given cardiac cycle following the 

QRS complex of ECG. This value is usually taken as absolute value of (-dz/dt)max relative to 

the zero crossing. However, in some of the studies, it has been defined as the value of 

(-dz/dt)max with reference to the point B (Boer et al., 1979; Mohapatra, 1981).  

 

2.4 Electrode system 

A typical ICG system uses a four-electrode configuration for reducing the effect of skin-to-

electrode impedance in the sensed signal. The equivalent resistor network for 4-electrode 

configuration is shown in Fig. 2.4, with E1-E4 representing the electrodes. For measuring 

impedance change Zx, a current source is connected across the outer terminals of the network. 

Impedances Zi1, Zi2, Zv1, Zv2 represent electrode-tissue interface impedances. Impedances Za 

and Zb are the tissue impedances of the regions between the current and the voltage 

electrodes. The differential amplifier with a gain A, for the measurement of Vx, has very high 

input impedance, i.e., Zin >> (Zx+ Zv1+Zv2). The output voltage is Vo = A I Zx and it is not 

affected by the other impedances. For the reasons of economy and convenience in application, 

some impedance cardiographs use two electrodes. In this case, the current density is higher 

near the electrode than elsewhere in the tissue and the measured impedance becomes more 

dependent on the tissue near the electrodes than elsewhere in the body. Moving the electrodes 

closure to the main source of the impedance variation (aorta) may provide a more accurate 

measurement. Both the electrode configurations use surface electrodes, either in the form of 

Fig 2.4 Resistor model of four-electrode configuration used in 

impedance cardiography. 
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bands or spot electrodes.  

Band electrodes: Kubicek et al. (1966) used a 4-electrode configuration with 

circumferentially placed band electrodes and this configuration has been widely used. 

Typically, the current is passed between a circumferential electrode high on the neck and 

another roughly at the level of the umbilicus, while the voltage is measured between an 

electrode around the base of the neck and one at the xyphoid level. Each electrode usually 

consists of a disposable strip of adhesive tape having thin strip of aluminum coated mylar, 

forming the electrode along the centre (Witsoe et al., 1969). Use of electrode gel is optional 

(Witsoe et al., 1969). Several studies have been conducted regarding the placement of sensing 

electrodes (Miyomoto et al., 1981; Edmunds et al., 1982; Veigl and Judy, 1983; Ferrigno et 

al., 1986; Qu et al., 1986). In some of the studies, forehead position has been used for the 

upper injection electrode (Verdu, 1994). Watanabe et al. (1981, cited in Penney et al., 1985) 

used half band electrodes in impedance cardiography. Lambert et al. (1984) reported a 

considerable change in amplitude of z(t) and ICG due to variation in distance between the 

sensing electrodes. For reproducible stroke volume estimates, they suggested using an 

approximate distance of 24 cm between the sensing electrodes, and a separation of at least 3 

cm between the sensing and the injection electrodes. 

Spot electrodes: Band electrodes are used for providing a nearly uniform current 

density in the thoracic region, but they pose practical difficulties in correct placement and 

may be uncomfortable for some patients. Further, motion causes variation in the contact 

impedance at different points along the bands, resulting in a change in the current distribution, 

which can result in a large motion artifact. Similar problem may also be contributed by band 

electrodes during sensing, because the sensed voltage gets dominated by points along the 

band electrodes with low contact impedance (Verdu, 1994). Spot electrodes have small area, 

and current distribution may become non-uniform, with higher current density near the 

injection electrodes, i.e., the impedance variation near the electrodes will contribute more to 

the modulated output voltage. The main advantage of the spot electrodes is that their location 

can be selected to minimize motion artifacts. Several studies have been conducted for 

replacement of band electrodes with spot electrodes (Penney et al., 1984; Qu et al., 1986; 

Boomsma et al., 1989; Sherwood et al., 1992; Gotshall and Sexson, 1994; Woltjer et al., 

1996; Barde et al., 2006). Possibility of a non-uniform current distribution across the thorax is 

the main concern in using spot electrodes. Several electrode arrays have also been introduced 

using disposable spot electrodes. 

Penney et al. (1985) used 2-channel impedance cardiograph for simultaneously 

recording of ICG from spot and band electrodes. Two spot electrodes were placed at the back 

of the neck, separated by 6 cm and centered about prominence of the seventh cervical 

vertebra. The other two electrodes were placed at the end of the ninth inter-costal space: one 
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near the mid-clavicular line and the other one at 8 cm from the first, in tenth inter-costal space 

near mid-auxiliary line. A good correlation was observed between the signals from the two 

techniques, in terms of peak and shape of the waveform.  

 Qu et al. (1986) investigated the use of a four-spot electrode array for reducing 

motion artifact. Motion artifacts were found to be minimum when the electrodes were placed 

in the sagittal plane of the body. One current injection electrode was placed on the back of the 

neck over the fourth cervical vertebra and the other one on the back over the ninth thoracic 

vertebra. One voltage sensing electrode was placed on front of the neck, 4 cm above the 

clevicle and the other one over the sternum at the fourth rib. They found that if the spot 

electrode array deviates from the center region of the chest the signal-to-artifact ratio (SAR) 

drastically reduces. The placement of the array of spot electrodes on the abdomen also 

resulted in reduced signal-to-artifact ratio. Zhang et al. (1986) compared the results from the 

band and spot electrodes. The values of the correlation coefficients between the cardiac output 

measured by CO2 rebreathing and impedance cardiography was found to be 0.97 (n = 76) with 

the band electrodes and 0.95 (n = 78) with the spot electrodes).  

 Woltjer et al. (1996) used a 16-spot electrode array and compared stroke volume 

obtained using the spot electrodes and the band electrodes. No significant differences were 

observed in the stroke volume obtained with both the arrays. Bernstien and Lemmens (2005) 

replaced each band electrode by a pair of spot electrodes. Using this electrode configuration 

and by using Sramek-Bernstien formula for cardiac output estimation from ICG, a high 

correlation (r = 0.88, n = 94) was reported between the cardiac output values estimated from 

ICG and thermodilution method for critically ill patients. The results are similar to those 

reported in an earlier study by Appel et al. (1986) on critically ill patients (r = 0.83, n = 16).  

 These studies suggest that the spot electrodes may be used as an alternative to the 

band electrode, despite the concern for non-uniform current distribution.   

 

2.5 Instrumentation for impedance cardiography 

The frequency and current amplitudes used for measuring thoracic impedance should be 

selected to avoid any physiological effects. The impedance is generally measured by passing a 

high frequency (20-400 kHz), low amplitude current (< 5 mA) across the thorax. In this 

frequency range, the impedance is nearly resistive and the tissues are not excitable, except 

possibly at very high current levels (Grimnes and Martinsen, 2000). If a frequency much 

higher than 400 kHz is used, current distribution is confined near to the skin, and contribution 

of the various organs to the thoracic impedance will not be observed. At frequencies much 

lower than 20 kHz, there may be physiological effects due to excitation of cells (Baker, 1989). 

Also, at lower frequencies skin-to-electrode impedance is high which may introduce problem 

of dynamic range and more electrode related artifacts (Rosell et al., 1995). 
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Nyboer developed an impedance plethysmograph for measuring impedance variation 

in a limb (Nyboer, 1970), as shown in Fig. 2.5. Four-electrode configuration is employed for 

reducing the effects of skin-to-electrode impedance and for a uniform current density in the 

selected segment. Two electrodes, I1 and I2, are used for injection of current, and the other 

two electrodes, E1 and E2, are used for sensing the voltage drop across them. The amplitude 

of the sensed voltage is directly proportional to the electrical impedance of the segment 

between electrode E1 and E2. The amplification and detection of sensed voltage yields the 

output Z(t) which is varying impedance z(t) superimposed on the basal impedance Zo. 

Varying impedance z(t) is obtained by subtracting basal impedance Zo from the total 

measured impedance Z(t).  

Using an approach similar to that in Nyboer’s plethysmograph, Kubicek et al. 

developed an impedance cardiograph instrument (Kubicek et al., 1966; Witsoe et al., 1969; 

Kubicek et al., 1974). The block diagram of the instrument, known as the Minnesota 

Fig 2.6 Impedance cardiograph developed by Kubicek et al. (1974). 
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impedance cardiograph, is shown in Fig. 2.6. The current is injected into the thorax with a 

pair of electrodes I1 and I2 and the voltage developed across the thorax is picked up by 

another pair of electrodes E1 and E2. Because of time varying impedance z(t) in the region 

between sensing electrodes the amplifier output is an amplitude modulated voltage. This 

signal is fed to a demodulator which provides an output proportional to Z(t), sum of basal 

impedance Zo, and time varying component z(t). Motion and respiration cause changes in 

thoracic dimensions and introduce artifacts in the z(t) signal. These artifacts have a large 

amplitude and result in a baseline drift. For restoring the baseline, a sample-and-hold based 

baseline restoration circuit was introduced by Kubicek et al. (Witsoe et al., 1969; Kubicek et 

al., 1974). In this circuit, two comparators were used to set thresholds and whenever the ICG 

signal crosses the range defined by these thresholds, output was pulled to a value within the 

range. The baseline drift that does not cross these threshold ranges was not compensated. A 

successive approximation register (SAR) based baseline restoration circuit was later reported 

by Qu et al. (1986).  

 In an ICG instrument developed by Kizakevich et al. (1988), a crystal controlled 

square wave generator, at 100 kHz, followed by a band-pass filter and voltage-to-current 

converter was used for providing a stable sinusoidal excitation. The sensing circuit included 

synchronous demodulator, low pass filter, and sample-and-hold based baseline restoration 

circuit. Low pass filtered output of synchronous demodulator resulted in basal impedance Zo, 

while sample and hold based baseline restoration circuit provided varying component of the 

impedance z(t). Differentiation of z(t) gave the ICG output. Analog outputs of the instrument 

were digitized with a microprocessor based circuit and ensemble averaging was carried out in 

digital domain to suppress the artifacts. In an instrument reported by Jindal et al., dz/dt was 

normalized by dividing it with Zo, and the peak amplitude of this waveform was taken as 

blood flow index (BFI) (Bhuta et al., 1990; Jindal et al., 2004).  

 Fortein et al. (2005) used two direct digital synthesis (DDS) chips to generate two 

stable ac current of 40 kHz. Second DDS chip was used to generate quadtrature signal. These 

two current sources were fed into a transformer to ensure isolation from the sensing circuit. 

Cables used for current injection were shielded to reduce pick-ups and interference. Sensed 

voltage was demodulated by a synchronous detector followed by a PI-feedback controller to 

maintain injection current amplitude at 400 µA. 

 There are a number of impedance cardiograph instruments commercially available: 

HIC-2000, HIC-3000, HIC-4000, NCcardiac outputM3, BioZ, Niccomo, CircMon, 

TEBcardiac output, THRIM, LifeGard, Philips Impedance Cardiograph, etc. Most of these 

instruments have a microcontroller/ microprocessor/ DSP/ PC for estimation of stroke volume 

and other cardiac indices. Some of the instruments (e.g. HIC-2000, HIC-3000, HIC-4000, and 
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THRIM) provide analog outputs of the waveform for post-processing of the signals. A brief 

description of some of these instruments is given in Appendix A.  

 

2.6 Clinical studies  

Several studies for the validation of the stroke volume obtained using impedance 

cardiography have been reported. Harley et al. (1968) reported a correlation of 0.26, for 24 

patients with heart disease, between cardiac output measured by impedance cardiography and 

thermal dilution method. 

 Lababidi et al. (1971) compared cardiac output estimated by dye dilution and 

Minnesota impedance cardiograph (model 202). In 20 children without shunts or valvular 

insufficiency, 5.5% mean difference was observed in cardiac outputs measured by Fick’s dye 

dilution and impedance cardiography. In 21 children, with left to right shunts cardiac output 

estimated from ICG showed good correlation (r = 0.92) with pulmonary blood flow. In 13 

subjects with aortic insufficiency, there was a mean difference of 50% in the cardiac output 

estimated by Fick's dye dilution and impedance cardiography. The authors concluded that 

impedance cardiography should not be used in the aortic insufficiencies. 

 Keim et al. (1976) reported a correlation of 0.49 between stroke volume estimated 

from impedance cardiography and Fick’s dye dilution method, for 17 cardiac patients. Secher 

et al. (1979) measured stroke volume, in 12 women before and during Caesarean section, to 

compare impedance cardiography with the thermodilution method. Correlation coefficients 

were 0.77 and 0.55 before and during anaesthesia respectively. Slope of the regression line, 

before anesthesia was found to be 1.07 and during anesthesia the slope was 0.45. 

 Aust et al. (1982) measured stroke volume simultaneously by Minnesota impedance 

cardiograph (model 400) and M-mode echocardiography, for six healthy volunteers. 

Recordings were carried out over a two hour period, for assessing cardiovascular response to 

the drug Amezinium Metilsulfate and placebo, in the supine position and when tilted 80
o
 

head-up for 10 minutes. There was a high correlation (r = 0.83) between the estimates from 

the two methods. Muzi et al. (1985) reported correlation of 0.87 (p < 0.01) for cardiac outputs 

estimated by thermodilution and impedance cardiography for 14 patients admitted in 

intensive-care unit.  

 Wang et al. (1989) used a microprocessor based hardware for real time monitoring of 

stroke volume and cardiac output. Ensemble averaging was used for reducing muscle noise, 

60 Hz interference, and respiratory artifacts in real time. They compared the outputs estimated 

using this instrument and thermodilution from 10 healthy volunteers, 4 critically ill patients, 

and 8 healthy exercising volunteers. Correlation coefficients for the output estimated by the 

two methods were found to be high for all the three groups: 0.93, 0.94 and 0.95 respectively.  
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 Kizakevich et al. (1993) measured Tlvet and other cardiac indices by impedance 

cardiography and Doppler echocardiography, before, during, and after exercise, in 31 

hospitalized patients with chest pain syndrome admitted for coronary angiography. 

Correlation between the values obtained using impedance cardiography and Doppler 

techniques, for aortic valve opening, timing for peak ejection velocity, aortic valve closure, 

ICG acceleration, and normalized ICG acceleration were 0.78, 0.86, 0.73, 0.74, and 0.79 

respectively. Vandeer et al. (1999) compared cardiac output estimated by impedance 

cardiography and Doppler echocardiography, for 26 cardiac patients and the correlation 

coefficient was found to be 0.85. 

 Perrino et al. (1994) used the instrument BoMed NCCOM3-R7 for measuring cardiac 

output of 43 patients, undergoing noncardiac surgery. The correlation coefficient for the 

values obtained from impedance cardiography and thermodilution was 0.84. Mean bias 

analysis, estimated from Bland-Altman method, showed a disagreement between the two 

methods. Yakimets and Jensen (1995) evaluated accuracy of the NCCOM-R7 impedance 

cardiograph instrument in estimating the stroke volume and the cardiac output for 17 patients 

undergoing coronary angiography and 28 patients after heart surgery using NCCOM-R7, 

Fick's dye dilution, and thermodilution methods. As compared to measurement from Fick's 

dye dilution and thermodilution methods, the impedance cardiography underestimated the 

stroke volume for all patients undergoing coronary angiography. Correlation coefficients for 

values obtained using impedance cardiography and Fick's dye dilution were 0.68 for resting 

condition and 0.22 during exercise. Correlation coefficients for the patients after heart surgery 

were 0.55 and 0.51 for observations taken at two different time. They concluded that 

impedance cardiography with the instrument used by them should not be used as a basis for 

clinical decision on the patients with heart disease without further investigations.  

 Woltjer et al. (1996) compared stroke volume estimated by ICG and thermodilution 

on 24 stable patients who underwent diagnostic heart catheterization and found a correlation 

coefficient of 0.69. After excluding the data from the patients with an aortic valve disorder, 

correlation was found to be 0.87. No significant mean difference between the two methods 

was reported and it was suggested that impedance cardiography might be a clinically useful 

tool for diagnosing heart failure. Fortein et al. (2005) conducted validation studies on 

congestive heart failure (CHF) patients, waiting for heart transplantation. A high correlation 

(r = 0.88, n = 16, p < 0.001) was found between the cardiac output estimated using impedance 

cardiography and thermodilution. Other studies also showed a high correlation between 

cardiac output from ICG and one of the clinically established methods (Charloux et al., 2000; 

Bellerdinelli et al., 1996). Several studies have shown good reproducibility of impedance 

cardiography variables before, during, and after exercise across the healthy subjects as well as 
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patients (Northridge et al., 1990; Kizakevich et al., 1994; Verhoeve et al., 1998; Greenberg et 

al., 2000; Van De Water and Miller, 2003; Treister et al., 2004).  

 

2.7  Suppression of respiratory and motion artifacts in ICG  

The sensed impedance variation is a mixed representation of components related to changes 

in the blood volume, air volume, and thoracic dimensions. The thoracic impedance signal z(t) 

is very small compared to the basal impedance, and it is influenced by respiration and motion 

artifacts which have much larger amplitudes. Use of baseline restoration circuit partly 

removes the respiratory and motion artifacts. The ICG signal bandwidth typically extends 

over 0.8 - 20 Hz. Respiration related artifact extends over 0.2 - 2 Hz, while motion related 

artifact have a band of 0.1 - 10 Hz (Webster, 1998). Thus the spectra of respiratory and 

motion artifacts partly overlap with that of the ICG. The artifact causes a variation in the 

baseline of the signal, and may introduce errors in calculating the parameters for estimating 

the stroke volume and other cardiac indices. 

Holding the breath during recording can avoid respiratory artifacts, but it may change 

the stroke volume (Andersen and Vik-Mo, 1984; Ferrigno et al., 1986; Du Quesnay et al., 

1987). Ensemble averaging has been widely used to suppress the respiratory and motion 

artifacts in impedance cardiography (Miyamoto et al., 1981; Muzi et al., 1985; Qu et al., 

1986; Zhang et al., 1986; Riese et al., 2003). In this technique, time frames in the ICG 

waveform are identified with reference to the R peak of ECG. Parameters Tlvet and (-dz/dt)max 

were calculated from ensemble averaged ICG waveform. The R-peak detection is generally 

carried out using Hamilton and Tompkins algorithm (Hamilton and Tompkins, 1986). Ideally, 

ensemble averaging enhances the coherent components and suppresses the non-coherent 

components with a zero mean. However, it suppresses beat-to-beat variation and transient 

changes in the signal. Because of heart rate variability, ensemble averaging tends to blur or 

suppress the less distinctive point B of the waveform and may result in error in its detection 

(Hurwitz et al., 1990; Wang et al., 1991; Raza et al., 1992; Barrows et al., 1995; Yamamoto 

et al., 1998). Further, the time difference between point B of ICG and R-peak of ECG may 

change, resulting in smearing of ICG peaks. We have earlier reported a method based on 

cross-correlation analysis for estimation of ventricular ejection time Tlvet from PCG (Pandey 

and Pandey, 2005). It is particularly suited for use during exercise, or post-exercise relaxation, 

when cardiac activity is rapidly changing.  

Hurvitz et al. (1990) used coherent ensemble averaging for enhancement of ICG, 

based on events in the waveform itself as the synchronization reference. The points B, C and 

X were first aligned in each frame and then the segments were ensemble averaged. Since the 

various events were already aligned before averaging, it provides better enhancement. This 
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technique is free from problems of beat-to-beat variation of cardiac events and event latency 

(Hurvitz et al., 1990; Riese et al., 2003). However, this technique can be applied only if 

points B, C, and X can be reliably detected in the artifact contaminated signal. 

 Yamamota et al. (1998) used a narrow bandpass IIR digital filter, centered around the 

heart rate. However, it introduces nonlinear phase distortion and attenuates high frequency 

components of ICG signal. Raza et al. (1992) used a high pass IIR digital filter with voluntary 

cardio-respiratory synchronization. In this technique, a high pass digital filter is programmed 

for a cutoff frequency that varies as a function of heart rate. Forward filtering followed by 

backward filtering was used to reduce phase distortion. The disadvantage of this technique is 

the possibility of distortion of the ICG signal acquired during exercise and post-exercise 

recordings.  

 An adaptive filter (Widrow et al., 1975; Haykin and Widrow, 2003; Widrow and 

Stearns, 2005; Haykin, 2005) can be employed to dynamically change its transfer function to 

remove respiratory and motion artifacts. Adaptive filters have been extensively used in 

several biomedical applications for removing motion and other related artifacts (Sahakian and 

Kuo, 1985; Thakor and Zhu, 1991; Varanini et al., 1991; Akkiraju and Reddy, 1992; Barrows 

et al., 1995; Tong et al., 2002; Liu and Pecht, 2006; Tiinanen et al., 2008). Barros et al. 

(1995) used an adaptive filter with scaled Fourier linear combiner for removal of movement 

artifact. ICG signal was expressed as a scaled Fourier series, with a period varying with the R-

R interval of the ECG. A metronome was used to adjust respiratory and movement artifact at 

different frequencies. However, this technique may produce a distorted output due to variation 

in time difference between the electrical and mechanical activities of the heart. Ouyang et al. 

(1998) used a wavelet denoising technique for artifact cancellation. Coiflets wavelet (order 5) 

was used with soft thresholding to suppress the artifacts. The technique used auto-regressive 

model estimated on 8 s breath-hold signal. Krivoshei et al. (2008) used an orthonormal basis 

to separate the signal and the artifacts using the Jacobi weighting function in the standard 

Gram-Schmidt process. This technique can not track fast changes in the signal. 

 Ensemble averaging and coherent ensemble averaging restrict beat-to-beat estimation 

of stroke volume and other cardiac indices. There is a partial overlap between ICG and the 

artifact spectra and statistical properties of both vary. Hence non-adaptive digital filters (Raza 

et al., 1992; Yamamoto et al., 1998) are not very effective in removing respiratory and 

motion artifact from ICG signal. Spectral subtraction technique (Boll, 1979; Gong, 1995; 

Stahl et al., 2000) which involves estimating noise magnitude spectrum and subtracting it 

from the contaminated spectrum, can not be used because of difficulty in dynamically 

estimating the respiratory and motion artifact spectra using average or quantile based 

estimation. Adaptive processing may be used for canceling the artifacts but sensing the 

reference signal, related to the artifacts, and combining them is a serious problem.  
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2.8  Scope of the research  

The research objective is to investigate techniques for removal of the artifacts from ICG, for 

estimation of stroke volume and other cardiovascular indices without smearing beat-to-beat 

variations.  

In impedance cardiography, impedance variation related to blood volume changes is 

superimposed on a large baseline which may drift over a large range. The baseline varies from 

subject to subject and it also depends on electrode placement. It may drift for the same subject 

due to movement and breathing. While amplifying the signal, the baseline drift needs to be 

removed to make effective use of the input dynamic range of the signal acquisition circuit. An 

automatic baseline restoration circuit has been developed as a part of instrumentation for the 

impedance cardiography for partly removing the artifacts before digitizing the signal and 

effective utilization of the input dynamic range of the A/D converter.  

Signal processing techniques, based on adaptive filtering and wavelet based 

denoising, are investigated for removal of the artifacts. Adaptive filtering based technique 

needs a reference signal for artifact cancellation. Respiratory artifact is the variation in the 

sensed thoracic impedance, caused primarily by change in the dimension of thoracic cage 

during inhale and exhale phases of respiration. Hence, air flow during respiration is directly 

related to the respiratory artifact and it can be used to provide a reference for adaptive 

cancellation of respiratory artifact from the recorded thoracic impedance signal. Respiratory 

signal can be acquired during exercise. Hence beat-by-beat stroke volume calculation is 

possible, even if respiratory artifact has a large variation. There are limitations in applying 

this technique for removal of motion artifacts, due to practical limitations in obtaining the 

reference signal related to various motions that may cause variation in the thoracic 

impedance. Application of wavelet based denoising technique, without involving a reference 

signal, is investigated for removal of respiratory and motion artifacts. A quantitative 

evaluation of the artifact suppression is carried out by applying these techniques on artifact 

free recordings added with simulated artifacts at different levels, for a number of healthy 

volunteers. 

 The signal processing techniques are validated on the signals recorded from several 

subjects with normal health and subjects with cardiovascular disorders, under a clinical 

setting. Several studies, as reviewed earlier, have established Doppler echocardiography as a 

noninvasive technique for estimating the stroke volume. This technique permits beat-to-beat 

monitoring of the stroke volume. Estimates of the stroke volume from the impedance 

cardiogram are compared against those obtained by Doppler echocardiography. The signal 

from the impedance cardiography and Doppler echocardiogram are recorded simultaneously, 

to enable a comparison of average values and the beat-to-beat- variations, as obtained by the 

two methods.   



 



 

 

 

Chapter 3 

 

BASELINE RESTORATION CIRCUIT 

 

 

3.1 Introduction 

The variation in the sensed thoracic impedance has components related to the changes in (i) 

the blood volume due to cardiovascular activity and (ii) the air volume, the thoracic 

dimensions, and the skin-electrode interface impedances due to respiration and motion. The 

thoracic impedance signal z(t) is typically less than about 2 % of the basal impedance (Witsoe 

et al., 1969; Kubicek et al., 1974; Patterson, 1989). The respiratory and motion artifacts have 

much larger amplitudes and cause a large drift in the baseline of the signal, and hence these 

artifacts may introduce errors in calculating the parameters for estimating the stroke volume 

and other cardiac indices. The ICG signal bandwidth typically extends over 0.8 - 20 Hz. The 

Respiration related artifacts extend over 0.2 - 2 Hz, while motion related artifacts have a band 

of 0.1 - 10 Hz (Webster, 1998). The overlap between the spectra of the ICG signal and the 

artifacts makes it difficult to restore the baseline drift by high pass filtering the signal. It may 

be possible to employ digital signal processing for suppressing the baseline drift, but the drift 

needs to be at least partly removed before analog-to-digital (A/D) conversion in order to make 

effective use of the input dynamic range of the signal acquisition setup. A tracking based 

baseline restoration circuit is developed for fast estimation and removal of the baseline drift.  

 This chapter gives a brief review of baseline restoration circuit for balancing of offset 

drift, followed by the description of the proposed tracking based baseline restoration. The last 

section presents and discusses the test results.   

 

3.2 Baseline restoration  

Several circuits for automated balancing of offset drift have been reported, including bridge 

circuit (Matsuno et al., 1986), automatic reset circuit (Shankar and Webster, 1984; Webster, 

1998), self-balancing system (Cohen and Longini, 1971), successive approximation register 

(SAR) based method (Qu et al., 1986), and integrator based baseline restoration circuit (Joshi 

and Pandey, 1994). The bridge based circuit does not permit removal of base line drift related 
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to artifacts. In the self-balancing system, 

the baseline drift is balanced by a ramp 

approximation using digital counter. It 

consists of a differential amplifier, 

threshold detector, counter, digital-to-

analog (D/A) converter, and comparator. 

The counter output is given to the D/A 

converter and the difference between the 

D/A converter output and the input is 

amplified, to provide the baseline corrected 

output. Whenever the output voltage 

crosses a set threshold, a narrow pulse is 

generated to reset the counter, and the counter starts incrementing until the D/A converter 

output equals the analog input. For n-bit counter and D/A converter, the balancing may take 

up to 2
n
 clock pulses. 

The automatic reset circuit reported by Shankar and Webster (1985, cited in Webster, 

1998) used a difference amplifier for subtracting a correction voltage from the input, a 

sample-and-hold for sampling the input signal and providing the correction voltage, and two 

comparators to define the output voltage range. When the output voltage crosses the range set 

by the two thresholds in either direction, the sample-and-hold samples the input signal and 

holds it as the correction voltage which is fed back to the input of the difference amplifier to 

reset the output to zero. In this circuit, the hold error may introduce its own drift. 

 Qu et al. (1986) have reported a drift cancellation circuit, as part of an impedance 

cardiograph, using a difference amplifier, a successive approximation register (SAR), D/A 

converter, and a threshold detector as shown in Fig. 3.1. In this circuit, the SAR and D/A 

converter approximate the base line drift, which is subtracted from the input signal and the 

difference is amplified to give the output Vo. Whenever voltage Vo crosses the threshold 

range [Vt1, Vt2] in either direction, a start pulse is given to SAR and successive approximation 

is initiated. Polarity of Vo with respect to the center of threshold range is used as data input for 

successive approximation to obtain a new estimate of the base line and output is brought to 

near the center of the range. For n-bit SAR and D/A converter, this circuit requires n clock 

cycles for drift correction and the output is not useable during this interval. Therefore this 

time interval should be short and correction should not take place too frequently. 

 In the circuit presented here, developed as a part of instrumentation for impedance 

cardiography, tracking has been used for estimation and removal of the baseline drift, and this 

Fig. 3.1 A block diagram of successive 

approximation based baseline restoration circuit 

of Qu et al. (1986). 
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circuit requires only one clock cycle. 

This technique has been implemented 

using a microcontroller and a D/A 

converter.  

 

3.3 Circuit description 

The block diagram for the tracking 

based baseline restoration is shown in 

Fig. 3.2. The up/down counter and a 

D/A converter are used to track the 

baseline drift in the input signal, and 

the estimated drift Vx is subtracted 

from the input to give the drift 

balanced amplified output Vo. Two 

thresholds are selected corresponding 

to the desired range [Vt1, Vt2] of the 

signal or the input range of the signal 

acquisition setup. Whenever the output 

crosses the threshold range in either 

direction, a new estimation of the drift 

is carried out in the up/down counter depending on the direction of the drift. The estimate is 

output to the D/A converter and the baseline drift correction is carried out in one clock pulse. 

One quantization step of the D/A converter after amplification is set to half of the output 

threshold range. Hence, after crossing of the threshold in either direction, the signal is brought 

back in the middle of the two thresholds.  

The relationship between the input voltage Vin and the output voltage Vo along with 

the correction voltage Vx is shown in Fig. 3.3, for (a) increasing input and (b) decreasing 

input. Drift cancellation has a hysteresis, and the actual output depends on the direction of the 

input change. 

 The circuit of the microcontroller based implementation is shown in Fig. 3.4. The 

circuit uses quad op amp TL084 (U1), 20-pin microcontroller AT89C2051 (U2), and 12-bit 

serial D/A converter TLV5618A (U3). The U3 is used as 8-bit D/A converter by masking the 

four LSBs. This circuit has been developed for baseline drift removal in an impedance 

cardiograph with ± 5 V supply, as briefly described in Appendix B.  

Fig. 3.2 Block diagram of the tracking based baseline 

restoration circuit. 

 

Fig. 3.3 Input-output relationship for (a) increasing 

input, and (b) decreasing input. 
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The output of the DAC used in this circuit is unipolar (0 – 4.2 V) and hence for 

cancellation of bipolar drifts, a reference voltage Vr is added in the summer-amplifier stage, 

which has a provision for different gains for the input Vin, reference voltage Vr, and the 

correction voltage Vx. Op amp U1A is used as a summer-amplifier and its output is given as 

 ( / )ro s in x x r xV A V A V A V A= − −   (3.1) 

where 

 

2 3 1 2 3 5 4

1 2 3 1 2 5 4

5 4

  ( || /( || ))(1 / )

  ( || /( || ))(1 / )

  /  

s

r

x

A R R R R R R R

A R R R R R R R

A R R

= + +

= + +

=

 

Op amps U1B and U1C are used as comparators for comparing the output Vo with the 

threshold voltages Vt1 and Vt2, which are set using a resistive divider. The port pins P1.2 and 

P1.3 of the microcontroller U2 are used to scan the threshold detector outputs. The tracking 

up/down counter of Fig. 3.2 is realized using software inside the microcontroller. The count 

Fig. 3.4 Circuit diagram of the microcontroller based baseline restoration circuit. 
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value is written as control byte to the D/A converter, interfaced serially to the microcontroller 

via serial peripheral interface (SPI), for varying its output over 0 – 4.2 V in 256 steps. 

 The input consists of the actual signal Vs superimposed on the baseline drift Vd. The 

input signal range is mapped to the output voltage, and hence the gain for the input signal is 

selected as As = (Vt2 – Vt1) / (Vs max - Vs min). If the summer output Vo. goes below the lower 

threshold Vt1, the up/down counter is decremented, and the D/A converter output Vx gets 

decreased by one step. Similarly, if Vo goes above the upper threshold Vt2, Vx is increased by 

one step. Thus the correction voltage Vx is given as 

 

( )  ( ) ∆ ,  ( )

                    ( ) -∆ ,  ( )

                    ( ), otherwise.

x n x n x o n t

x n x o n t

x n

V t V t V V t V

V t V V t V

V t

+ = + >

<

2

1

1

 (3.2) 

For N steps in the D/A converter, the step voltage is ∆Vx = (Vx max – Vx min)/N. The gain for 

the correction voltage is Ax =0.5(Vt2 - Vt1)/∆Vx. If the output Vo is within the range [Vt1, Vt2],  

 

 

Fig. 3.5 Output of the baseline restoration circuit for the thoracic impedance signal z(t) with large 

baseline shifts (a) input (in V), (b) correction voltage (in V), (c) output (in V). 
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both the comparator outputs are low, and the count in the counter is not changed and the 

correction voltage remains constant. 

 

3.4 Test results and discussion 

The thresholds and the amplification in the baseline restoration circuit can be set by 

considering the range of maximum excursion of the artifact-free signal and the input range of 

the A/D converter. Lower values of the thresholds result in a better use of the dynamic range 

of the A/D converter, but they may lead to more frequent activation of baseline correction. 

From a number of signal recordings, artifact-free signal was found to be below 40 mV. For 

this signal range, the thresholds were set as  ± 3 V and it ensured that the baseline correction 

was not carried out too frequently. The component values as shown in Fig. 3.4 resulted in 

signal gain As = 45, correction voltage gain Ax = 180, and reference voltage gain Ar = 90. The 

time for restoring the drift is less than 1 ms. An example of drift cancellation by the 

implemented circuit is shown in Fig. 3.5. Input consists of 55 mV (p-p) thoracic impedance 

signal z(t), with fundamental frequency of 1.2 Hz, superimposed on a slowly varying baseline 

drift, with a slope of 70 mV/s. The output waveform shows that the baseline is restored when 

the signal after amplification crosses the threshold range in either direction. The baseline 

correction introduces a discontinuity and hence the correction during the cardiac cycle makes 

Fig. 3.6 Output of the baseline restoration circuit for the actual thoracic impedance signal z(t) with 

large baseline shifts (a) input (in V), (b) correction voltage (in V), (c) output (in V). 
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the output waveform during that cycle unsuitable for estimation of the parameters. Figure 3.6 

shows the output obtained when baseline restoration circuit has been used in the impedance 

cardiograph instrument for recording the signals from a subject. The input signal is the 

variation in the thoracic impedance z(t) superimposed on a slowly varying baseline drift due 

to respiration, superimposed on the basal impedance Zo. In this example, two corrections 

happened between 8 s and 12 s.  

To sum up, a tracking based circuit has been developed for fast restoration of 

baseline. The logic and interface of D/A converter are implemented in software on an 8-bit 

microcontroller for simplifying the hardware requirement. Although the circuit has been 

developed for impedance cardiography, it can be used for acquisition of other bio signals with 

large drifts or abrupt baseline shifts. This circuit is independent of the processor to which the 

signal acquisition unit is interfaced and can be used in setups with real time as well as offline 

processing. In the present implementation, tracking of baseline is initiated by the output going 

out of the defined range. Alternatively, the microcontroller can be programmed to carry out 

the tracking for drift cancellation at periodic intervals, which may be appropriate for certain 

applications. 

 



 



 

 

 

Chapter 4 

 

ADAPTIVE FILTERING FOR  

SUPPRESSION OF RESPIRATORY ARTIFACT 

 

 

4.1 Introduction 

This chapter presents investigations on the application of adaptive filtering for suppression of 

respiratory artifacts from the impedance signal for estimation of stroke volume and other 

cardiac indices on beat-to-beat basis. The contaminated ICG is applied as the primary input to 

the adaptive filter and a respiration signal sensed by a thermistor based airflow sensor is used 

as the reference. For improving the artifact cancellation, another technique is developed 

which estimates the reference signal from the sensed respiration and the ICG. The two 

techniques are referred to as: (i) adaptive filtering by sensing respiration (AFSR) and (ii) 

adaptive filtering by using estimated respiration (AFER). Both the techniques are applied on 

signal recordings from several volunteers and the results obtained are qualitatively examined. 

These techniques do not require any control of respiration. As adaptive filtering suppresses 

additive artifacts, it will not affect variations in the impedance signal caused by modulation of 

the stroke volume by the respiratory cycle. 

 The chapter begins with a brief review of application of adaptive filtering for 

suppressing different types of artifacts in biosignals. The following section presents the 

adaptive filtering based technique using the sensed respiratory signal as the reference. This is 

followed by a description of the adaptive filtering technique using the estimated respiration 

signal as the reference. These techniques are applied on signals acquired from several 

volunteers and results are presented and discussed in the following sections. Evaluation of the 

two techniques for suppression of artifacts in signals acquired in a clinical setting and 

validation of the results obtained by comparing them with those from Doppler 

echocardiography are presented later in Chapter 6. 
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4.2 Adaptive filtering of biosignals 

Adaptive filtering is used in many biomedical applications for suppressing several types of 

artifacts (Widrow et al., 1975; Tompkins, 2002). Thakor and Zhu (1991) used an LMS based 

adaptive filter to remove various types of artifacts from the ECG signal. For removing slow 

varying baseline, a constant value was given as the reference to the one-tap length filter and 

the filter error (the difference between the primary input and filtered reference) was taken as 

the processed output. For removing 60 Hz noise, common mode signal at the right leg was 

used as the reference and filter error was taken as processed output. For reducing EMG noise, 

primary signal was ECG from the aVf lead and the reference was obtained by taking 

difference between the signals from the aVr and aVl leads. The filtered reference was taken as 

the processed output. For reducing motion artifact, the reference input was an impulse train 

with the start of each QRS-wave in the ECG represented by an impulse, and the filtered 

reference was taken as the processed output. Cascading of filter structures was used to remove 

baseline variation, 60 Hz noise, EMG noise, and motion artifacts from the recorded ECG. For 

arrhythmia analysis, the technique was effective in detection of P-wave, premature ventricular 

complexes, recognition of conduction block, arterial fibrillation, and paced rhythm. It was 

found to introduce distortion in the ST segment.  

 Burbank and Webster (1978) have shown that skin stretch is a major cause for motion 

artifact in ECG signals. Hamilton and Curley (1997) used skin stretch signal from a miniature 

displacement sensor, as the reference input to an LMS based adaptive filter. Artifact-free 

ECG signal and motion artifact, sensed by pressing the center of the electrode and stretching 

the skin around the electrode, were added together. The simulated signals were processed by 

the adaptive filter and Yule-Walker IIR filter. Sampling rate of 100 Hz was used. Adaptive 

filter with filter tap length of four resulted in noise reduction of -10.2 dB, while the Yule-

Walker filter resulted in noise reduction of 7.7 dB. Tong et al. (2002) used an LMS based 

adaptive filter for suppressing motion artifact from ECG. Electrode motion, sensed by two 

anisotropic magnetoresistive sensors and three-axis accelerometer, was used as the reference 

signal to the adaptive filter. The technique was applied on artifact-free ECG added with 

motion artifacts, generated by pushing on the electrode, stretching the skin around the 

electrode, and pulling the ECG leads. Root mean square values, maxima, and minima of 

artifact-free ECG and processed ECG were compared to measure the artifact suppression. 

Reference signal from the three-axis accelerometer was found to give better artifact 

suppression than that from the magnetoresistive sensor.  

 Akkiraju and Reddy (1992) used an LMS based adaptive filter for removing ECG 

from EMG. The ECG and EMG signals were recorded from the same location. The 

contaminated EMG was the primary input to the adaptive filter, while ECG was the reference 

input. The EMG signals recorded from various other parts of the chest were processed and 
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amplitude spectrum of the recorded signal and the processed signal were compared to 

evaluate the technique. Magnitude spectrum of the processed EMG showed a reduction of 

approximately 85% in the ECG magnitude. Marque et al. (2004) used an adaptive filter for 

ECG removal from surface EMG recorded from the right erector spinae muscle at the level of 

the first lumbar vertebra (L1). The ECG, recorded by placing electrodes 15 cm apart from top 

to bottom of the left scapula, was used as the reference because its waveshape was found to be 

similar to that of the artifact. Five algorithms were investigated: LMS, normalized LMS 

(NLMS), least mean absolute value (LMAV), fast recursive least square (FRLS), and sign-

sign (SIGN). Energy and mean power frequency were used to estimate effectiveness of the 

technique. Based on results from simulation, FRLS was found to be fastest in adapting filter 

parameters and most effective in removing the ECG.  

 Schuessler et al. (1995) used an adaptive filter for removal of cardiogenic oscillations 

from esophageal pressure signal. The reference signal was derived from QRS wave of the 

ECG signal. Filter weights were adjusted on the basis of cross-correlation between the 

reference signal and the primary signal. The technique was evaluated using simulated 

waveforms and actual signals. Mean square error and power spectrum of the signals were 

used to measure the noise suppression. A reduction of approximately 76% in the power 

spectrum at the frequency corresponding to the heart rate was reported. Cheng et al. (2001) 

used an LMS based adaptive filter for removal of the artifacts due to pressure change in the 

aorta and pericardium from the esophageal pressure signal related to the respiration. An 

airflow signal was used as the reference signal with the contaminated esophageal pressure 

being the primary input. Output of the adaptive filter was the cardiac signal, which was 

subtracted from the contaminated esophageal pressure to get cleaned esophageal pressure 

signal. The technique was applied on recordings from two rats. Processing improved the 

relative precision in the measurement of airway resistance by 12.5 to 68 %, indicating a 

reduction in the effect of cardiogenic artifact. Tiinanen et al. (2008) used a LMS based 

adaptive filter to suppress the effect of respiration from blood pressure. The respiration signal 

from a thermistor based sensor was used as the reference while the systolic blood pressure 

from a finger was taken as the primary signal. The technique was applied on the simulated 

recordings and the recordings obtained from healthy subjects. Power spectra of the artifact-

free signal and the processed signal were compared and the spectral components of the 

artifact were found to have been suppressed in the processed output.  

 Sahakian and Kuo (1985) employed an impulse train, corresponding to the ECG R-

wave, as the reference input to an LMS based adaptive filter to suppress the blood flow 

related component from the thoracic impedance signal in impedance pneumography. 

Processing of simulated signals showed that the technique was effective in suppressing the 

blood flow related components from the thoracic impedance signal. Rosell et al. (1995) 
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applied adaptive filtering for reducing motion artifacts in ventilation monitoring by using a 

two-frequency (57 kHz and 185 kHz) impedance plethysmograph. The components of the 

impedance signal related to ventilation and those related to nonventilatory movements were 

found to be different in the signals xLF and xHF sensed using the lower and higher carrier 

frequencies.  The mean of xLF and xHF was used as the primary input to the RLS filter of order 

zero. The signal xHF with a scaling factor was subtracted from xLF and the resulting output was 

used as the reference. The scaling factor was obtained, using an LMS based zero-order filter, 

during a learning interval at the start of the signal acquisition with normal respiration and 

without any nonventilatory movements. Compared to the signal-to-artifact ratio in xLF, the 

signal-to-artifact ratio (ratio of the rms values) in the processed output showed an 

improvement of 183% for arm movement, 133% for leg movement, and 34% for abdominal 

breathing. 

 Huang et al. (1991) used an LMS based adaptive filler to eliminate the noise caused 

by inflation and deflation of pressure cuffs from ICG signal during external counterpulsation 

(ECP: a noninvasive technique used to decrease pain from angina pectoris, by increasing 

diastolic blood flow and coronary blood flow, using serial inflation of three sets of pressure 

cuffs wraped around the calves, thighs, and buttocks). Five spot electrodes were used. The 

outer two electrodes for injecting current, the inner three electrodes for sensing the ICG and 

the reference signal, and one common electrode. The reference signal was bandpass filtered 

and applied as the reference input to the adaptive filter. Power spectra of primary, the 

reference, and the processed output were compared to see the effectiveness of the technique in 

processing signals from healthy adults during ECP. It was found that the spectral components, 

related to the inflation and deflation, were suppressed in processed output. The ICG signal 

was slightly distorted.  

 Barrows et al. (1995) used an LMS based adaptive filter, based on scaled Fourier 

linear combiner (SFLC), to suppress respiration and movement artifacts from the ICG signal. 

The ICG signal was approximated as fifteen harmonics in a scaled Fourier series, with the 

period varying with the R-R interval of the ECG. The mean square error in the processed 

output was found to decrease significantly for simulated data with triangular wave as the ICG 

signal, artifacts consisting of respiratory and motion components simulated by harmonic 

spectra with randomly modulated frequencies and exponentially decreasing amplitudes, and 

random noise. For signals with the volunteer synchronizing the respiration in resting and post-

exercise relaxation conditions, the magnitude spectrum showed attenuation of the artifact 

components.  

 

4.3 Adaptive filtering by sensing respiration (AFSR) 

Respiratory artifact is the variation in the sensed thoracic impedance, caused primarily by 
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changes in the intra-thoracic pressure and the dimension of the thoracic cage during inhale 

and exhale phases of respiration. Adaptive filtering, with a signal closely related to the 

respiratory artifact as the reference input, can be used for suppressing the artifact from the 

sensed signal (z(t) or dz/dt). Several techniques have been reported for sensing respiration. A 

thermistor mounted on a mouthpiece is frequently used for measurements of breathing patt-

erns (Weissman et al., 1984). Other techniques for measuring respiration, without using a 

mouthpiece, face mask, or a device about the head have also been reported (Reibold, 1974; 

Manus, 1986; Pennock; 1990). A piezoelectric element on an elastic belt is used for sensing 

the rate of change of the circumference of the rib cage or the rate of change of the 

circumference of the abdomen. It requires a constant tension in the elastic belt. Devices like 

strain gauges, mercury filled silastic rubber, and pneumatic tubes do not follow the 

dimensional changes instantaneously. Impedance sensing itself can be used for respiration 

monitoring but the sensed signal may contain an ICG component and hence may not be 

suitable as reference input for adaptive filtering.  

We have used a thermistor based airflow sensor to measure air flow from the nostrils 

during the respiration. The sensed output is related to the intra-thoracic pressure changes 

modulating the thoracic impedance and hence it can be used as a reference for adaptive 

cancellation of the respiratory artifact. As the respiration can be continuously monitored, the 

technique can be applied for continuous suppression of the respiratory artifact.  It is assumed 

that the adaptive filter can linearly transform the sensed respiratory signal to become 

sufficiently correlated to the respiratory artifact present in the impedance signal.  

 

4.3.1 Adaptive cancellation scheme 

A schematic of the adaptive respiratory artifact canceller is shown in Fig. 4.1. Signal x(n), the 

thoracic impedance signal from the thoracic impedance sensor is the primary input. It can be 

expressed as sum of the true thoracic impedance signal s(n) and the respiratory artifact ra(n). 

Reference signal r(n) is obtained from the respiratory sensor and it is assumed to be related to 

ra(n) and does not have components related to the signal s(n). In our setup, the respiratory 

sensor uses a thermistor to sense temperature variation because of airflow in front of the 

nostrils during the inhale and exhale phases of the respiration. The artifact is caused by the 

movement of the thoracic cage, and hence the sensed reference signal has a delay with respect 

to the artifact. To partly compensate for this delay, a delay of nd samples is introduced in the 

path of the primary signal x(n). Number of taps in the adaptive FIR filter should be large 

enough to properly track the actual delay.  
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The reference input r(n) is filtered with the M-tap FIR filter, with coefficients wn(k). 

The filter output is given as  

1

0

ˆ( ) ( ) ( )
M

n
k

r n w k r n k
−

=

= −∑  (4.1) 

The output ˆ( )r n  is subtracted from the delayed input ( )dx n  to get the error  

 ˆ( ) ( ) ( )de n x n n r n= − −  (4.2) 

For adaptation, we use the least mean square (LMS) algorithm, also known as the stochastic 

gradient algorithm (Widrow et al., 1975; Haykin and Widrow, 2003; Haykin, 2005; Widrow 

and Stearns, 2005). It uses an instantaneous estimate of the gradient vector, based on sample 

values of the tap input vector and the error. The filter coefficients are updated using the 

equation    

 1( ) ( ) ( ) ( )n nw k w k e n r n kµ+ = + −  (4.3) 

where µ is a step size selected to provide convergence of the LMS adaptive filter coefficients. 

This technique allows dynamic adaptation to adjust filter coefficients on sample-by-sample 

basis, such that the output has minimum artifact in a least-square sense. 

 

4.3.2 Signal acquisition  

Impedance cardiograph instrument developed at IIT Bombay (Venkatachalam, 2006; Pandey 

and Pandey, 2007; Pandey et al., 2008), briefly described in Appendix B, was used for 

recording ICG and other related waveforms. In this instrument, ICG was sensed by injecting a 

high frequency (≈ 100 kHz) and low intensity (<5 mA) current into the thorax. Four-electrode 

configuration with disposable ECG spot electrodes was used. In the outer pair, one electrode 

was placed around abdomen at the lateral side of the lower ribs and the other around upper 

part of the neck. For the inner electrode pair, one electrode is placed around the thorax at the 

Fig. 4.1 Adaptive respiratory artifact canceller using sensed respiration (AFSR). 
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level of joint between xiphoid and sternum and the other around the lower part of the neck 

(Witsoe et al., 1969; Kubicek et al., 1974; Harley and Greenfield, 1969). These electrode 

positions do not interfere with the locations used for placing other sensors in cardiovascular 

diagnosis (Witsoe et al., 1969). The respiratory signal was recorded to sense inhale and 

exhale phases by placing a thermistor based respiratory sensor close to the nostrils.  

Waveforms of the ECG, basal impedance Zo, thoracic impedance signal z(t), ICG, 

and respiration were simultaneously acquired at a sampling frequency of  500 Hz with 12-bit 

quantization using a data acquisition unit (Keithley “KUSB 3102”) interfaced to a PC through 

its USB port. Recordings were taken from a total of 52 volunteers (male, age: 23-40 years) 

with no known history of cardiovascular disorders. Four types of signals were recorded: (i) 

signals with normal breathing, (ii) signals with strong respiratory artifact and large beat-to-

beat variation, (iii) signals with no breathing, , and (iv) signals with controlled periodic 

breathing. The first two types of signals were recorded from all the 52 volunteers. The signals 

without breathing and signals with controlled breathing were recorded from 23 volunteers. All 

the recordings were made with the volunteers resting in a quiet supine position without any 

nonventilatory movements to avoid motion artifacts.  

Signals with normal respiration: These recordings were made with the volunteer 

breathing in a normal manner. Figure 4.2 shows ICG signal and other related waveforms 

during normal breathing. 

Signals with strong respiratory artifact and large beat-to-beat variation: In order to 

introduce strong respiratory artifact and significant beat-to-beat variations, volunteers were 

asked to exercise for about 20 minute on an exercise bicycle. After exercise, signals were 

recorded with the subject in resting condition without any nonventilatory movement. The 

signals were recorded for 60 s duration at 5 minute intervals in the resting condition, while the 

respiration and heart beat returned to pre-exercise state. Figure 4.3 shows ICG signal and 

other related waveforms in post-exercise relaxation condition. 

Signals with no breathing: The volunteer stopped breathing activity for these 

recordings. The recording duration varied with the volunteer’s ability to hold the breath. 

These signals have no motion or respiratory artifacts. Figure 4.4 shows ICG signal and other 

related waveforms during no breathing.  

Signals with controlled periodic respiration: These signals were acquired with the 

volunteer synchronizing the inhale and exhale phases with 0.4 Hz square wave displayed on 

an oscilloscope. Figure 4.5 shows ICG signal and other related waveforms with controlled 

periodic respiration. 

A quantitative evaluation of the technique can be carried out by processing signals with 

known levels of artifacts which can be generated by a weighted sum of artifact-free ICG  
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Fig. 4.3 Signals, with strong respiratory artifact, recorded during post-exercise relaxation (subject: 

‘MS’): (a) ECG (in arbitrary unit), (b) Zo (in Ω) (c) z(t) (in Ω), (d) ICG (in Ω/s), and (e) sensed 

airflow (in arbitrary units).  

 

Fig. 4.2 Signals recorded during normal breathing (subject: ‘MS’): (a) ECG (in arbitrary unit), (b) Zo 
(in Ω) (c) z(t) (in Ω), (d) ICG (in Ω/s), and (e) sensed airflow (in arbitrary units).  
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Fig. 4.4 Signals recorded during no breathing (subject: ‘MS’): (a) ECG (in arbitrary unit), (b) Zo (in 

Ω) (c) z(t) (in Ω), (d) ICG (in Ω/s), and (e) sensed airflow (in arbitrary units).  

 

Fig. 4.5 Signals recorded with controlled periodic respiration (subject: ‘MS’): (a) ECG (in arbitrary 

unit), (b) Zo (in Ω) (c) z(t) (in Ω), (d) ICG (in Ω/s), and (e) sensed airflow (in arbitrary units).  
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and ICG-free artifact. For this purpose, one cycle of the artifact-free ICG signal (acquired 

during no breathing) was repeatedly concatenated to simulate a periodic artifact-free ICG 

waveform. Sixty cycles of the ICG waveform acquired during controlled periodic breathing 

were ensemble averaged with respect to the respiratory cycle to estimate one cycle of 

respiratory artifact. It was repeatedly concatenated to simulate a periodic ICG-free respiratory 

artifact.  

 

4.3.3 Processing of signals with simulated artifacts  

For signals sampled at 500 Hz, the adaptive cancellation scheme of Fig. 4.1 was implemented 

for different combination of filter tap lengths and delays in the primary signal path. The step 

size µ in Eqn. 4.3 affects the convergence of the adaptive filter. Too small a value of µ results 

in slow conversion of filter coefficient, while too large a value may prevent the filter from 

converging. After empirical investigation, µ = 2.1x10
-4

 was selected. Most satisfactory results 

were obtained for tap length M ≈ 400 and sample delay nd ≈ 270. Increasing filter tap length 

did not result in any significant increase in the output signal-to-artifact ratio (SAR). Changing 

the sample delay resulted in decreased SAR at the output. The filter coefficients were found to 

get stabilized in approximately 5 s. Signals with different levels of simulated artifacts were 

processed using the technique AFSR. The artifact-free ICG signal and the ICG-free artifact 

were scaled to have equal root mean square values. Amplitude of the artifact-free ICG was 

kept constant and the ICG-free respiratory artifact was added with different scaling factors to 

obtain contaminated ICG signals as 

( ) ( ) ( )ox n s n r nα= +  (4.5) 

where, s(n) is the artifact-free input signal, and ( )or n  is the ICG-free respiratory artifact. The 

input SAR for signal with simulated artifact x(n) is given as  

2 2 2
in

1 1

SA R 10log ( ) / ( )
N N

o
i i

s n r nα
= =

 
= ∑ ∑ 

 
  (4.6) 

20logα= −  

where, N is the total number of samples in the signal. The signal x(n) with different levels of 

simulated artifact was processed by the adaptive filter. The output SAR for the processed 

output ˆ ( )x n was calculated as  

 
2 2

out
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ˆSA R 10log ( ) / | ( ) ( ) |
N N

d d
i i

s n n x n s n n
= =

 
= − − −∑ ∑ 

 
 (4.7) 

The output SAR was computed in a signal segment taken after the coefficients of the adaptive 

filter had settled.  
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 Signals with simulated artifact with different SAR values were processed. Input 

signals were of 21 s duration. Filter coefficients settled in approximately 5 s. Output SAR 

values were computed during the last 6 s of the processed output. Figure 4.6 shows the result 

of processing of ICG with simulated artifact of 0 dB. ICG is contaminated by respiratory 

artifact, making it difficult to detect Tlvet and ICG peaks appear to change from beat-to-beat. 

The ICG obtained after filtering shows almost no effect of respiration, making it easy to 

detect the B and X points. Values of ICG peaks are found to be stable. Results for signals 

with simulated input SAR values of -9, -6, -3, 0, 3, 6, 9 dB are given in Appendix C. Figure 

4.7 shows a plot for output SAR versus input SAR values in dB. We see a nearly linear 

relationship, with an SAR advantage of 18.5 dB for the input SAR range of -9 to 9 dB.  This 

processing was repeated on signals with simulated artifact generated from the recordings 

taken from 23 volunteers. The relationship between the output SAR and the input SAR were 

almost similar to the plot in Fig. 4.7 and the SAR improvement ranged from 18.2 to 18.8 dB.    

 For assessing any error introduced by the adaptive filtering, the artifact-free signal 

without any artifact addition was processed. For signals from all the 23 volunteers, the signal-

to-noise ratio in the output, calculated using Eqn. 4.7, was found to be 27 dB, indicating that 

the adaptive filtering did not introduce any significant error.  

Fig. 4.6 Processing by AFSR of signal with simulated artifact: (a) artifact-free ICG, (b) ICG-

free artifact, (c) ICG with simulated 0 dB artifact, (d) sensed respiration, and (e) processed 

output (all the waveforms are in arbitrary units). 
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 In order to estimate limitation of the AFSR technique, it was applied on waveforms 

consisting of only the simulated artifacts. Figure 4.8 shows processed output when only ICG-

free artifact is given to the artifact canceller. The attenuation of the artifact, for the recordings 

from the 23 volunteers, ranged over 27.1 to 27.5 dB. It is seen that the sensed respiration and 

the respiratory artifact are synchronized but their spectra differ, particularly in the high 

frequency region. As compared to the artifact, the sensed respiration is a smoothed waveform, 

deficient in higher frequencies. This limits the effectiveness of the adaptive filtering in 

Fig. 4.8 Processing by AFSR of ICG-free artifact: (a) ICG-free artifact, (b) sensed respiration, 

and (c) processed output (all the waveforms are in arbitrary units). 

 

Fig. 4.7 Output SAR (in dB) versus input SAR (in dB) for the 

adaptive filtering technique AFSR (solid line: linear regression). 
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suppressing the higher frequencies of the respiratory artifacts. Adaptive filtering can be made 

more effective using a reference input which has a better representation of higher frequencies.    

 

4.4 Adaptive filtering by using estimated respiration (AFER)  

Processing of the artifact-free signal by the technique AFSR did not show introduction of any 

significant error. For signals with simulated artifacts in the SAR range of -9 to 9 dB, the 

technique resulted in attenuation of the artifacts by 18.2-18.8 dB and hence it may be 

considered as highly effective in suppressing the artifact. The output from the thermistor 

based respiration sensor is synchronously related to the respiratory artifact, but the sensed 

waveform is found to be low-pass filtered and using it as a reference did not help in reducing 

higher frequency components of the respiratory artifacts. Using a signal synchronous to the 

sensed respiration, but with a better representation of higher frequency components may 

improve the cancellation of the respiratory artifacts.  

The variations in the impedance during the inspiration and expiration phases are 

different (Raza et al., 1992). Each phase of breathing is related to the underlying 

physiological events (Vander et al., 1980; Guyton, 1991). During inspiration, the inspiratory 

muscles contract, the diaphragm descends, and the rib cage rises. The thoracic cavity volume 

increases, stretching the lungs. The intrapulmonary volume increases, causing an increase in 

the intrapulmonary volume and a drop in the intrapulmonary pressure below the atmospheric 

pressure. Expiration is normally a passive phase, the thoracic cavity volume decreases, 

causing the lungs to recoil, resulting in an increase in the intrapulmonary pressure. The 

reference respiratory signal was analyzed to detect the inhale and exhale phases of the 

individual breathing cycle. A change in the slope of the respiratory waveform was taken as an 

indicator for a new respiration phase. We investigated the use of several reference waveforms 

obtained by fitting sinusoidal waveform, square waveform, triangular waveform, bipolar 

Gaussian pulses, and bipolar impulses over the inhale and exhale phases. The resulting new 

waveform was given as a reference input to the adaptive artifact canceller. Results related to 

these are presented in Appendix C. References based on the use of square and bipolar 

Gaussian pulse introduced distortion in the processed output. Sinusoidal waveform, as the 

reference signal, was unable to cancel the harmonics of the artifacts present in the recorded 

signal. Use of bipolar impulses as the reference failed to significantly cancel the fundamental 

frequency of the artifacts present in the recorded signal. On the basis of these observations, it 

was decided to estimate the respiration reference by using the sensed respiration and the ICG. 

Implementation of the technique and results from processing of the signals with simulated 

artifacts are presented in the following subsections. 
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4.4.1 Implementation of AFER 

An examination of the ICG-free artifact waveform for a number of subjects showed the 

waveforms to be different during the inhale and exhale phases, and hence the reference input 

needs to be estimated in synchronism with the respiratory phases. From the sensed 

respiration, inspiration and expiration phases are detected. In each respiratory phase, a 

polynomial spline fitting on the contaminated signal is used for estimating the respiratory 

artifact. Polynomial spline fitting is carried out using the two end points of each phase as the 

two knots with equally spaced control points between the knots. Use of ten control points 

results in approximation of the artifact, with a small residual error, during both the phases. 

The resultant waveform thus obtained is used as the reference input for adaptive filtering. The 

advantage of the spline is that it has maximum number of continuous derivatives (De Boor, 

1978; Kokkonis and Leute, 1996; Thijsse et al., 1998; Solomon, 1999). Other techniques 

using the signals from the respiration sensor and the thoracic impedance sensor may also be 

used for estimating the respiratory artifact. 

 

4.4.2 Processing of signal with simulated artifacts by the technique AFER 

The block diagram of the technique is shown in Fig. 4.9. Signals with simulated artifact with 

different SAR values were processed by the technique AFER. Most satisfactory results were 

obtained by selecting filter tap length of 184, µ = 1.2 x 10
-4

, and sample delay nd ≈ 270. Filter 

coefficients settled in approximately 2.7 s. As in the previous investigation with AFSR, the 

output SAR values were computed during the last 6 s of the processed output. Figure 4.10 

shows the ICG with simulated artifact of 0 dB, the reference obtained by cubic spline fit on 

the contaminated ICG and the processed output. It is seen that the baseline is restored, 

facilitating the detection of the characteristic points in the waveform. Results from processing 

of the signal with the input SAR range of -9, -6, -3, 0, 3, 6, 9 dB are given in Appendix C. For 

Fig. 4.9 Adaptive respiratory artifact canceller using estimated respiration reference (AFER). 
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all the input SAR conditions, the respiratory artifact was found to be significantly attenuated 

in the output.   

 This method was found to be sensitive to the value of sample delay introduced in the 

primary signal path. In order to assess the error introduced by the adaptive filtering, the 

Fig. 4.11 Processing by AFER of ICG-free artifact: (a) ICG-free artifact, (b) fitted spline on the 

ICG-free artifact, and (c) processed output (all the waveforms are in arbitrary units). 

 

Fig. 4.10 Processing by AFER of signal with simulated artifact (a) artifact-free ICG, (b) ICG-

free artifact, (c) ICG with simulated artifact of 0 dB, (d) fitted spline on the signal, and (e) 

processed output (all the waveforms are in arbitrary units). 
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signals without any artifact addition were processed. For artifact-free signals from 23 

volunteers, the signal-to-noise ratio in the processed output, as calculated by Eqn.4.7 was 

about 27.7 dB, indicating that the processing did not introduce significant error in the artifact 

free signal. The AFER technique was also applied on waveforms consisting of only the ICG-

free simulated artifacts. As seen in Fig. 4.11, the simulated artifact was effectively 

suppressed.  

 A quantitative comparison of the magnitude spectra of the primary input signal, the 

reference signal, and the processed output showed that the estimated respiration improved the 

suppression of higher frequency components of the artifact.  

 A plot of output SAR versus input SAR values in dB for signals with simulated 

artifacts for one of the subjects are shown in Fig. 4.12. The relationship is nearly linear. 

Processing resulted in an SAR advantage of 19.6 dB. Plot of the output SAR versus input 

SAR for signals from the other 22 subjects was almost similar, with SAR advantage of 19.3 to 

19.8 dB. As compared to the technique AFSR, the technique gave about 1 dB of additional 

improvement in the SAR at the output.  

 

4.5 Enhancement of recorded signals 

For quantification of the artifact suppression, the two adaptive filtering techniques AFSR and 

Fig. 4.12 Output SAR (in dB) versus input SAR (in dB) for the 

adaptive filtering technique AFER. Solid line: a linear regression, 

dotted line: linear regression for the technique AFSR in Fig. 4.4. 
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AFER, were applied to signals with simulated artifact of different SAR’s. The results 

presented in the two earlier sections show that both the techniques introduced negligible 

distortion in the artifact-free signals. For signals with simulated SAR in the -9 to 9 dB range, 

AFSR and AFER gave SAR improvement of 18.5 dB and 19.6 dB respectively. For seeing 

the effectiveness of these techniques on actual signals, they were applied on the signals 

acquired from 52 healthy volunteers as described in Section 4.3. These signals were recorded 

with the subject resting in a supine position in order to have negligible motion artifact. There 

were no restrictions on the breathing. Figure 4.13 shows the recorded ECG, Zo, z(t), ICG, and 

respiratory waveforms from a post-exercise signal recording on one of the volunteers. In the 

acquired waveform, z(t) and ICG are contaminated by respiratory artifact, making it difficult 

to estimate Tlvet and ICG peaks. Figure 4.14 and Fig. 4.15 show processed output for ICG, by 

the technique AFSR and AFER, respectively. Similarly, Fig. 4.16 and Fig. 4.17 show 

processed output for z(t), by the two techniques. Recordings from some of the volunteers and 

the processed outputs are given in Appendix C.  

 A visual examination of the waveforms showed that both the techniques effectively 

suppressed the respiratory artifacts from the recorded signals. For all the recordings, 

processed ICG output showed almost no effect of respiration, improving the detection of the 

B and X points. Values of ICG peaks are found to be stable. Both the techniques were found  

 
Fig. 4.13 Waveforms contaminated by strong respiratory artifact for processing: (a) ECG (in arbitrary 

units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG  (in Ω/s), and (e) sensed airflow (in arbitrary units) from 

subject ‘KI’. 
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Fig. 4.14 Processing of ICG by AFSR: (a) recorded ICG (in Ω/s), (b) sensed airflow (in arbitrary 

units), and (c) processed ICG (in Ω/s) from subject ‘KI’. 

 

 

 
 

Fig. 4.15 Processing of ICG by AFER: (a) recorded ICG (in Ω/s), (b) fitted spline on recorded ICG (in 

arbitrary units), and (c) processed ICG (in Ω/s) from subject ‘KI’. 

 

 

 

 

Fig. 4.16 Processing of impedance signal by AFSR: (a) recorded z(t) (in Ω), (b) sensed airflow (in 

arbitrary units), and (c) processed z(t) (in Ω) from subject ‘KI’. 
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Fig. 4.17 Processing of impedance signal by AFER: (a) recorded z(t) (in Ω), (b) fitted spline on 

recorded z(t) (in arbitrary units), and (c) processed z(t) (in Ω) from subject ‘KI’. 
 

 

to be effective in removing the artifacts from recorded z(t) signals as well. A qualitative 

examination of the processed output for the recordings from the signals acquired from all the 

subjects showed that the artifact suppression remained effective even with a large heart rate 

variability in the post-exercise recordings, and the processing did not appear to affect the 

beat-to-beat variability in the characteristic points and the ICG peaks. As these waveforms 

show a significant heart rate variability and we do not have access to the artifact-free 

waveforms, a quantitative examination to the artifact suppression is not feasible. 

 

4.6 Discussion 

The two adaptive filtering based techniques were applied on signals with simulated 

respiratory artifact with input SAR in the range of -9 to 9 dB. Analysis of the results showed 

that the techniques were effective in attenuating the respiratory artifact without affecting the 

signal. For the technique AFSR, using respiration sensed by a thermistor based airflow sensor 

as the reference, the SAR advantage was approximately 18.5 dB. Detailed analysis showed 

that this technique is not efficient in suppressing the higher frequency components of the 

artifacts present in the sensed signal. The technique AFER was developed to provide a better 

approximation of the respiratory artifact. It uses respiratory reference estimated by cubic 

spline fitting on the ICG signal with reference to the inhale and exhale phases of the 

respiration. This technique showed an SAR advantage of approximately 19.6 dB. Although it 

appears to be giving only 1 dB additional attenuation of the artifact, the technique is very 

effective in suppressing higher frequency components of the artifact which can severely affect 

the detection of point B, C, and X in the ICG waveform. It may be noted that this SAR 

advantage is close to what would be achieved by ensemble averaging over 100 frames, in the 

absence of any cycle-to-cycle variability in the ICG signal. When the techniques were applied 

on artifact-free signals, the signal-to-noise ratio in the processed output was about 27.0 and 
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27.7 dB for AFSR and AFER respectively, indicating that both the techniques did not 

introduce any significant distortion in the signal. The effectiveness of the techniques in 

reducing the simulated artifacts in the thoracic impedance signal was the same as for the ICG 

signals. The filter tap lengths for the techniques AFSR and AFER were 400 and 184 

respectively and the settling times were 5 s and 2.7 s respectively. The reduction in the tap 

length and the settling time in AFER may be attributed to the better approximation of the 

artifact. 

Both the techniques were used for processing of the signals acquired from 52 

volunteers with normal health and no known cardiovascular history. These signals showed a 

large beat-to-beat variation and large respiratory artifacts. A visual examination of the 

processed outputs showed that the respiratory artifacts were suppressed and the beat-to-beat 

variations were not affected. The technique AFER was more effective in suppressing the 

artifact because the estimated reference waveform was a better approximation of the 

respiratory artifact. There are limitations in applying these techniques for removal of motion 

artifact, because of practical limitations in obtaining and combining reference signals related 

to the various motions that may cause variation in the thoracic impedance.     

 The effectiveness of the artifact suppression by the two techniques has been assessed 

quantitatively using simulated artifacts on signal from 23 volunteers and qualitatively on pre-

exercise and post-exercise signals from 52 volunteers. Both the techniques need to be further 

validated on signals acquired from several subjects with normal health and subjects with 

different cardiovascular disorders, under a clinical setting, by comparing the estimated values 

of the stroke volume and the other indices as obtained from a clinically established method. 

These recording and the results from processing are presented later in Chapter 6. 



 

 

 

Chapter 5 

 

WAVELET BASED DENOISING FOR  

SUPPRESSION OF ARTIFACTS 

 

 

5.1 Introduction 

This chapter presents investigations on a wavelet based denoising (WBD) technique for 

suppression of the respiratory and motion artifacts in the thoracic impedance signals, without 

using a reference signal. In this technique, no control of the respiration is required. An FIR based 

Meyer wavelet (Daubechies, 1992; Sidney et al. 1998; Addison, 2002) has been used for 

decomposition of the contaminated signal and to obtain a denoised signal. The artifact 

suppression is carried out to permit beat-to-beat estimation of ICG related indices. 

 The chapter begins with a review of wavelet based denoising techniques for removal of 

respiratory and motion artifacts from several biosignals. This is followed by a brief description of 

wavelet based signal decomposition. Next WBD technique is presented. A quantitative estimate 

of the artifact suppression is carried out by processing the signals with simulated artifacts with 

different signal-to-artifact ratios (SAR). This technique is applied on several signal recordings 

obtained from the volunteers and the results are qualitatively examined.  Next, this technique is 

applied on signals acquired from several subjects with normal health and subjects with different 

cardiovascular disorders, under a clinical setting, and the result from the processing are presented 

later in Chapter 6. 

 

5.2 Wavelet based denoising of biosignals  

Wavelet analysis has been applied for denoising of several biosignals (Lim et al., 1995; Unser 

and Aldroubi, 1996; Addison, 2002). Lim et al. (1995) have reported good results with wavelet 

based linear denoising of respiratory related evoked potentials. The evoked potential signals, 

acquired as 2 kHz, were decomposed to seven scales and reconstructed from the last four scales. 
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As compared to ensemble averaging, the essential characteristics of the evoked potential signal 

could be obtained in a much smaller number of trials.  

 Cherkassky and Kilts (2001) compared several wavelet denoising techniques for 

removing electromyopotential (EMG) noise from the ECG signal. Visual shrink (VisuShrink), 

Stein's Unbiased Risk Estimate (SURE), and soft threshold were tested and a new thresholding, 

based on Vapnik-Chervonenkis learning theory, was proposed. Symlet wavelet was used for the 

analysis and mean square error and visual identification of P, R, and T waves in the ECG signals 

showed that Vapnik-Chervonenkis based thresholding was better than the other investigated 

techniques. Von Borris et al. (2005) used wavelet technique for removal of slow baseline drift in 

ECG. The ECG was decomposed up to six scales with a biorthogonal wavelet. Hard thresholding 

was applied by setting the coefficients of the low frequency components to zero. The technique 

was applied on artifact-free signals added with simulated drifts. Visual inspection of the 

processed ECG showed that the technique was effective in removing low frequency drift from the 

signal without any significant distortion in the signal. Tinati and Mozaffary (2006) used wavelet 

denoising to remove the baseline wandering in ECG, assuming that the baseline drift and the 

ECG are independent. Wavelet packet decomposition of the ECG was carried out using 

Daubechies wavelet. Hard thresholding, based on energy levels of the scales, was used to denoise 

the ECG signal. The technique was applied on simulated signals and signals recorded from 

healthy subjects. For simulated signals, power spectrum and R-R intervals of artifact-free signal 

were compared with those obtained from the denoised signal. The technique was found to be 

effective in removing the artifacts without distorting features of the ECG waveform. Kania et al. 

(2007) applied wavelet technique for removal of EMG and electrode-to-skin contact noise from 

ECG signals, recorded from patients with arrhythmia. From a visual inspection of the input 

signals and denoised signals, it was found that Daubechies (order 1) and Symlet (order 3) 

wavelets were effective in noise reduction.  

Zhou and Gotman (2004) used a combination of wavelet denoising and independent 

component analysis (ICA, a method to separate independent components, based on the principle 

of statistical independence), for removing EMG and ECG from EEG signals. The technique was 

applied on the signal recorded from subjects. Visual inspection of the input and the denoised 

signals showed that integration of wavelet denoising and ICA techniques efficiently removed the 

EMG noise and ECG artifact in the EEG. Xu et al. (2005) used a wavelet-based cascaded 

adaptive filter for detecting and removing baseline drift from arterial pulse waveforms. The pulse 

signal was decomposed to 6 scales and baseline drift level was estimated by computing energy 

ratio of the first and the sixth scales of decomposition. If the energy ratio was less than 50 dB, the 
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pulse was filtered by a discrete Meyer wavelet filter followed by cubic spline estimation. 

Otherwise, the pulse was filtered using only the cubic spline estimation. This technique was 

applied on 50 simulated and 500 actual pulse signals and it was found that the wavelet based 

cascaded adaptive filter gave better results than the same obtained by morphology and FIR filters. 

 For removing ECG artifacts from EMG signal, Zhou et al. (2005) investigated the 

performance of high pass filtering, spike clipping, template subtracting, wavelet thresholding, and 

adaptive filtering. Processing of simulated signals showed that high pass filtering (with optimal 

cutoff frequency and filter order) was faster and effective in removing ECG artifacts from EMG.  

Jiang and Kuo (2007) used second order of Daubechies wavelet for removal of motor unit action 

potential from EMG. The ratio of power of approximation and detail at scale one was used for 

performance evaluation. Results from processing of the simulated signals showed better 

performance for soft thresholding.  

Ouyang et al. (1998) reported techniques based on continuous wavelet transform (CWT) 

and discrete wavelet transform (DWT) for cancellation of respiratory artifact from ICG. For 

DWT, Coiflets wavelet (order 5) was used to decompose ICG upto 7 scales and soft thresholding 

was applied for denoising of signals with simulated artifact. On the basis of output SAR values 

and correlation between artifact-free ICG and processed output, it was concluded that the DWT 

based denoising was more effective in reducing the respiratory artifact from thoracic impedance 

signal. In this technique, breath holding for about 8 s was needed to construct the auto-regressive 

(AR) model of the artifact-free ICG signal. Shyu et al. (2004) used a wavelet based technique for 

detecting various cardiac events in impedance cardiography, during rest and cardiovascular 

activation evoked by Valsalva maneuver (a maneuver in which a person tries to exhale forcibly 

with a closed glottis so that no air exits through the mouth or nose). A quadratic spline wavelet 

was used for 7 scales of decomposition. Left ventricular pressure and left ventricular volume 

curve, simultaneously recorded by a conductance catheter, were used for validation of Tlvet and 

stroke volume on beat-to-beat basis. The result showed that the local minimum in the 6
th
 scale 

was the best indicator for detection of point B. The first zero crossing in the 5
th
 scale was the best 

indicator for detection of point X. Nine ward referral patients (5 male, 4 female) participated in 

this study and the wavelet technique demonstrated good accuracy for estimating Tlvet. However, 

stroke volumes estimated by impedance cardiography and those measured by the conductance 

catheter were poorly correlated. 
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5.3 Wavelet based signal decomposition 

The wavelet transform provides a time-frequency decomposition with an optimal resolution in the 

time and the frequency domains (Mallat, 1989; Daubechies, 1992; Aldroubi and Unser, 1996; 

Rao et al., 1998; Sidney et al., 1998; Akansu and Haddad, 2001; Addison, 2002). The basis 

functions for the wavelet transform are formed by dilation and translation of a prototype function 

ψ(t), known as the mother wavelet. The discrete wavelet transform (DWT) of a continuous signal 

x(t) is given as  

*
,( , ) ( ) ( )m nW m n x t t dtΨ

∞

−∞

= ∫  (5.1) 

where , ( )m n tΨ  is a dilated and shifted version of the mother wavelet  ( )tΨ and is given as 
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Usually in DWT, we take a0 = 2 and b0 = 1.  Values of W(m, n) for a given m are known as the 

wavelet detail coefficients at scale m. The signal detail at scale m is defined as 
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The signal approximation at scale m is defined as 
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The signal can be obtained from the details up to scale mo as 
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From Eqn. 5.5, we see that the approximation at a scale is given as the sum of the detail and 

approximation at the next higher scale  

1 1( ) ( ) ( )m m ma t d t a t+ += +  (5.6) 

Thus the DWT decomposes a signal into a set of detail coefficients and an 

approximation. The approximation is subsequently decomposed to give the set of detail 

coefficients and the approximation at the next scale. This is carried out iteratively, by 

decomposing the signal into many lower-resolution components. In wavelet denoising, a 

threshold is applied at each scale of DWT and the coefficients larger than the threshold are 

retained. Denoised signal is reconstructed, by applying inverse wavelet transform, from the 

resulting detail coefficients and the approximation. Hard thresholding and soft thresholding are 

commonly used in wavelet denoising. Hard thresholding sets to zero all the coefficients with an 

absolute value below a certain threshold. In soft thresholding, coefficients with an absolute value 
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below a certain threshold are set to zero while the threshold is subtracted from the remaining 

coefficients (Donoho, 1995). It has been reported that soft thresholding, under certain statistical 

assumptions, may result in a slightly better noise reduction and may reduce the accompanying 

signal distortion. Several other types of thresholding, including SURE, VisuShrunk, Vapnik-

Chervonenkis, hybrid, and minimax threshold, have been reported for wavelet based denoising 

(Donoho, 1995; Donoho et al., 1995; Donoho and Johnstone, 1998; Rao et al., 1998; Cherkassky 

and Kilts, 2001). In wavelet based linear denoising or scale dependent thresholding (Lim et al., 

1995; Addison, 2002), the DWT is applied on the signal for a number of scales of decomposition, 

and each scale is reconstructed into the details and the approximation, to visualize the signal and 

artifact component at each scale. If the signal and noise are consistently represented on different 

scales, the signal can be reconstructed from the appropriate scales.  

 

5.4  Artifact suppression 

We investigated the application of wavelet based linear denoising or scale dependent thresholding 

(Lim et al., 1995; Addison, 2002) for suppression of respiratory and motion artifacts in the ICG 

signal. The DWT is applied on the signal for a number of scales of decomposition, and each scale 

is reconstructed into the details and the approximation, to visualize the signal and artifact 

component at each scale. For selection of the mother-wavelet and the number of scales in the 

decomposition, we studied several types of wavelets: Daubechies, Coiflets, Symlets, and FIR 

Meyer for the signal acquired at sampling frequency of 500 Hz. These wavelet functions and 

results from decompositions of the artifact-free signal and signal-free artifact are given in 

Appendix D. The FIR based Meyer wavelet (Daubechies, 1992; Sidney et al. 1998; Addison, 

2002) captured the ICG in its first few scales and the artifacts in the other scales for a wide 

variation in the heart rate, respiration rate, and motion artifacts. It was found that decomposing 

the signal up to 10 scales gave sufficient resolution to separate the signal and the artifact. This 

resulted in 10 details and 1 approximation. Increasing the number of scales beyond 10 gave very 

low frequency DC-like details at the higher scales and did not provide any useful information for 

denoising.  

The decomposed signals are classified into a low band (lower scales, with higher temporal 

resolution) where only signal components are present, a high band (higher scales, with lower 

temporal resolution) where only the artifacts are present, and an intermediate band with very 

small contribution from either. For thresholding, detail and approximation at each scale were 

examined. Artifact-free ICG signals and ICG-free artifacts were acquired by the method 

described earlier in Section 4.3.2. Figure 5.1 shows the details and approximation of an artifact- 
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Fig. 5.1 Details D1-D10 and approximation A10 of artifact-free ICG x(n), using discrete Meyer wavelet 

(all the waveforms are in arbitrary units). 

 

 
 

Fig. 5.2 Details D1-D10 and approximation A10 of ICG-free artifacts x(n), using discrete Meyer wavelet 

(all the waveforms are in arbitrary units). 
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Fig. 5.3 Details D1-D10 and approximation A10 of ICG x(n) with simulated artifact 0 dB SAR using 

discrete Meyer wavelet (all the waveforms are in arbitrary units). 

 

free ICG signal. Figure 5.2 shows the details and approximation at each scales of an ICG-free 

artifact due to controlled breathing at 0.4 Hz. In this example, artifact-free ICG signal is captured 

within first eight details while ICG-free artifact related components are captured at higher scales. 

An analysis of the signals recorded from 23 volunteers showed that mostly the signal components 

are captured in details D1-D8 while the artifact related component were found in details D9-D10, 

and approximation A10. Figure 5.3 show the detail and approximation at each scale of 

decomposition of a simulated contamination of ICG with input SAR of 0 dB. As shown in the 

figure, the signal components are captured in details D1-D8 while the respiratory artifact related 

components are captured in details D9-D10 and approximation A10.  

 

5.4.1  Processing of signals with simulated artifacts 

For estimating the effectiveness of the WBD technique in removing the respiratory artifacts, 

signals with simulated artifacts with different SAR values were generated, as described earlier in 

Section 4.3.3 of the previous chapter. For input SAR = ∞ dB (i.e., zero artifact), signal is 

decomposed to details D1-D8. Figure 5.4 shows ICG with input SAR of 0 dB and processed 

output. The denoised signal was reconstructed by adding the details D1-D8. In the processed  
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Fig. 5.4 Processing by WBD of signal with simulated artifact: (a) artifact-free ICG (in arbitrary unit), (b) 

ICG-free artifact (in arbitrary unit), (c) ICG with simulated 0 dB artifact (in arbitrary unit), and (d) 

processed output (in arbitrary unit).  

 

 

Fig. 5.5 Output SAR (in dB) versus input SAR (in dB) for the 

wavelet based technique (WBD). Solid line: a linear regression, 

dotted line: linear regression for the technique AFSR in Fig. 4.4, 

dashed line: linear regression for the technique AFER in Fig. 4.12. 
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Fig. 5.6 Processing by WBD of ICG-free artifact: (a) ICG-free artifact, and (b) processed output (all in 

arbitrary unit).  

 
 

output, artifacts are suppressed and baseline has been restored, facilitating the detection of 

characteristic points and estimation of the parameters required for calculating the stroke volume. 

Results from processing of the signal with SAR values of -9, -6, -3, 0, 3, 6, 9 dB are presented in 

Appendix D. Output SAR values were computed by using Eqn. 4.6. Figure 5.5 shows a plot of 

output SAR values for different input SAR values in dB. Relationship between output SAR and 

input SAR is nearly linear and we see that the processing has resulted in an SAR improvement of 

21.8 dB. The signal-to-noise ratio in the output after applying this technique on artifact-free 

signal was found to be 33.2 dB, indicating that the technique produced very little distortion in the 

processed output, and approximately 6 dB lower than the two adaptive filtering techniques. 

Figure 5.6 shows processed output when only artifact is given as the input. As shown in the 

figure, this technique effectively suppresses the artifacts with very little error after denoising. 

For the simulated artifacts, the technique WBD has shown better signal enhancement as 

compared to the two adaptive filtering based techniques, presented in the previous chapter. The 

processing was applied on signals with simulated artifact generated from the recordings taken 

from 23 volunteers. The relationship between the output SAR and the input SAR were almost 

similar to the plot in Fig. 5.5 with SAR improvement ranging from 21.5 to 21.9 dB.    

 

5.4.2 Enhancement of recorded signal 

For assessing the effectiveness of the technique on the actual signals, it was applied on signals 

acquired from 52 healthy volunteers, as in Section 4.3. These signals were recorded with the 

subject resting in a supine position in order to have negligible motion artifact. Figure 5.7 shows 

the recorded ECG, Zo, z(t), ICG, and respiratory waveform from a subject in post-exercise 

relaxation. The signals z(t) and ICG show strong presence of respiratory artifact and minimum 

motion artifacts. Baseline is not stable making it difficult to estimate the parameters (peak height 

and Tlvet). Figures 5.8 and 5.9 show the processed output of the ICG and z(t) signal. Processed  
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Fig. 5.7 Waveforms contaminated by strong respiratory artifact for processing: (a) ECG (in arbitrary units), 

(b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG  (in Ω/s), and (e) sensed airflow (in arbitrary units) from subject ‘KI’. 

 

 

 
Fig. 5.8 Processing of ICG by WBD: (a) recorded ICG (in Ω/s), and (b) processed ICG (in Ω/s), from 

subject ‘KI’. 

 

 

 
 

Fig. 5.9 Processing of impedance signal by WBD: (a) recorded z(t) (in Ω), and (b) processed z(t) (in Ω), 

from subject ‘KI’. 
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Fig. 5.10 Processing of ICG by WBD with motion artifact: (a) recorded ICG (in Ω/s), (b) estimated artifact 

(in arbitrary units), and (c) processed ICG (in Ω/s), from subject ‘JJ’. 

 

 

output shows almost no effect of the artifacts, improving the detection of the B and X points. The 

peaks in the waveform are found to be stable. Recordings from some of the volunteers and the 

processed outputs are given in Appendix D. A visual examination of these waveforms showed 

that both the techniques effectively suppressed the respiratory artifacts from the recorded signals.  

 The effectiveness of the technique in removing the motion artifact was investigated by 

processing the signals corrupted by motion artifacts but free from respiratory artifacts. Figure 

5.10 shows a signal from a volunteer ‘JJ’ (a professional swimmer) who could comfortably hold 

the breath for a relatively long period.  Recordings were taken with the breath holding for 32 s 

and left hand movement. In the waveform shown in Fig. 5.10 (a), the ICG is contaminated by 

only the motion artifact. After applying the wavelet based denoising, the motion artifact is 

suppressed and a stable baseline is achieved, as seen in Fig. 5.10 (c). This technique was applied 

on the signals contaminated from motion artifact with minimum respiratory artifact as well as on 

the signals contaminated by motion as well as the respiratory artifacts, obtained from seven 

volunteers. The signals and processed outputs for some of them are presented in Appendix D. For 

all the recordings, a visual examination showed that the technique has been effective in removing 

the artifacts without any visible degradation in the ICG signal. 

 

5.5  Discussion 

From the analysis of details and approximation of simulated respiratory artifacts, it was seen that 

the WBD helps in attenuating the respiratory artifact. Applying the technique on artifact-free 

signals did not introduce distortion in the signal. The technique was applied for processing the 

thoracic impedance signals with simulated artifact generated from the recordings taken from the 
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23 volunteers. For the input SNR range of -9 dB to 9 dB, the relationship between the output 

SAR and the input SAR was almost linear, with SAR improvement of approximately 21.8 dB 

which is about 3 dB more than the two adaptive filtering based techniques.  

This technique was applied on several signal recordings, severely contaminated from 

respiratory artifacts with minimum motion artifacts, obtained from 52 volunteers in resting and 

post-exercise relaxation condition. A visual examination showed that the baseline was restored 

and the technique did not affect the beat-to-beat variability of the characteristics point in the 

waveforms. Applying the technique on signals contaminated by both the respiratory and motion 

artifacts showed that the technique was very effective in suppressing the respiratory and motion 

artifacts. The processed outputs showed a very stable baseline, permitting beat-to-beat estimation 

of stroke volume and other cardiac indices. As this technique does not require any reference 

related to the respiratory and motion artifacts, it can be used for suppressing the artifacts during 

exercise or stress test.  

The results presented here involved a quantitative assessment of the suppression of the 

simulated respiratory artifact and a qualitative assessment of the suppression of the respiratory 

and motion artifacts in actual signals. Results from the investigation for validation of the 

technique under a clinical setting are presented in the following chapter.  



 

 

 

 

Chapter 6 

 

EVALUATION OF ARTIFACT SUPRESSION  

 

 

6.1  Introduction 

Artifact suppression techniques based on adaptive filtering (AFSR and AFER) and wavelet 

based denoising (WBD) have been presented in Chapter 4 and Chapter 5, respectively. 

Application of the techniques on signals with simulated artifacts and actual signals resulted in 

suppression of the artifacts, permitting beat-by-beat estimation of the stroke volume and other 

cardiac indices. The values estimated by impedance cardiography need to be compared with 

those obtained using an established technique, for subjects with normal health and subjects 

with cardiovascular disorders under a clinical setting. Doppler echocardiography is an 

established noninvasive technique for estimating stroke volume and several other cardiac 

indices, and it can be used for monitoring beat-to-beat variations. The purpose of this 

investigation is to examine the agreement between the results obtained using impedance 

cardiography and Doppler echocardiography, and to examine the effectiveness of the artifact 

suppression techniques in improving the agreement.  

 This chapter begins with a review of Doppler echocardiography. Estimation of the 

stroke volume and Tlvet using impedance cardiography and Doppler echocardiography are 

presented in the next section. The experimental method and the results obtained are presented 

and discussed in the subsequent sections.  

 

6.2  Doppler echocardiography  

The standard techniques for estimating the stroke volume, such as Fick’s dilution, thermo dye 

dilution, and electromagnetic flow-meter techniques, are invasive and their use for healthy 

subjects is generally precluded. Further, these techniques provide only an average estimate. 

Variability in the stroke volume and the other cardiac indices may provide additional 

diagnostic information on the cardiovascular dynamics. Doppler echocardiography has been 

lately used for estimating the stroke volume and some cardiac indices. It is a noninvasive 

technique and one of its main features is that it can be used for estimation on a beat-to-beat 
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basis. In this technique, velocity time integral (VTI) is computed by computing the area of the 

envelope of the blood flow profile over the systole. The stroke volume is estimated as the 

product of the VTI across a certain location and the cross-sectional area (CSA) of the 

location. The locations commonly used for determining the stroke volume are: (i) aortic 

annulus, (ii) mitral annulus, and (iii) pulmonary annulus (Quiñones et al., 2002). The aortic 

annulus is the most widely used location for estimating the stroke volume (Lewis et al., 

1984). 

Kiwoski et al. (1981) compared the cardiac output estimates from left ventricular 

echocardiograms and Fick’s dye dilution in 10 healthy volunteers, with increase and decrease 

in stroke volume caused by intravenous administration of isoproterenol and propranolol, 

respectively. During the rest, cardiac outputs estimated by the two techniques were 

reproducible for up to 40% increase in the stroke volume. Decrease in the cardiac outputs as 

estimated by the two techniques was also comparable. Fisher et al. (1983) measured left heart 

flows, in 54 open-chest dogs, by Doppler echocardiography at the mitral valve orifice and 

found that the estimated volumetric flow correlated well with the values obtained from 

electromagnetic flow meter. Huntsman et al. (1983) compared the cardiac output by Doppler 

echocardiography and thermodilution on 54 patients in the intensive care unit. 

Echocardiography could estimate the cardiac output reliably in most patients. Christie et al. 

(1987) estimated cardiac output by simultaneous application of Doppler echocardiography, 

two-dimensional echocardiography, thermodilution, and Fick oximetry during graded upright 

maximal exercise in 10 male subjects. It was reported that the stroke volume estimated by 

both the echocardiography techniques were very close. The agreement of Doppler 

echocardiography with the other two techniques varied with the method used for estimating 

aortic cross-sectional area and the agreement was high for the areas calculated from diameters 

measured at the insertion of the aortic valve leaflets.  

Northridge et al. (1990) compared cardiac output estimated by Doppler 

echocardiography and impedance cardiography with that obtained by thermodilution in 24 

patients with myocardial infarction. Stroke volumes were simultaneously measured by 

impedance cardiography and thermodilution. Doppler echocardiograms were recorded either 

before or after the two techniques. The agreement between the estimates was examined by 

correlation and Bland-Altman test. The 95% limits of agreement (mean bias ± 2 s.d.) for the 

echocardiography and impedance cardiography were -1.23 to 1.32 L/ minute and -1.43 to 1.11 

L/ minute, respectively, with both the techniques showing a good agreement with 

thermodilution technique for most of the patients. Arora et al. (2007) compared the cardiac 

outputs measured by a continuous Doppler echocardiograph instrument (USCOM) and bolus 

thermodilution technique during postoperative period in 30 patients of coronary artery bypass 
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surgery. The 95% limits of agreement were –0.86 and 0.59 L/ minute. They concluded that 

echocardiography could reliably estimate the cardiac output. 

 As these and several other studies have established a good correspondence between 

stroke volume or cardiac output estimated from Doppler echocardiography and the other 

standard techniques, we have used Doppler echocardiography as a reference for comparing 

stroke volume estimates from impedance cardiography on beat-to-beat basis. 

 

6.3  Estimation of Tlvet and stroke volume 

The thoracic impedance signals acquired in the pre-exercise and the post-exercise relaxation 

conditions were contaminated by respiratory artifacts. The adaptive filtering techniques AFSR 

and AFER (described in Chapter 4), and the wavelet based denoising technique WBD 

(described in Chapter 5), were applied on these signals. The unprocessed waveforms and the 

waveforms processed by the application of the three techniques were used for estimation of 

the left ventricular ejection time and the stroke volume, for comparison with the values 

estimated using Doppler echocardiography.  

The Kubicek’s modified formula for the estimation of the stroke volume, as described 

in Chapter 2, requires two parameters estimated from the ICG waveform: (i) the left 

ventricular ejection time and (ii) the peak height (-dz/dt)max. The left ventricle ejection time 

(Tlvet) is the time difference between point B (the opening of the aortic valve) and point X 

(the closing of the aortic valve) in the ICG waveform. Estimation of Tlvet requires a stable 

baseline. Usually (-dz/dt)max is measured as the peak height from the point B or from the 

point of zero crossover. It is generally not easy to get a clear point B or a stable baseline in the 

waveform. We visually examined the signals, acquired during breath hold in the pre-exercise 

and post-exercise conditions, from 23 volunteers with no known cardiovascular history (the 

signals acquired for the investigation are presented in the previous two chapters). It was found 

that (-dz/dt)max measured as the peak from the zero crossover point was approximately 0.72 

times peak-to-peak height of -dz/dt. Hence, (-dz/dt)max was estimated by multiplying peak-

peak height of -dz/dt with 0.72 in each cardiac cycle. Point B was taken as the baseline 

crossover point and the point X was taken as the most negative point in the cycle. The 

recorded ICG signals and the signals processed by the technique AFSR showed, in some of 

the signals, a baseline drift. Hence, peak-to-peak height of -dz/dt, point B, and point X were 

identified manually and they were used for estimation of Tlvet and (-dz/dt)max. For signals 

processed by the technique AFER and WBD, (-dz/dt)max was estimated automatically by 

measuring peak-to-peak height of -dz/dt and point B as the baseline crossover point.    
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Fig. 6.1 Estimation of aortic diameter (from inner wall to inner wall) from the Doppler 

echocardiogram, for the subject “VM’, measured at aortic valve annulus. The lower trace: ECG 

using the same machine. 

 

Fig. 6.2 Continuous wave Doppler echocardiogram of the selected segment at the level of the 

aortic valve for a healthy subject ‘VM’ (velocity is shown in the form of a spectral display per 

unit time in m/s and VTI is displayed in cm). The lower trace: ECG using the same machine. 
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  In Doppler echocardiography, continuous wave (CW) Doppler signal is used to 

obtain an instantaneous blood velocity profile at the ascending aorta or pulmonary artery. The 

area of the envelope of the velocity profile over the systole was taken as the velocity time 

integral (VTI). The stroke volume was calculated by multiplying the VTI and the cross 

sectional area (CSA) of the aortic annulus (the insertion point of the aortic valve leaflets). The 

cross section of the aortic annulus was taken to be circular and its area was calculated from 

the annulus diameter, manually measured in the parasternal long axis view. Aortic diameter, 

by M-mode echocardiography, was measured at mid-systole and end-diastole at the aortic 

valve annulus. Figure 6.1 shows the aortic diameter (from inner wall) measured at mid-systole 

and end-diastole at the level of the aortic valve annulus. Doppler flow velocity of the aorta 

was recorded from the suprasternal notch. A good quality CW Doppler signal was denoted by 

a sharp, well defined waveform seen on the monitor and by a crisp sound. The values of peak 

velocity, mean velocity, and the VTI were measured manually by zooming each cycle and 

identifying the envelope of the blood flow profile with the help of a track-ball. Figure 6.2 

shows the envelope of the velocity profile marked over two systoles for calculating VTI at the 

ascending aorta for a healthy subject. Stroke volumes were estimated as the product of the 

VTI and the CSA obtained at the aortic annulus in each cardiac cycle. The lower trace in both 

the images is the ECG signal from the limb electrodes. 

 

6.4  Experimental method 

Signals from the impedance cardiography and Doppler echocardiography were 

simultaneously acquired and the recordings were used for estimating the values of the left 

ventricular ejection time (Tlvet) and the stroke volume. An exercise protocol was used to 

introduce strong respiratory artifact and significant beat-to-beat variations. The relationship 

between the values as estimated by the techniques was examined. The recordings were carried 

out during 27
th
 May 2007 to 29

th
 July 2007 at the Asian Heart Institute and Research Center, 

Mumbai. The investigation protocol was reviewed and approved by the hospital's research 

committee. All the participating subjects read and signed an informed consent for 

participating in the investigation (on a form as given in Appendix F). The recording setup 

used in the investigation, the subjects and the exercise protocol, and comparison methods 

used for estimating the agreement between impedance cardiography and Doppler 

echocardiography are described in the following section. 

 

6.4.1  Recording setup 

Thoracic impedance related waveforms were recorded by using the instrument as described 

earlier in Chapter 4. The respiratory signal was recorded by placing a thermistor based airflow 
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sensor close to the nostrils. Simultaneously, Doppler echocardiograms were recorded by a 

radiologist, using ultrasonograph “GE Vivid 7 Dimension”. A 2.5 MHz phased-array 

transducer was placed in the left parasternal long axis view of the aortic valve and left 

ventricle and an M-mode echocardiogram of the aortic valve and at the cardiac apex to record 

a four-chamber view. Ultrasound gel “Aquasonic” was used for a good contact of the 

transducer with the chest skin. The aortic flow curve was recorded from the apex and from the 

suprasternal notch. Still frames of the cross sectional images (derived from M mode tracings) 

and Doppler velocity outputs were recorded and saved on the hard disk of the instrument for 

25 s (18-40 separate cardiac cycles, depending on the heart rate). Doppler gain, Wall filter 

(the threshold below which low frequency signals due to heart movements are removed from 

the display), and the scale factor (the range for the display) were adjusted to optimize the 

quality of the Doppler recordings. Poor quality Doppler images were ignored. The ECG 

amplifier of the echocardiography machine was connected to the three limb electrodes. The 

machine displayed the ECG signal as a trace below the echocardiogram and provided a pulse 

output corresponding to the R-wave of the ECG. This pulse output was acquired 

simultaneously along with the ICG waveform and was used for synchronization of the ICG 

and Doppler echocardiogram cycles. 

  

6.4.2  Subjects and exercise protocol 

Investigations were carried out on two groups of subjects. The first group consisted of 

volunteers with normal health from among the persons undergoing cardiovascular diagnostic 

tests at the hospital. All the subjects were non-smokers, and in good health. None of the 

subjects had cardiovascular symptoms or had taken medication within a week before this 

investigation. Each subject was examined by a cardiologist and the results from physical 

examination, maximal treadmill exercise tests, 12-lead ECG, M-mode echocardiogram, two-

dimensional echocardiogram, and Doppler echocardiogram were found to be normal. A total 

of nine male subjects, aged 22-56 years formed this group. Second group consisted of 

subjects with cardiovascular disorders. Screening by Doppler echocardiography was used to 

exclude subjects with significant heart valve disease, pacemaker, myocardial infarction, 

intracardiac shunts, extremely low stroke volume, or difficulty in obtaining an acceptable 

echocardiogram. Five male subjects, aged 36-57 years, participated in this study: one with 

hypertension and severe chest pain, one subject with severe obesity and mild chest pain (ward 

referral, suspected for cardiac disease), and three post operated subjects of coronary heart 

disease. All the recordings were carried out between 8 A.M. and 2 P.M. 

Motion artifact causes inaccuracy in estimating various cardiovascular parameters 

from the Doppler echocardiogram. Hence, the pre-exercise and the post-exercise signal 

recordings were carried out with the subject lying in the left lateral position: (i) after resting 
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for 15 minutes in the left lateral position, and (ii) after an exercise of approximately 10 

minutes. All subjects performed a jogging of moderate intensity to increase the heart rate. 

Exercise was started at a slower warm-up speed. Further, the jogging speed was increased as 

the heart rate was continuously monitored using three lead ECG from the limb electrodes on 

the echocardiograph’s screen. Subjects with normal health were asked to exercise until their 

heart rate reached up to 100 beats per minute. However, the subjects with cardiac disorders 

were asked to stop the exercise if feeling breathless. Ward referral subject was excluded from 

the exercise protocol. Signals ECG, Zo, z(t), ICG, respiration, and synchronization pulses 

were acquired along with the Doppler echocardiogram from all the subjects. 

 

6.4.3  Comparison of results 

The values of the left ventricular ejection time (Tlvet) and the stroke volume (SV) estimated 

using ICG were compared with those obtained by Doppler echocardiogram, and the 

effectiveness of the artifact suppression techniques in improving the beat-to-beat agreement 

was examined. A scatter plot of values estimated by ICG versus the corresponding values 

obtained by the echocardiography was used for visual examination of the relationship. It may 

be noted that several data points may get represented as a single point in these plots. 

Correlation and linear regression analyses were also used to examine the correspondence 

between the values estimated from the two techniques. The agreement between the values 

estimated by the two methods was also assessed by calculating the mean bias, the standard 

deviation (s.d.) of the difference, and the 95% confidence limits of agreement (mean bias ± 2 

s.d.), as described by Bland and Altman (1983). In this test, the difference of the values 

estimated by the two methods being compared is plotted against the average of values. The 

relationship between the difference and the average of the parameter values has been widely 

used to examine any systematic bias and to identify possible outliers (Northridge et al., 1990; 

Woltjer, et al., 1996; Schmidt et al., 2005; Cotter et al., 2006; Leonard et al., 2006).  

 

6.5  Results from subjects with normal health 

In the following description of the results, the parameter values obtained from Doppler 

echocardiography are indicated by the term “echo” in parentheses after the parameters: 

Tlvet(echo) and SV(echo). The values estimated from the unprocessed ICG waveforms are 

indicated by “UP”: Tlvet(UP) and SV(UP). The values estimated from ICG waveforms after 

the artifact suppression are indicated by “AFSR”, “AFER”, or “WBD”, depending on the 

artifact suppression technique used. For all the comparisons, the values estimated from the 

echocardiography were used as the reference. We first examine the results for one of the 
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subjects for agreement between the values estimated by ICG and echocardiography on beat-

to-beat basis for the pre-exercise and post-exercise conditions. This is followed by the results 

for all the subjects, analyzed by three statistical analyses: (i) correlation, (ii) linear regression, 

and (iii) Bland-Altman test. These statistical tests were applied on signal recordings from 

each subject in pre-exercise and post-exercise conditions. After examining the agreement of 

the results on beat-to-beat basis, we also examine the agreement of the results obtained by 

ensemble averaging.   

 

6.5.1  Results for a subject 

Figure 6.3 shows a segment of the simultaneously recorded ECG, Zo, z(t), ICG, respiration, 

and synchronization pulse waveform from a healthy subject ‘DM’ (age: 33 years, weight: 74 

kg) in pre-exercise resting condition. Simultaneously acquired Doppler echocardiogram is 

shown in Fig. 6.4. Pulse output from the Doppler echocardiograph, produced corresponding 

to the R-wave of ECG is used here for synchronizing cycles of Doppler echocardiogram and 

ICG. Waveforms ICG and z(t) are contaminated by respiratory artifact, making it difficult to 

estimate cardiac parameters from the waveform. Figure 6.5 shows a segment of the processed 

ICG signal, after the stabilization of the adaptive filter weights, by the three artifact 

suppression techniques. Cleaned ICG after applying the technique AFSR shows a small 

presence of the artifacts in the signal. Processing by the techniques AFER and WBD showed 

a more stable baseline, with almost no effect of the respiratory artifact.  

 Figure 6.6 shows the waveforms for the same subject, in post-exercise condition. As 

compared to the pre-exercise signal, the post-exercise signal has a much stronger artifact. 

Figure 6.7 shows the simultaneously acquired Doppler echocardiogram. Processed output for 

the segment of the ICG recording of Fig. 6.6 is shown in Fig. 6.8. It is seen from the figure 

that the signal output after applying the artifact suppression techniques have much smaller 

artifacts and the beat-to-beat detection of the characteristic points B, C, and X has become 

easier. By visual examination of these waveforms, we can say that AFER and WBD have 

been more effective than AFSR in reducing the artifact.   

 For the subject ‘DM’ in pre-exercise condition, correlation coefficients between the 

values of SV as estimated by the echocardiography and impedance cardiography were 0.61, 

0.85, 0.91, 0.92 for UP, AFSR, AFER, WBD, respectively. Figure 6.9 gives a scatter plot 

between SV values from the ICG and the echocardiogram. We see that the processing has 

resulted in a reduction in the scatter and a decrease in the slope error in linear regression. 

Plots of observed difference versus the mean of the values are given in Fig. 6.10. The mean  
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Fig. 6.3 Segment of waveforms for the subject ‘DM’ in resting condition: (a) ECG (in arbitrary 

units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG (in Ω/s), (e) sensed airflow (in arbitrary units), and (f) 

synchronization pulse from Doppler echocardiograph (in V). 

Fig. 6.4 Continuous wave Doppler echocardiogram for the subject “DM’ in resting condition. X-

axis- time (s). The lower trace: ECG using the same machine. 
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Fig. 6.5 Processing segment of output for the ICG in Fig 6.3: (a) Recorded ICG (in Ω/s), (b) ICG (in 

Ω/s) processed by the technique AFSR, (c) ICG (in Ω/s) processed by the technique AFER, and (d)  

ICG (in Ω/s) processed by the technique WBD. 

 

Fig. 6.6 Segment of waveforms for the subject ‘DM’ in post-exercise relaxation: (a) ECG (in 

arbitrary units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG (in Ω/s), (e) sensed airflow (in arbitrary 

units), and (f) synchronization pulse from Doppler echocardiograph (in V). 
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Fig. 6.7 Continuous wave Doppler echocardiogram for the subject “DM’ in post-exercise 

relaxation. The lower trace: ECG using the same machine. 

 

Fig. 6.8 Processing segment of output for the ICG (in Ω/s) in Fig 6.6: (a) Recorded ICG (in Ω/s), 

(b) ICG (in Ω/s) processed by the technique AFSR, (c) ICG (in Ω/s) processed by the technique 

AFER, and (d)  ICG (in Ω/s) processed by the technique WBD. 
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biases are 21.1, 2,1, -1.2, -3.0 mL for UP, AFSR, AFER, WBD, respectively. The 

corresponding standard deviations of the differences are 12.9, 3.0, 2.4, 2.3 mL.  

For the post-exercise recordings from the same subject, correlation coefficients for 

SV values were 0.80, 0.97, 0.97, 0.97 for UP, AFSR, AFER, WBD, respectively. It can be 

observed that the correlation increased after processing the ICG waveform. Figure 6.11 gives 

a scatter plot between SV values from ICG and the echocardiogram. We see that all the three 

artifact suppression techniques have resulted in a reduction in the scatter and a decrease in the 

slope error in linear regression. Figure 6.12 gives the Bland-Altman plot of the difference 

versus the mean values. It is seen that the mean bias was 46.5 mL for unprocessed ICG. After 

processing by the techniques AFSR, AFER, and WBD it decreases to -7.7, -11.1, and -14.3 

mL, respectively. The standard deviations of the differences were 32.0, 8.8, 8.3, 7.8 mL for 

UP, AFSR, AFER, WBD, respectively.  

 An examination of the results across the subjects showed a similar pattern of 

improvements due to the three artifact suppression techniques. 

  

6.5.2  Correlation coefficients  

Correlation coefficients for Tlvet and SV from the echocardiogram and ICG for all the nine 

subjects with normal health are given in Table 6.1. It is seen that for the unprocessed ICG, the 

correlation coefficients for Tlvet values are not very high, particularly in the post-exercise 

condition and are not statistically significant for many of the subjects. After processing, the 

correlation coefficients are found to be very high, and are statistically significant at p < 

0.0001 for all the subjects in both pre-exercise and the post-exercise conditions. Among the 

three techniques, the correlation coefficients are highest for WBD.  

Similarly, processing based on artifact suppression techniques resulted in an increase 

in correlation coefficients for stroke volumes also. Correlation coefficients for SV(UP) varied 

over 0.15 – 0.67 for pre-exercise and 0.35 – 0.80 for post-exercise. After processing, the 

correlation coefficients are found to vary over 0.72 – 0.93, 0.78 – 0.95, 0.76 – 0.95 in the pre-

exercise and 0.80 – 0.97, 0.84 – 0.97, 0.87 – 0.98 for the post-exercise condition for AFSR, 

AFER, WBD, respectively.  

 

6.5.3  Linear regression 

Scatter plots for the all the subjects with normal health are given in Appendix E. Across the 

subjects, the processing resulted in a decrease in the scatter from the best fit line. Results from 

the linear regression analysis are given in Table 6.2. For both the pre-exercise and post-

exercise recordings, processing by the three techniques resulted in the best fit lines with 

slopes close to one. We see that for SV(UP), the rms error from the best fit line ranges over  
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29.0 – 80.0 mL for the pre-exercise and 36.7 – 171.2 mL for the post-exercise condition. 

After processing, the rms errors from the best bit straight line are found to be much smaller 

and range over 6.0 – 22.3, 5.8 – 18.3, 5.1 – 16.1 mL for the pre-exercise condition for AFSR, 

AFER, WBD techniques, respectively. The corresponding values for the post-exercise 

recordings are 13.6 – 44.0, 11.6 – 42.8, 7.9 – 40.8 mL.  

 

6.5.4  Bland-Altman test 

Table 6.3 gives the values of Tlvet as obtained from the echocardiography and the results from 

Bland-Altman test for the estimates using impedance cardiography. It is seen that all the 

artifact suppression techniques resulted in a reduction in the mean bias and standard 

deviations, for both the pre-exercise and post-exercise recordings. Table 6.4 gives the results 

for the Bland-Altman test for SV values. As seen in the table, all the artifact suppression 

techniques resulted in a large reduction in the mean bias and standard deviations of the 

differences. As estimated by echocardiography, the SV for the nine healthy subjects varied 

over 42.7 – 74.5 mL for pre-exercise condition and 48.0 – 133.7 mL for post-exercise 

condition. The standard deviation of the beat-to-beat estimates ranged over 2.4 – 6.7 mL for 

pre-exercise condition and 3.6 – 32.8 mL for post-exercise condition. Taking 

echocardiography estimates as the reference, the range for standard deviation of the 

differences across the subjects are 5.1 – 15.8, 1.7 – 4.5, 1.5 – 3.6, 1.4 – 3.2 mL for the pre-

exercise condition and 6.0 – 32.0, 2.3 – 8.8, 1.9 – 8.3, 1.3 – 7.8 mL for post-exercise 

condition for UP, AFSR, AFER, WBD, respectively. Thus we see that the processing has 

reduced the standard deviations of differences to values generally comparable to the beat-to-

beat variation in the stroke volume under pre-exercise condition and to values generally much 

smaller than the beat-to-beat variation in the post-exercise condition.  

 

6.5.5  Estimation by ensemble averaging 

In the earlier subsections, we looked at agreement between the SV values estimated by 

echocardiography and ICG on beat-to-beat basis. For checking the agreement of the average 

values, the statistical analyses were carried out across the subjects. In addition to the mean of 

the estimated values, an estimate was obtained after ensemble averaging of the ICG signal, 

with respect to the ECG R-peaks, as described by Kubicek et al. (1966). The R-peak detection 

was carried using the algorithm by Hamilton and Tompkins (1986). With the average R-R 

interval given as TR-R, the ensemble averaging of the dz/dt signal was carried out over 0.75 

TR-R segment of the waveform starting from 0.25 TR-R prior to the R-peak in each heart beat, 

as this segment contains all the characteristic points. The means of beat-to-beat values as well 

as the values estimated from the ensemble averaged waveform are given in Table 6.5.  
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Fig. 6.9 Scatter plot and linear regression for SV (in mL) estimated for subject ‘DM’ in resting 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 
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Fig. 6.10 Bland-Altman plot for SV (in mL) estimated for subject ‘DM’ in resting condition: (a) UP, 

(b) AFSR, (c) AFER, and (d) WBD. 
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Fig. 6.11 Scatter plot and linear regression for SV (in mL) estimated for subject ‘DM’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 
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Fig. 6.12 Bland-Altman plot for SV (in mL) estimated for subject ‘DM’ in post-exercise condition: (a) 

UP, (b) AFSR, (c) AFER, and (d) WBD. 
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 Table 6.1 Correlation coefficients, for the subjects with normal health, for Tlvet (ms)  

 and SV (mL). 

 

 

Sub- 

ject 

(age) 

Condi-

tion 

 Corr. coeff. 

Tlvet  SV 

UP AFSR AFER WBD 

 

  UP AFSR AFER WBD 

          
DM Pre-ex. 0.55 0.95

†
 0.97

†
 0.99

†
 0.61 0.85

†
 0.91

†
 0.92

†
 

(33) Post-ex. 0.37 0.97
†
 0.97

†
 1.00

†
 0.80

†
 0.97

†
 0.97

†
 0.97

†
 

          
ML Pre-ex. 0.36 0.95

†
 0.96

†
 1.00

†
 0.18

*
 0.85

†
 0.91

†
 0.92

†
 

(22) Post-ex. 0.31 0.97
†
 0.98

†
 1.00

†
 0.75

†
 0.97

†
 0.97

†
 0.98

†
 

          
MR Pre-ex. 0.46 0.98

†
 0.98

†
 1.00

†
 0.46 0.87

†
 0.89

†
 0.90

†
 

(41) Post-ex. 0.40 0.99
†
 0.99

†
 1.00

†
 0.53

*
 0.94

†
 0.94

†
 0.94

†
 

           
P0 Pre-ex. 0.90

†
 0.99

†
 1.00

†
 1.00

†
 0.34 0.81

†
 0.84

†
 0.89

†
 

(56) Post-ex. 0.80
†
 0.99

†
 0.99

†
 0.99

†
 0.69

†
 0.96 0.97

†
 0.98

†
 

          
P1 Pre-ex. 0.67

†
 0.98

†
 0.98

†
 0.99

†
 0.53

*
 0.72

†
 0.78

†
 0.76

†
 

(48) Post-ex. 0.19 0.99
†
 0.99

†
 1.00

†
 0.35 0.89

†
 0.91

†
 0.92

†
 

          
PK Pre-ex.  0.37 0.92

†
 0.99

†
 0.99

†
  0.15 0.76

*
 0.83

*
 0.77

*
 

(51) Post-ex. 0.72
†
 0.98

†
 0.99

†
 1.00

†
 0.56

*
 0.92

†
 0.94

†
 0.95

†
 

          
RK Pre-ex.  0.30 0.92

†
 0.92

†
 0.93

†
  0.66

†
 0.91

†
 0.95

†
 0.95

†
 

 (24) Post-ex. 0.46
*
 0.89

†
 0.90

†
 0.90

†
 0.65

†
 0.87

†
 0.90

†
 0.90

†
 

          
UT Pre-ex. 0.48 0.87

†
 0.89

†
 0.93

†
 0.58

*
 0.93

†
 0.93

†
 0.94

†
 

(29) Post-ex. 0.38
*
 0.94

†
 0.95

†
 0.97

†
 0.49

*
 0.80

†
 0.84

†
 0.94

†
 

          
VM Pre-ex.  0.45

*
 0.99

†
 0.99

†
 1.00

†
  0.67

†
 0.87

†
 0.87

†
 0.89

†
 

(26) Post-ex. 0.46
*
 0.99

†
 0.99

†
 1.00

†
 0.52

*
 0.88

†
 0.86

†
 0.87

†
 

            
            
Min. Pre-ex.  0.30 0.87 0.89 0.93  0.15 0.72 0.78 0.76 

 Post-ex.  0.19 0.89 0.90 0.90  0.35 0.80 0.84 0.87 

            
Max. Pre-ex.  0.90 0.99 1.00 1.00  0.67 0.93 0.95 0.95 

 Post-ex.  0.80 0.99 0.99 1.00  0.80 0.97 0.97 0.98 

            
Mean Pre-ex.  0.50 0.95 0.96 0.98  0.46 0.84 0.88 0.88 

 Post-ex.  0.45 0.97 0.97 0.98  0.59 0.91 0.92 0.94 

            
s.d. Pre-ex.  0.19 0.04 0.04 0.03  0.20 0.07 0.05 0.07 

 Post-ex.  0.19 0.03 0.03 0.03  0.14 0.06 0.05 0.04 

        
∗ p  <  0.01, 

†
 p  <  0.0001 
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Table 6.2 Linear regression for SV (in mL) estimation, for the subjects with normal health: c = 

intercepts, m = slope, ε = root mean square (rms) error for linear regression.     

 

 

Sub- 

    ject 

Condi- 

  tion 

 
Linear regression 

  (age)   UP  AFSR  AFER  WBD 

  c m ε      c  m  ε        c      m       ε  c    m     ε 

               
DM Pre-ex.  -25.8 1.7   50.9  22.3 0.7 10.3 12.7 0.8 8.5 12.2 0.8 8.2

(33) Post-ex.  -31.1 1.6 133.9  -16.8 1.1 44.0 -16.1 1.0 42.8 -7.5 1.0 40.8

            
ML Pre-ex.  40.1 0.5 32.1  8.9 0.9 6.0 -8.5 1.1 5.8 -5.9 1.1 5.1
(22) Post-ex.  0.2 1.3 84.5  -1.6 1.0 17.4 -2.4 1.0 16.4 -4.2 1.0 14.5

       
MR Pre-ex.  26.6 1.2 80.0  -0.4 1.2 22.3 3.0 1.1 18.3 5.1 1.0 16.1

(41) Post-ex.  39.0 1.3 171.2  6.2 1.1 34.2 4.8 1.1 33.6 4.5 1.1 31.7
       
P0 Pre-ex.  28.0 0.8 42.4  -0.4 1.1 15.3 -1.6 1.1 13.5 1.2 1.0 10.0
(56) Post-ex.  16.3 1.0 53.5  6.6 1.0 17.7 7.0 1.0 16.4 4.1 1.0 12.1
       
P1 Pre-ex.  -27.0 1.9 47.9  3.1 1.1 16.7 9.9 0.9 14.0 12.0 0.9 14.5
(48) Post-ex.  32.9 1.0 88.4  2.6 1.1 18.5 1.2 1.1 16.1 1.7 1.1 14.9

       
PK Pre-ex.  35.5 0.7 35.3     -13.8 1.4     10.2 0.3 1.1 5.8 14.4 0.8 5.1

(51) Post-ex.  -8.0 1.6 79.4        2.6 1.1     14.9 3.8 1.0 11.6 6.9 0.9 8.2
          
RK Pre-ex.  -7.5 1.4 43.6       -1.8 1.1     13.4 0.8 1.0 9.4 0.4 1.0 9.3
(24) Post-ex.  -6.9 1.5 53.2     12.3 0.8     14.5 6.9 0.9 13.9 6.8 0.9 13.4
       
UT Pre-ex.  18.4 0.9 29.0  3.2 1.1 9.6 6.1 1.0 8.8 3.6 1.0 8.0

(29) Post-ex.  18.1 1.0 36.7  14.3 0.8 13.6 8.7 0.9 12.9 -1.9 1.1 7.9

       
VM Pre-ex.  -10.5 1.6 43.5  -0.3 1.1 15.9 -0.7 1.1 14.0 -0.2 1.1 13.5

(26) Post-ex.  20.8 1.1 64.6  2.5 1.1 22.1 4.0 1.1 22.7 2.6 1.1 21.7
      
    
Min. Pre-ex.  -27.0   0.5 29.0 -13.8 0.7 6.0  -8.5 0.8 5.8  -5.9 0.8 5.1

 Post-ex.  -31.1 1.0 36.7 -16.8 0.8 13.6  -16.1 0.9 11.6  -4.2 0.9 7.9
       
Max. Pre-ex.  40.1 1.9 80.0 22.3 1.4 22.3  12.7 1.1 18.3  14.4 1.1 16.1
 Post-ex.  39.0 1.6 171.2 14.3 1.1 44.0  8.7 1.1 42.8  6.9 1.1 40.8
       
Mean Pre-ex.  8.6 1.2 45.0 2.3 1.1 13.3  2.4 1.0 10.9  4.3 1.0 10.0
 Post-ex.  9.0 1.3 85.0 3.2 1.0 21.9  2.0 1.0 20.7  2.0 1.0 18.4

       
s.d. Pre-ex.  26.4 0.5 15.0 9.6 0.2 4.9  6.4 0.1 4.3  7.0 0.1 4.0

 Post-ex.  21.2 0.5 48.5 8.6 0.3 12.0  7.2 0.3 12.0  3.6 0.3 12.0
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 Table 6.3 Results for Bland-Altman test, for the subjects with normal health, for Tlvet (ms). 

 

 

Sub- 

ject 

(age) 

Condi-tion  
Tlvet(echo)  Mean bias  s.d. of difference 

Mean s.d. UP AFSR AFER WBD UP AFSR AFER WBD

             
DM Pre-ex. 266.5 10.3 48.4 8.6 6.8 1.8 24.6 3.3 2.8 1.4

(33) Post-ex. 216.2 11.6 86.8 9.5 7.2 2.1 47.4 3.0 3.2 1.2

             
ML Pre-ex. 278.7 10.0 36.5 8.5 6.6 2.0 24.4 3.1 2.9 0.9

(22) Post-ex. 239.8 13.7 74.1 9.5 7.4 2.2 43.0 3.3 2.9 1.2

    
MR Pre-ex. 312.1 19.2 74.3 8.7 6.9 2.6 10.4 1.1 1.1 0.6

(41) Post-ex. 285.4 24.3 101.0 9.7 7.7 3.0 16.0 1.2 1.0 0.6

     
P0 Pre-ex. 326.5 21.2 19.4 6.6 5.2 3.6 3.0 0.8 0.7 0.6

(56) Post-ex. 209.2 15.1 20.7 6.2 4.6 3.1 4.8 1.2 1.2 0.9

    
P1 Pre-ex. 297.6 14.1 51.5 9.9 7.9 2.8 8.4 1.1 1.0 0.5

(48) Post-ex. 277.1 15.6 63.6 9.6 8.0 2.7 12.9 1.0 0.9 0.5

    
PK Pre-ex.  380.9 21.8 54.6 16.5 9.9 6.0  7.1 2.2 0.9 0.8

(51) Post-ex. 335.0 32.2 53.2 14.4 9.0 4.9 7.7 2.1 1.2 0.8

    
RK Pre-ex.  344.7 15.4 45.1 16.9 15.1 10.0  6.9 1.8 1.8 1.7

 (24) Post-ex. 313.7 13.2 52.7 16.1 14.1 10.1 8.2 2.0 1.9 1.9

    
UT Pre-ex. 307.1 12.1 49.8 16.0 13.1 7.4 6.9 2.2 2.2 1.6

(29) Post-ex. 291.2 12.8 55.2 14.6 11.6 4.9 7.6 1.5 1.5 1.0

    
VM Pre-ex.  270.8 18.0 48.2 9.2 7.3 2.5  31.8 3.3 3.2 1.6

(26) Post-ex. 324.8 27.1 64.7 9.4 7.4 2.2 39.5 3.0 1.0 0.5

      
      
Min. Pre-ex.  266.5 10.0 19.4 6.6 5.2 1.8  3.0 0.8 0.7 0.5

 Post-ex.  209.2 11.6 20.7 6.2 4.6 2.1  4.8 1.0 0.9 0.5

      
Max. Pre-ex.  380.9 21.8 74.3 16.9 15.1 10.0  31.8 3.3 3.2 1.7

 Post-ex.  335.0 32.2 101.0 16.1 14.1 10.1  47.4 3.3 3.2 1.9

      
Mean Pre-ex.  309.4 15.8 47.5 11.2 8.8 4.3  13.7 2.1 1.8 1.1

 Post-ex.  276.9 18.4 63.6 11.0 8.6 3.9  20.8 2.0 1.6 1.0

      
s.d. Pre-ex.  37.2 4.5 14.6 4.0 3.3 2.9  10.3 1.0 1.0 0.5

 Post-ex.  97.7 9.1 29.5 4.6 3.8 2.7  17.6 1.1 1.0 0.5
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 Table 6.4 Results for Bland-Altman test, for the subjects with normal health, for SV (in mL). 

 

 

Sub- 

ject 

(age) 

Condi-

tion 

 
SV(echo)  Mean bias  s.d. of difference 

Mean s.d. UP AFSR AFER WBD 

 

UP AFSR AFER WBD

             
DM Pre-ex. 70.3 5.6 21.1 2.1 -1.2 -3.0 12.9 3.0 2.4 2.3

(33) Post-ex. 133.7 32.8 46.5 -7.7 -11.1 -14.3 32.0 8.8 8.3 7.8

             
ML Pre-ex. 49.4 3.0 14.8 2.3 1.4 2.8 8.7 1.7 1.6 1.4

(22) Post-ex. 96.9 15.3 31.8 2.5 5.5 7.9 18.3 3.6 3.4 3.1

   
MR Pre-ex. 70.6 6.7 41.8 10.1 6.6 4.8 15.8 4.5 3.6 3.2

(41) Post-ex. 84.1 13.9 59.8 14.7 11.2 9.1 28.0 5.7 5.5 5.2

     
P0 Pre-ex. 74.5 3.1 13.1 6.4 4.9 2.3 6.9 2.5 2.2 1.6

(56) Post-ex. 60.6 8.4 13.9 6.3 4.7 2.2 7.0 2.7 2.1 1.6

    
P1 Pre-ex. 52.1 2.8 21.9 8.4 5.9 4.5 8.9 3.0 2.5 2.6

(48) Post-ex. 70.9 5.5 33.4 10.2 7.7 5.8 15.2 3.2 2.8 2.6

    
PK Pre-ex.  47.4 2.4 19.1 7.1 3.3 2.5 10.2 3.1 1.7 1.6

(51) Post-ex. 66.0 5.7 28.2 6.5 3.5 2.4 13.5 2.5 1.9 1.4

    
RK Pre-ex.  56.9 4.7 14.8 2.2 0.5 0.1 7.6 2.3 1.6 1.6

 (24) Post-ex. 48.0 4.9 15.6 4.8 3.0 2.1 8.7 2.4 2.2 2.2

    
UT Pre-ex. 52.4 3.9 13.8 6.5 4.5 3.2 5.1 1.7 1.5 1.4

(29) Post-ex. 52.8 3.6 15.8 5.8 4.8 2.8 6.0 2.3 2.1 1.3

    
VM Pre-ex.  42.7 4.0 15.9 4.1 2.7 1.7 7.5 2.6 2.3 2.2

(26) Post-ex. 49.8 6.0 24.9 8.6 6.8 5.6 10.8 3.8 3.8 3.6

      
      
Min. Pre-ex.  42.7 2.4 13.1 2.1 -1.2 -3.0 5.1 1.7 1.5 1.4

 Post-ex.  48.0 3.6 13.9 -7.7 -11.1 -14.3 6.0 2.3 1.9 1.3

      
Max. Pre-ex.  74.5 6.7 41.8 10.1 6.6 4.8 15.8 4.5 3.6 3.2

 Post-ex.  133.7 32.8 59.8 14.7 11.2 9.1 32.0 8.8 8.3 7.8

      
Mean Pre-ex.  57.4 4.0 19.6 5.5 3.2 2.1 9.3 2.7 2.2 2.0

 Post-ex.  73.6 10.7 30.0 5.7 4.0 2.6 15.5 3.9 3.6 3.2

      
s.d. Pre-ex.  11.5 1.4 8.9 2.9 2.6 2.4 3.3 0.9 0.7 0.6

 Post-ex.  35.0 9.3 17.3 6.1 6.0 6.5 9.9 2.3 2.3 2.2
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Table 6.5 SV (in mL) estimated from echocardiography and ICG, with and without ensemble 

averaging, for subjects with normal health (m.b.: mean bias, s.d.d.: standard deviation of the 

differences, across the subjects). 

 

 

Sub-

ject 

(age) 

Condi-

tion 

 
SV(echo)  SV(ICG–mean)  SV(ICG–ensemble avg.) 

Mean  UP AFSR  AFER   WBD      UP AFSR AFER WBD

             
DM Pre-ex. 70.3  91.4 72.4 69.1 67.3 67.4 67.2 67.1 67.3

(33) Post-ex. 133.7  180.2 126.0 122.7 119.4 111.0 115.9 119.7 121.8

    
ML Pre-ex. 49.4  64.2 51.7 48.0 46.6 48.0 48.3 47.8 47.6

(22) Post-ex. 96.9  128.7 94.4 91.4 89.0 87.5 86.7 87.4 88.0

    
MR Pre-ex. 70.6  112.4 80.7 77.2 75.5 78.3 77.9 77.2 78.5

(41) Post-ex. 84.1  143.9 98.8 95.3 93.1 90.2 91.0 91.0 90.7

    
P0 Pre-ex. 74.5  87.6 80.8 79.4 76.8 73.2 73.5 72.9 73.8

(56) Post-ex. 60.6  74.4 66.9 65.3 62.8 61.7 62.0 61.0 61.4

    
P1 Pre-ex. 52.1  74.0 60.4 58.0 56.6 44.3 44.6 44.5 45.0

(48) Post-ex. 70.9  104.3 81.0 78.5 76.7 60.9 61.2 61.1 61.8

    
PK Pre-ex.  47.4  66.5 54.5 50.7 49.8 50.1 50.7 50.0 50.7

(51) Post-ex. 66.0  94.2 72.5 69.5 68.4 62.2 62.5 62.0 62.5

    
RK Pre-ex.  56.9  71.8 59.1 57.5 57.0 59.3 59.4 58.7 59.7

 (24) Post-ex. 48.0  63.6 52.9 51.0 50.1 45.4 45.7 45.0 46.0

    
UT Pre-ex. 52.4  66.2 58.9 56.9 55.6 48.1 48.3 47.4 48.1

(29) Post-ex. 52.8  68.6 58.5 57.5 55.6 57.2 57.4 56.7 57.4

    
VM Pre-ex.  42.7  58.6 46.8 45.5 44.4 44.1 44.4 44.0 44.1

(26) Post-ex. 49.8  74.7 58.3 56.5 55.4 55.1 54.9 55.4 55.4

    
    
c Pre-ex.   2.5 3.2 0.8 1.5 -4.0 -2.9 -3.5  -4.1

 Post-ex.   1.9 16.8 16.1 15.9 16.0 13.4 10.3 9.9

 Pooled   -1.9 12.7 11.3 11.3 11.9 10.1 7.4 7.1

    
m Pre-ex.   1.3 1.0 1.0 1.0 1.1 1.1 1.1 1.1

 Post-ex.   1.4 0.8 0.8 0.8 0.7 0.8 0.8 0.8

 Pooled   1.4 0.9 0.9 0.9 0.8 0.8 0.9 0.9

    
ε Pre-ex.   23.2 8.1 8.3 8.1 12.7 12.5 12.1 12.6

 Post-ex.   31.3 14.1 13.2 13.1 16.4 16.0 15.9 14.9

 Pooled   40.0 17.7 17.5 11.3 22.9 21.9 21.1 20.7

    
m.b. Pre-ex.   19.2 -0.2 2.9 1.5 -0.4 2.9 -0.7 -0.2

 Post-ex.   30.0 5.2 2.8 0.9 -3.5 -2.8 -2.6 -2.0

 Pooled   24.8 5.3 2.8 1.2 -1.9 -1.5 -1.7 -1.1

    
s.d.d. Pre-ex.   8.9 4.4 3.0 2.9 4.5 3.0 4.3 4.5

 Post-ex.   15.3 6.7 6.9 7.3 9.4 8.3 7.4 6.9

 Pooled   13.3 5.0 5.1 5.1 7.3 6.6 6.0 5.7
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Fig. 6.13 Scatter plot and linear regression for mean of beat-to-beat SV (in mL) across subjects with 

normal health: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 
  

Fig. 6.14 Scatter plot and linear regression for SV (in mL) from ensemble averaged ICG across 

subjects with normal health: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 
The mean bias and standard deviation for the differences are given for the pre-exercise and 

post-exercise condition as well as the estimates from the two pooled together. The standard 

deviation of differences for mean values of SV(UP) are 8.9, 15.3, 13.3 mL for pre-exercise, 

post-exercise condition, and  pooled values, respectively. We see that these values for 

SV(WBD) have been reduced to 2.9, 7.3, 5.1 mL, respectively. The corresponding values for 

the other two processing techniques are almost similar. Figure 6.13 and Fig. 6.14 show scatter 

plots across subjects for mean of the beat-to-beat SV values from ICG and SV values from 

ensemble averaged ICG, for both the pre-exercise and post-exercise conditions, respectively, 

with the echocardiography as the reference. A quantitative examination of these plots, as well 

as the values of the slope and error for linear regression in Table 6.5, shows a high agreement 

between the mean of the beat-to-beat values and echocardiography, and results are somewhat 

better than that for ensemble averaging.  

 We see that ensemble averaging applied on the unprocessed waveform has resulted in 

standard deviation of differences as 4.5, 9.4, 7.3 mL, for the pre-exercise, post-exercise, and 

the two pooled together, respectively. Thus we see that ensemble averaging has reduced the 

standard deviation of the differences. However, the mean of the beat-to-beat values estimated 

after artifact suppression results in even smaller standard deviations. It is also seen that 

ensemble averaging after artifact suppression does not result in any further improvement in 

the estimates.      
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6.6  Results from subjects with cardiovascular disorders 

We will first examine the results for the five individual subjects with cardiovascular 

disorders, and then the statistical analyses.  

 

6.6.1  Results for individual subjects 

Figure 6.15 shows a segment of the simultaneously recorded ECG, Zo, z(t), ICG, respiration, 

and synchronization pulse waveform recorded from subject ‘AB’ (age: 49 years, weight: 73 

kg, hypertension and sever chest pain) in the pre-exercise resting condition. The impedance 

waveform is contaminated by the artifact, making it difficult to detect the B and X points. 

There is a very large apparent beat-to-beat variation in ICG peaks. Simultaneously acquired 

Doppler echocardiogram is shown in Fig. 6.16. Figure 6.17 shows a segment of the ICG 

signal processed by the three artifact suppression techniques. The ICG obtained after applying 

the artifact suppression techniques shows almost no effect of respiration, making it easy to 

detect the characteristic points from the waveform. 

 Figures 6.18 and 6.19 show the recorded ECG, Zo, z(t), ICG, respiration, and 

synchronizing signal and simultaneously acquired Doppler echocardiogram, respectively, 

from the same subject in post-exercise condition. Figure 6.20 shows processed output for the 

signal recording of Fig. 6.18. The ICG outputs, processed by all the three techniques, show 

almost no effect of the artifact, improving the detection of the B and X points. Values of ICG 

peaks are found to be stable. 

For this subject in resting condition, correlation coefficients between the SV values 

were 0.34, 0.69, 0.89, 0.92 for UP, AFSR, AFER, WBD, respectively. Figure 6.21 gives a 

scatter plot between SV values from the ICG and the echocardiogram. Processing resulted in 

a reduction in the scatter and a decrease in the slope error in linear regression. Plots of 

observed difference versus the mean of the values are given in Fig. 6.22. The standard 

deviations of the differences were 9.1, 1.6, 1.0, 0.8 mL for UP, AFSR, AFER, WBD, 

respectively. For the post-exercise recordings for the same subject, the correlation coefficients 

for the values of SV were 0.64, 0.88, 0.88, 0.87 for UP, AFSR, AFER, WBD, respectively. It 

can be observed that the correlation increased after processing the ICG waveform. Figure 6.23 

gives a scatter plot between SV values from ICG and the echocardiogram. We see that all the 

three artifact suppression techniques have resulted in a reduction in the scatter and a decrease 

in the slope error in linear regression. Figure 6.24 gives the Bland-Altman plot of the 

difference versus the mean values. It is seen that the mean bias was 29.0 mL for unprocessed 

ICG. After processing by the techniques AFSR, AFER, and WBD, it decreases to 8.5, 6.6, 

and 5.6 mL, respectively. The standard deviations of the differences were 11.6, 3.7, 3.6, 3.6  
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Fig. 6.15 Segment of waveforms for the subject ‘AB’ in post-exercise relaxation: (a) ECG (in 

arbitrary units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG (in Ω/s), (e) sensed airflow (in arbitrary 

units), and (f) synchronization pulse from Doppler echocardiograph (in V). 

 

Fig. 6.16 Continuous wave Doppler echocardiogram for the subject “AB’ in resting condition. 

X-axis- time (s). The lower trace: ECG using the same machine. 
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Fig. 6.17 Processing segment of output for the ICG (in Ω/s) in Fig 6.15: (a) Recorded ICG (in 

Ω/s), (b) ICG (in Ω/s) processed by the technique AFSR, (c) ICG (in Ω/s) processed by the 

technique AFER, and (d)  ICG (in Ω/s) processed by the technique WBD. 

 

Fig. 6.18 Segment of waveforms for the subject ‘AB’ in post-exercise relaxation: (a) ECG (in 

arbitrary units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG (in Ω/s), (e) sensed airflow (in arbitrary 

units), and (f) synchronization pulse from Doppler echocardiograph (in V). 
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Fig. 6.19 Continuous wave Doppler echocardiogram for the subject “AB’ in post-exercise 

relaxation. The lower trace: ECG using the same machine. 

 

Fig. 6.20 Processing segment of output for the ICG (in Ω/s) in Fig 6.16: (a) Recorded ICG (in 

Ω/s), (b) ICG (in Ω/s) processed by the technique AFSR, (c) ICG (in Ω/s) processed by the 

technique AFER, and (d)  ICG (in Ω/s) processed by the technique WBD. 
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Fig. 6.21 Scatter plot and linear regression SV (in mL) estimated for subject ‘AB’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 

 

 
Fig. 6.22 Bland-Altman plot for SV (in mL) estimated for subject ‘AB’ in resting condition: (a) UP, 

(b) AFSR, (c) AFER, and (d) WBD. 
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Fig. 6.23 Scatter plot and linear regression for SV (in mL) estimated for subject ‘AB’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 

 

 

   
Fig. 6.24 Bland-Altman plot for SV (in mL) estimated for subject ‘AB’ in post-exercise condition: (a) 

UP, (b) AFSR, (c) AFER, and (d) WBD. 
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 Table 6.6 Correlation coefficients, for the subjects with cardiovascular disorders,  

 for Tlvet (ms) and SV values. 

 

 

Sub- 

ject 

(age) 

Condi-

tion 

 Corr. coeff. 

Tlvet  SV 

UP AFSR AFER WBD 

 

UP AFSR AFER WBD 

          
AB Pre-ex. 0.49 0.91

†
 0.94

†
 0.99

†
 0.34 0.69

*
 0.89

†
 0.92

†
 

(49) Post-ex. 0.51 0.98
†
 0.97

†
 1.00

†
 0.64 0.88

†
 0.88

†
 0.87

†
 

          
DD Pre-ex. 0.46 0.99

†
 0.99

†
 1.00

†
 0.22 0.72

*
 0.88

†
 0.88

†
 

(36) Post-ex. 0.57 0.98
†
 0.98

†
 1.00

†
 0.35 0.78

†
 0.87

†
 0.89

†
 

          
IK Pre-ex. 0.48 0.97

†
 0.97

†
 0.99

†
 0.38 0.70

†
 0.71

†
 0.71

†
 

(41) Post-ex. - - - - - - - - 

           
LR Pre-ex. 0.44 0.97

†
 0.98

†
 0.99

†
 0.57 0.80

†
 0.82

†
 0.84

†
 

(43) Post-ex. - - - - - - - - 

          
ML Pre-ex. 0.39 0.99

†
 0.99

†
 1.00

†
 0.20 0.76

†
 0.84

†
 0.85

†
 

(57) Post-ex. 0.54 0.98
†
 0.98

†
 1.00

†
 0.35 0.82

†
 0.86

†
 0.84

†
 

          
            
Min. Pre-ex.  0.39 0.91 0.94 0.99  0.20 0.69 0.71 0.71 

 Post-ex.  0.51 0.98 0.97 1.00  0.35 0.78 0.86 0.84 

            
Max. Pre-ex.  0.49 0.99 0.99 1.00  0.57 0.80 0.89 0.92 

 Post-ex.  0.57 0.98 0.98 1.00  0.64 0.88 0.88 0.89 

            
Mean Pre-ex.  0.45 0.97 0.97 0.99  0.34 0.73 0.83 0.84 

 Post-ex.  0.54 0.98 0.98 1.00  0.45 0.83 0.87 0.87 

            
s.d. Pre-ex.  0.04 0.03 0.02 0.01  0.15 0.05 0.07 0.08 

 Post-ex.  0.03 0.00 0.01 0.00  0.17 0.05 0.01 0.03 

        
∗ p  <  0.01, 

†
 p  <  0.0001 

 

 

 

mL for UP, AFSR, AFER, WBD, respectively.  

Subject ‘IK’ had severe obesity and mild chest pain (ward referral, suspected for 

cardiac disease), and subjects ‘DD’, ‘LR’, and ‘ML’ were post operated cases of coronary 

heart disease. Subjects ‘IK’ and ‘LR’ had difficulty in performing exercise and hence they 

were excluded from the exercise protocol. For subject ‘IK’, the correlation coefficients for SV 

were relatively low (0.38, 0.70, 0.71, 0.71 for UP, AFSR, AFER, WBD, respectively) as 

compared with the values for other subjects. Basal impedance and change in the impedance of 

the subject ‘IK’ were 39.0 Ω and 0.8 Ω, respectively. High basal impedance may have 

masked the changes in the impedance. For other subjects, basal impedance and change in 

impedance varied over 17.0 – 28.5 Ω and 0.6 – 1.7 Ω, respectively. 
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Table 6.7 Linear regression for SV (in mL) estimation, for the subjects with cardiovascular 

disorders: c = intercepts, m = slope, ε = root mean square (rms) error for linear regression.     

 

 

Sub- 

ject 

(age) 

Condi- 

  tion 

 
Linear regression 

  UP  AFSR  AFER  WBD 

  c m ε      c  m  ε        c      m       ε  c    m      ε 

               
AB Pre-ex.  -6.5 1.5 38.3 20.3 0.6 5.8 11.5 0.8 3.5 6.6 0.8 3.2

(49) Post-ex.  1.7 1.6 66.8 3.1 1.1 21.8 3.1 1.1 21.8 2.6 1.1 21.7

               
DD Pre-ex.  -6.2 1.8 146.3  -4.7 1.2 21.4 0.0 1.0 14.2 -0.2 1.0 12.4

(36) Post-ex.  35.4 1.1 97.5  10.9 1.0 26.7 4.0 1.0 19.6 4.2 1.0 18.5

                       
IK Pre-ex.  15.6 1.4 76.4  6.3 1.1 23.0 6.8 1.0 23.0 5.1 1.0 22.4

(41) Post-ex.  - - - - - -  - - - - - -

                        
LR Pre-ex.  -13.5 1.9 39.9  2.4 1.3 14.5  -6.3 1.4 14.1 -4.9 1.3 13.5

(43) Post-ex.  - - - - - -  - - - - - -

                  
ML Pre-ex.  67.5 0.6 106.5  26.7 0.8 22.6  15.3 0.9 19.0 14.6 0.9 18.2

(57) Post-ex.  17.1 1.5 116.8  4.1 1.1 22.9  5.4 1.0 18.4 6.2 1.0 18.9
       
    
Min. Pre-ex.  -13.5 0.6 38.3 -4.7 0.6 5.8  -6.3 0.8 3.5 -4.9 0.8 3.2
 Post-ex.  1.7 1.1 66.8 3.1 1.0 21.8  3.1 1.0 18.4 2.6 1.0 18.5
     
Max. Pre-ex.  67.5 1.9 146.3 26.7 1.3 23.0  15.3 1.4 23.0 14.6 1.3 22.4
 Post-ex.  35.4 1.6 116.8 10.9 1.1 26.7  5.4 1.1 21.8 6.2 1.1 21.7

     
Mean Pre-ex.  11.4 1.4 81.5 10.2 1.0 17.5  5.5 1.0 14.8 4.2 1.0 13.9

 Post-ex.  13.6 1.1 70.3 4.5 0.8 17.9  3.1 0.8 15.0 3.3 0.8 14.8
     
s.d. Pre-ex.  33.2 0.5 46.0 13.0 0.3 7.4  8.7 0.2 7.3 7.4 0.2 7.2

 Post-ex.  16.5 0.7 51.2 4.6 0.5 12.1  2.3 0.5 10.1 2.6 0.5 10.0
     

 

 

 

 

 Scatter plots for all the subjects with cardiovascular disorders are given in 

Appendix E. It is observed that processing resulted in a considerable decrease in scatter from 

linear regression for all the subjects in both pre-exercise and post-exercise conditions. 

 

6.6.2  Correlation coefficients  

Correlation coefficients for Tlvet and SV for all the subjects with cardiovascular disorders are 

given in Table 6.6. After processing, the correlation coefficients for Tlvet are found to be very 

high in both pre-exercise and post-exercise conditions, indicating a good agreement between 

the values of Tlvet from the echocardiogram and processed ICG on beat-to-beat basis.  

Correlation coefficients for SV(UP) varied over 0.20 - 0.57 for pre-exercise and 0.35 

- 0.64 for post-exercise recordings. After processing, the correlation coefficients are found to 

vary over 0.69 - 0.80, 0.71 - 0.89, 0.71 - 0.92 for pre-exercise and 0.78 - 0.88, 0.86 - 0.88, 

0.84 - 0.89 for AFSR, AFER, WBD, respectively.  
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 Table 6.8 Results for Bland-Altman test, for the subjects with cardiovascular disorders,  

 for Tlvet (in ms) 

 

 

Sub- 

ject 

(age) 

Condi-

tion 

 
Tlvet(echo)  Mean bias  s.d. of difference 

Mean s.d. UP AFSR AFER WBD UP AFSR AFER WBD

             
AB Pre-ex. 284.7 8.5 15.7 8.2 6.5 1.9 28.5 3.8 3.1 1.3

(49) Post-ex. 266.6 18.5 81.9 9.1 7.2 1.8 41.6 3.4 3.1 1.3

      
DD Pre-ex. 301.9 23.4 67.2 8.7 6.7 2.6 47.6 3.4 3.2 1.6

(36) Post-ex. 313.6 17.2 -84.0 9.2 7.2 2.5 38.9 3.6 3.3 1.6

     
IK Pre-ex. 202.1 12.7 50.7 9.1 7.5 2.4 28.9 3.2 3.1 1.5

(41) Post-ex. - -  - - - -  -  -  -  -

       
LR Pre-ex. 239.1 12.3 47.4 8.9 7.0 2.6 24.3 3.0 2.5 1.6

(43) Post-ex. - -  - - - -  -  -  -  -

     
ML Pre-ex. 302.1 22.8 71.0 10.2 8.2 2.8 40.9 3.6 3.6 1.5

(57) Post-ex. 281.7 17.8 79.2 9.3 7.3 2.4 38.4 3.3 3.5 1.5

      
      
Min. Pre-ex.  202.1 8.5 15.7 8.2 6.5 1.9 24.3 3.0 2.5 1.3

 Post-ex.  266.6 17.2 -84.0 9.1 7.2 1.8 38.4 3.3 3.1 1.3

       
Max. Pre-ex.  302.1 23.4 71.0 10.2 8.2 2.8 47.6 3.8 3.6 1.6

 Post-ex.  313.6 18.5 81.9 9.3 7.3 2.5 41.6 3.6 3.5 1.6

       
Mean Pre-ex.  221.7 13.3 42.0 7.5 6.0 2.1 34.0 3.4 3.1 1.5

 Post-ex.  287.3 17.8 25.7 9.2 7.2 2.2 29.7 2.6 2.5 1.1

       
s.d. Pre-ex.  115.5 8.9 28.4 3.7 3.0 1.1 9.8 0.3 0.4 0.1

 Post-ex.  24.0 0.6 95.0 0.1 0.1 0.4 19.9 1.7 1.7 0.7

           
 

 

 

 

6.6.3  Linear regression 

Results from the linear regression analysis are given in Table 6.7. We see that for SV(UP), the 

slope varies from 0.6 to 1.9 and the rms error about the regression line being from 38.3 to 

146.3 mL. After processing, the slope varies in a small range about 1. The rms errors have 

also considerably reduced to 5.8 – 23.0, 3.5 – 23.0, 3.2 – 22.4 mL for pre-exercise conditions 

for AFSR, AFER, WBD, respectively. The corresponding values for post-exercise condition 

are 21.8 – 26.7, 18.4 – 21.8, 18.5 – 21.7 mL.  
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 Table 6.9 Results for Bland-Altman test, for the subjects with cardiovascular disorders, for SV (in  

 mL). 

 

 

Sub- 

Ject 

(age) 

Condi-

tion 

 SV(echo)  Mean bias  s.d. of difference 

Mean s.d. UP AFSR AFER WBD UP AFSR AFER WBD

             
AB Pre-ex. 46.6 2.1 16.6 1.8 0.3 -1.3 9.1 1.6 1.0 0.8

(49) Post-ex. 49.8 6.0 29.0 8.5 6.6 5.6 11.6 3.7 3.6 3.6

  
DD Pre-ex. 63.0 3.1 42.2 6.4 2.0 -0.4 23.9 3.5 2.3 2.0

(36) Post-ex. 69.6 5.4 41.3 8.8 4.6 2.8 15.4 4.3 3.1 2.9

  
IK Pre-ex. 37.5 3.6 31.3 10.5 7.8 6.2 12.2 3.7 3.6 3.5

(41) Post-ex. - - - - - - - - - -

   
LR Pre-ex. 46.7 2.7 27.1 12.5 10.9 9.7 7.5 2.8 2.7 2.6

(43) Post-ex. - - - - - - - - - -

  
ML Pre-ex. 63.5 5.8 44.6 11.6 7.2 5.3 18.1 4.1 3.3 3.2

(57) Post-ex. 59.6 4.6 44.3 9.5 5.8 4.0 19.9 3.5 2.8 2.9

    
    
Min. Pre-ex.  37.5 2.1 16.6 1.8 0.3 -1.3 7.5 1.6 1.0 0.8

 Post-ex.  49.8 4.6 29.0 8.5 4.6 2.8 11.6 3.5 2.8 2.9

    
Max. Pre-ex.  63.5 5.8 44.6 12.5 10.9 9.7 23.9 4.1 3.6 3.5

 Post-ex.  69.6 6.0 44.3 9.5 6.6 5.6 19.9 4.3 3.6 3.6

    
Mean Pre-ex.  51.5 3.5 32.4 8.6 5.6 3.9 14.2 3.1 2.6 2.4

 Post-ex.  44.8 4.0 28.7 6.7 4.3 3.1 11.7 2.9 2.4 2.4

    
s.d. Pre-ex.  11.4 1.4 11.4 4.4 4.4 4.6 6.8 1.0 1.0 1.1

 Post-ex.  30.9 2.7 20.2 4.5 3.0 2.4 8.5 1.9 1.6 1.6

      
 

 

 

 

6.6.4  Bland-Altman test 

Table 6.8 gives results for Bland-Altman test for Tlvet. As seen in the table, all the artifact 

suppression techniques resulted in a large reduction in mean bias and standard deviations of 

the differences, for both the pre-exercise and post-exercise recordings. Table 6.9 gives results 

for Bland-Altman test for SV values. The values of SV(echo) for the five subjects with 

cardiovascular disorders ranged from 37.5 to 63.5 mL for pre-exercise condition and 

increased to 49.8 to 69.6 mL for post-exercise condition. Taking echocardiography estimates 

as the reference, the range for standard deviation of the differences across the subjects are 7.5 

– 23.9, 1.6 – 4.1, 1.0 – 3.6, 0.8 – 3.5 mL for the pre-exercise condition and 11.6 – 19.9, 3.5 – 

4.3, 2.8 – 3.6, 2.9 – 3.6 mL for post-exercise condition for UP, AFSR, AFER, WBD, 

respectively. We see a good agreement between the values obtained from the reference 

technique and processed ICG in the pre-exercise condition as well as in the post-exercise 

condition.  
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Table 6.10 SV (in mL) estimated from echocardiography and ICG, with and without 

ensemble averaging, for the subjects with cardiovascular disorders (m.b.: mean bias, 

s.d.d.: standard deviation of the differences, across the subjects). 

 

 

Sub- 

ject 

(age) 

Condi-

tion 

 
SV(echo)  SV(ICG–mean)  SV(ICG–ensemble avg.) 

Mean UP AFSR  AFER   WBD      UP AFSR AFER WBD

             
AB Pre-ex. 46.6  63.2 48.4 46.2 45.3 41.2 41.1 40.3 40.3

(49) Post-ex. 49.8  78.8 58.3 56.4 55.4 67.3 64.9 67 67.3

    
DD Pre-ex. 63.0  105.2 69.4 65.0 63.4 53.4 58.3 56.6 57.6

(36) Post-ex. 69.6  110.8 78.3 74.1 72.4 75.3 74.9 74.7 74.9

    
IK Pre-ex. 37.5  78.8 28.0 25.3 23.7 35.7 30.9 30.6 30.6

(41) Post-ex. -  - - - - - - - -

    
LR Pre-ex. 46.7  73.9 59.2 57.6 56.4 49.9 53.8 52.1 53.6

(43) Post-ex. -  - - - - - - - -

    
ML Pre-ex. 63.5  108.1 75.1 70.7 68.8 69.3 66.6 68.6 60.6

(57) Post-ex. 59.6  103.9 69.1 65.4 63.6 69.2 66.7 68.8 69.6

    
    
c Pre-ex.  10.8 -23.1 -21.4 -15.6 -1.1 -8.1 -10.7 2.6

 Post-ex.  1.4 8.1 11.7 12.5 46.5 38.6 46.9 47.7

 Pooled  8.9 -16.3 -14.6 -15.0 -1.5 -6.0 -7.5 -3.5

       
m Pre-ex.  1.5 1.5 1.4 1.3 1.0 1.1 1.2 1.0

 Post-ex.  1.6 1.0 0.9 0.9 0.4 0.5 0.4 0.4

 Pooled  1.5 1.4 1.3 1.3 1.1 1.2 1.2 1.1

       
ε Pre-ex.  21.8 13.1 14.5 12.7 12.4 11.7 12.2 11.3

 Post-ex.  7.5 0.7 0.0 0.0 1.7 2.6 1.6 1.2

 Pooled  23.1 14.6 16.1 16.5 22.7 19.7 22.3 23.6

    
m.b. Pre-ex.  34.4 4.6 0.5 0.3 -1.6 -1.3 -1.8 -2.9

 Post-ex.  38.2 8.0 5.0 4.0 11.0 9.2 10.5 11.0

 Pooled  35.8 6.2 3.1 1.6 3.1 2.6 2.8 2.3

       
s.d.d. Pre-ex.  12.1 9.0 8.8 7.3 6.2 6.0 6.4 5.7

 Post-ex.  22.3 0.4 1.0 1.4 6.0 5.2 6.1 6.1

 Pooled  10.3 7.1 7.0 7.1 8.6 7.6 8.6 8.8

         
 

 

 

6.6.5  Estimation by ensemble averaging 

Table 6.10 gives SV estimated from echocardiography and ICG, with and without ensemble 

averaging. The mean bias and standard deviation for the differences are given for pre-exercise 

and post-exercise condition as well as the estimates from the two pooled together. The 

standard deviation of differences, across the subjects, for mean values of SV(UP) are 12.1, 

22.3, 10.3 mL for pre-exercise, post-exercise condition, and  pooled values. We see that these 

values for SV(AFSR) have been reduced to 9.0, 0.4, 7.1 mL, respectively. The corresponding 

values for the other two processing techniques are almost similar. Standard deviations of 

differences are higher in case of ensemble averaging. Figure 6.25 and Fig. 6.26 show scatter 
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Fig. 6.25 Scatter plot and linear regression for mean of beat-to-beat SV (in mL) across subjects with 

cardiovascular disease: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 

 
 
Fig. 6.26 Scatter plot and linear regression for SV (in mL) from ensemble averaged ICG across 

subjects with cardiovascular disease: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 

 

plots across subjects for mean of the beat-to-beat SV values from ICG and SV values from 

ensemble averaged ICG with the echocardiography as the reference. The values of the slope 

and error for linear regression show a high agreement between the mean of the beat-to-beat 

values and echocardiography, and better than that for ensemble averaging.   

 

6.7 Discussion 

The investigations were carried out for examining the effectiveness of the artifact suppression 

techniques in improving the agreement between the values obtained using impedance 

cardiography and Doppler echocardiography under a clinical setting, for subjects with normal 

health and subjects with cardiovascular disorders. A total of nine subjects with normal health 

and five subjects with cardiovascular disorders participated in this investigation. Doppler 

echocardiograms were recorded simultaneously with the impedance related waveforms in the 

pre-exercise and post-exercise conditions.  

The artifact suppression techniques AFSR, AFER, and WBD attenuated the artifacts 

and restored the baseline, facilitating a consistent detection of the characteristic points in the 

ICG waveform. The values of Tlvet, (-dz/dt)max, and SV were estimated from each cycle of 

ICG waveform. The parameter (-dz/dt)max, measured as the peak from the zero crossover 

point, was approximately 0.72 times peak-to-peak height of -dz/dt. The characteristic points in 

the unprocessed waveforms and those processed by AFSR had to be manually located, while 
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automated detection could be done in case of the waveforms processed by AFER and WBD. 

The values of (-dz/dt)max and Tlvet were used for calculation of SV. The values Tlvet and SV 

from Doppler echocardiogram were measured graphically by zooming each cycle and 

identifying the envelope of the blood flow waveform with the help of a track-ball. The 

agreement between the values from echocardiography and the values obtained from the ICG 

were examined by correlation, linear regression, and Bland-Altman test.  

It was observed that the beat-to-beat variations of the Tlvet and SV, from nine subjects 

with normal health and five subjects with cardiovascular disorders, estimated from the 

processed ICG are highly correlated with those estimated from Doppler echocardiography, for 

all the subjects, except for a subject with severe obesity and relatively higher basal 

impedance. Linear regression analyses showed that the artifact suppression techniques 

resulted in reduced rms errors from the best bit straight line and in smaller slope errors, for 

both pre-exercise and post-exercise recordings. All the artifact suppression techniques 

resulted in a large reduction in mean bias and standard deviations of the differences, 

indicating an increased agreement between the values estimated from the ICG and Doppler 

echocardiogram. It is also seen that the processing has reduced the standard deviations of 

differences to values generally comparable to the standard deviation of stroke volume 

estimated on beat-to-beat basis by echocardiography under pre-exercise condition and to 

generally much smaller values in the post-exercise condition, for both groups of subjects. 

 Apart from looking at agreement between the SV values estimated on beat-to-beat 

basis, the statistical analyses were carried out, across the subjects, on the means of beat-to-

beat values as well as the values estimated from the ensemble averaged waveform. Ensemble 

averaging reduced the standard deviation of the differences but the mean of the beat-to-beat 

values estimated after artifact suppression resulted in even smaller standard deviations. 

Ensemble averaging after artifact suppression did not result in any further significant 

reduction in the standard deviations. Hence we can say that the values estimated using 

impedance cardiography after artifact suppression have good agreement with those estimated 

from Doppler echocardiography, for mean values as well as for beat-to-beat variations. 

Among the three techniques, AFER and WBD are definitely superior to AFSR as they permit 

automated estimation of Tlvet and SV. The results obtained by AFER and WBD are almost 

similar, but WBD may be considered as the preferable technique because it does not require a 

reference signal.     

 By visual examination of the waveforms, as described in Section 5.4, it has been 

qualitatively verified that the technique WBD is effective in removing the respiratory as well 

as the motion artifacts. However, as our reference technique Doppler echocardiogram could 
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not be used with the subjects in motion, an evaluation of the WBD for suppression of the 

motion artifact in the clinical study could not be carried out.   



 



 

 

 

 

Chapter 7 

 

SUMMARY AND CONCLUSIONS 

 

 

7.1  Introduction 

Impedance cardiography is a noninvasive technique for monitoring stroke volume and other 

cardiac indices. This technique is based on sensing the changes in the electrical impedance of 

the thorax z(t), caused by variation in blood volume during the cardiac cycle. Negative of the 

time derivative of the thoracic impedance is known as the impedance cardiogram (ICG). The 

parameters required for estimating the stroke volume, using Kubicek, Bernstein, or Sramek 

formulas are left ventricular ejection time (Tlvet) and the ICG peak ((-dz/dt)max). Left 

ventricular ejection time (Tlvet) is defined as the time difference between point B (opening of 

the aortic valve) and point X (closure of the aortic valve) in ICG waveform. Sensing of the 

variation in thoracic impedance due to blood flow is influenced by respiratory and motion 

artifacts. Spectra of the respiratory and motion artifacts partly overlap with that of the ICG 

waveform. These artifacts have much larger amplitudes and cause a large drift in the baseline 

of the signal. Presence of these artifacts in the signal restricts proper use of the input dynamic 

range of analog-to-digital (A/D) converter and severely affects the estimation of the various 

cardiovascular indices, particularly during stress test.  

 Ensemble averaging is generally employed for suppressing the artifacts, but it also 

suppresses beat-to-beat variations and it tends to smear the peak in the ICG and blur or 

suppress the less distinctive characteristic points in the waveform and may result in error in 

their detection. Due to a partial overlap between the spectra of ICG and respiratory artifacts, 

non-adaptive digital filters are not effective in removing the artifacts. Adaptive filtering may 

be used for canceling the artifacts but sensing the reference signal, related to the artifacts, and 

combining them is a serious problem. 

The research objective was to investigate techniques for removal of the artifacts from 

ICG, for estimation of stroke volume and other cardiovascular indices on beat-to-beat basis. 

In order to make effective use of the input dynamic range of the signal acquisition setup, a 

baseline restoration circuit was implemented, as part of an impedance cardiography 
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instrument, to partly remove the drift before A/D conversion. Signal processing techniques, 

based on adaptive filtering and wavelet based denoising, were investigated for suppression of 

the artifacts in the acquired signals. The signal processing techniques were validated on the 

signals recorded from several subjects with normal health and subjects with cardiovascular 

disorders, under a clinical setting. Implementation details and analysis results related to these 

investigations have been presented in the previous chapters.  

 The summary of investigations, conclusion drawn on the basis of the results, and 

some suggestions for further studies are given in the following sections.  

 

7.2  Summary of the investigations 

Investigations carried out can be summarized as the following. 

1)  Baseline restoration circuit: A baseline restoration circuit was developed as part 

of an impedance cardiography instrument for effective use of the input dynamic range of the 

signal acquisition setup (as described in Chapter 3). It is based on the amplitude tracking 

technique for fast estimation and partial removal of the baseline drift. In this technique, 

tracking of the baseline is initiated by the output going out of the defined range. An estimate 

of the baseline drift is subtracted from the signal and the baseline is restored in one clock 

cycle.  

2)  Adaptive filtering for suppression of respiratory artifact: Two techniques were 

developed and investigated for removing the respiratory artifact from the sensed signal (as 

presented in Chapter 4). In the adaptive filtering with sensed respiration (AFSR) technique, 

the output from a thermistor based airflow sensor was taken as the reference input for 

respiration. The contaminated ICG was taken as the primary input and the difference between 

the primary input and filtered reference was taken as the processed output. The sensed 

reference signal had a delay with respect to the artifact and this was partly compensated by 

introducing a delay in the path of the primary signal. For quantifying the noise suppression, 

the technique was applied on the thoracic impedance signal with simulated respiratory artifact 

with different values of signal-to-artifact ratio (SAR), generated using recordings from 23 

volunteers with normal health. A detailed analysis showed that the effectiveness of the 

technique in suppressing the higher frequency components of the respiratory artifacts was 

limited because the sensed respiration waveform was deficient in higher frequency 

components. In the adaptive filtering based on estimated respiration (AFER), the respiratory 

reference estimated by cubic spline fitting on the ICG signal provided a better approximation 

of the artifact. This technique was very effective in suppressing higher frequency components 

of the respiratory artifact. Both the techniques were applied on several signal recordings, 

severely contaminated from respiratory artifacts with minimum motion artifacts, obtained 
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from 52 volunteers in the resting and post-exercise relaxation and the results were 

qualitatively examined.   

3)  Wavelet based denoising (WBD) technique for suppression of artifacts: In this 

technique (as described in Chapter 5), discrete wavelet transform (DWT) was applied on the 

signal for a number of scales of decomposition, and each scale was reconstructed to visualize 

the signal and the artifact component at each scale. From examination of decomposition with 

several wavelets, it was observed that a dyadic wavelet decomposition using an FIR based 

Meyer wavelet captured signal in first few scales and artifacts in next scales, permitting the 

use of scale-dependent thresholding for denoising. A limited number of scales were used to 

obtain a denoised signal. This technique does not involve a reference signal, and can be used 

for suppression of both the respiratory and motion artifacts. The technique was applied for 

processing the thoracic impedance signals with simulated artifact generated from the 

recordings taken from the 23 volunteers. A qualitative examination was carried out by 

applying the technique on several signal recordings, contaminated by respiratory artifact, 

obtained from 52 volunteers in the pre-exercise and post-exercise relaxation. The 

effectiveness of the WBD technique in removing the motion artifact was also examined by 

applying it on the signals corrupted by motion artifacts but free from the respiratory artifacts 

and signals with both types of artifacts.  

4)  Validation under a clinical setting: Application of the artifact suppression 

techniques on signals with simulated artifacts and signals acquired from volunteers enhanced 

the signal by suppressing the artifacts, facilitating a beat-to-beat estimation of the stroke 

volume and other cardiovascular indices. A clinical validation of the techniques, as presented 

in Chapter 6, was carried out using Doppler echocardiography, an established noninvasive 

technique for stroke volume estimation, as a reference. The values of left ventricular ejection 

time (Tlvet) and stroke volume (SV) from the unprocessed and processed ICG were estimated 

on beat-to-beat basis, and compared with those obtained from simultaneously acquired 

Doppler echocardiogram, under a clinical setting. Signal recordings were carried out from 

nine subjects with normal health and five subjects with cardiovascular disorders, in the pre-

exercise and post-exercise conditions. Correlation, linear regression, and Bland-Altman test 

were used to examine the agreement between values estimated from the ICG waveform and 

those obtained from Doppler echocardiography. These statistical tests were applied on the 

signal recordings from each subject in the pre-exercise and post-exercise conditions. In 

addition to examining the agreement of the results on the beat-to-beat basis, the agreement of 

the average values was also examined. As the Doppler echocardiography could be used only 

for subjects resting in the supine position, the evaluation was restricted for respiratory artifact 

and could not be carried out for motion artifact.  
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7.3 Conclusions 

The tracking based baseline restoration circuit, developed for fast restoration of baseline, was 

extensively tested on several biosignals and it was found that the drift removal remained 

effective for different types of the baseline drifts. The circuit has been used in our impedance 

cardiograph instrument and used for recording of the signals from subjects under pre-exercise 

and post-exercise conditions. This circuit can also be used for acquisition of other bio signals 

with large drift or abrupt baseline shift. 

 Signal processing techniques, based on adaptive filtering and wavelet based denoising, 

were applied on the signals with simulated artifacts generated from the recordings taken from 

23 volunteers. Processing the signals by the technique AFSR, AFER, and WBD resulted in a 

SAR advantage of 18.5, 19.6, and 21.8 dB, respectively. Detailed analysis of the amplitude 

spectrum of the primary input, the sensed respiratory reference, the estimated reference 

signal, and the processed output signals showed that the improved effectiveness of AFER was 

because of better suppression of higher frequency components of the artifact, and it improved 

detection of the point B, C, and X in the ICG waveform. Compared to the technique AFSR, 

the technique AFER required a lower order filter tap length. The technique WBD offered 

SAR improvement about 3 dB more than the technique AFSR. Applying the three artifact 

suppression techniques on artifact-free signals showed that none of the techniques introduced 

any significant errors.  

 For examining the effectiveness of these techniques on actual signals, they were 

applied on the signals acquired from 52 healthy volunteers. These signals were recorded with 

the subject resting in a supine position in order to have negligible motion artifact. All the 

three techniques effectively suppressed the respiratory artifacts from the recorded signals and 

showed almost no effect of respiration, hence improving the detection of the B and X points. 

A visual examination of the processed output for the recordings from the signals acquired 

from all the subjects showed that the artifact suppression remained effective even with a large 

heart rate variability in the post-exercise recordings, and the processing did not appear to 

affect the beat-to-beat variability in the characteristic points and the ICG peaks. Processing 

the signals, contaminated by motion artifacts with negligible respiratory artifact as well those 

contaminated by a combination of both types of the artifacts, by the technique WBD was 

effective in reducing motion artifact and resulted in a stable baseline.  

 Validation of the techniques under a clinical setting was carried out by applying them 

on signals acquired from nine subjects with normal health and five subjects with different 

cardiovascular disorders and examining the agreement with values estimated from Doppler 

echocardiography. It may be noted that as the Doppler echocardiography can be used only on 

subjects resting in supine position, the evaluation in the clinical setting could be carried out 

only for the suppression of the respiratory artifacts, and not for the motion artifact. 
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Correlation coefficients, for subjects with normal health, between the stroke volumes 

estimated from the unprocessed ICG and the Doppler echocardiogram varied from 0.15 to 

0.67 for the pre-exercise recordings and 0.35 to 0.80 for the post-exercise recordings. After 

processing, the correlation coefficients were found to vary over 0.72 - 0.93, 0.78 - 0.95, 0.76 - 

0.95 for the pre-exercise and 0.80 - 0.97, 0.84 - 0.97, 0.87 - 0.98 for the post-exercise 

recordings, for AFSR, AFER, WBD, respectively. The slope of the regression line was not 

significantly different from unity and the rms error from the best fit straight line was 

significantly reduced. Results from Bland-Altman test showed that all the artifact suppression 

techniques resulted in a large reduction in mean bias and standard deviations of the 

differences. The correlation coefficients, for subjects with cardiac disorders, are found to vary 

over 0.20 - 0.57, 0.69 - 0.80, 0.71 - 0.89, 0.71 - 0.92 for the pre-exercise and 0.35 – 0.64, 0.78 

- 0.88, 0.86 - 0.88, 0.84 - 0.89 for the post-exercise recordings, for UP, AFSR, AFER, WBD, 

respectively. Processed outputs showed a reduction in the scatter and a decrease in the slope 

error in linear regression. After processing, the slope of the linear regression was found to be 

close to one. Processing the signals with all the artifact suppression techniques reduced the 

mean bias and the standard deviation of differences with Doppler echocardiogram as the 

reference. These results show a good agreement between the stroke volume estimated from 

Doppler echocardiography and impedance cardiography after artifact suppression. Among the 

three techniques, AFER and WBD permitted automated estimation of Tlvet and SV. The 

technique WBD may be considered as the preferable technique because it does not require a 

reference signal.     

Analysis of the means of beat-to-beat values and the values estimated from the 

ensemble averaged waveform showed that ensemble averaging reduced the standard deviation 

of the differences but the mean of the beat-to-beat values estimated after artifact suppression 

resulted in even smaller standard deviations. Ensemble averaging after the artifact 

suppression did not result in any further improvement in the estimates. Hence we may 

conclude that the artifact suppression techniques were more effective than ensemble 

averaging in suppression of the respiratory artifacts, and they can be used for monitoring beat-

to-beat variations in various cardiovascular parameters.  

Doppler echocardiography is noninvasive and can be used for estimation of the stroke 

volume and some other cardiovascular indices on beat-to-beat basis. The technique needs a 

radiologist or a skilled operator, there are difficulties in getting Doppler images in ambulatory 

conditions, and it can not be used for monitoring the indices over extended periods. 

Impedance cardiography with the artifact suppression techniques may be useful for 

continuous monitoring of beat-to-beat variations in the stroke volume and some other 

cardiovascular parameters.  
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In summary, the initial contribution in the thesis is a tracking based baseline 

restoration circuit, developed as a part of impedance cardiogram instrument, for fast 

restoration of baseline and removal of the different types of the baseline drift. Major 

contribution of the thesis is investigation of artifact suppression techniques, based on adaptive 

filtering and wavelet based denoising without introducing distortion in the signal. These 

techniques facilitated estimation of stroke volume and other cardiovascular indices on beat-to-

beat basis. The values estimated using impedance cardiography after suppression of the 

respiratory artifact had a very good agreement with those estimated from Doppler 

echocardiography, for the mean values as well as for the beat-to-beat variations. Hence, it 

may be concluded that the artifact suppression techniques can be used with impedance 

cardiography instrument for continuous monitoring of the stroke volume and other 

cardiovascular parameters for the mean values as well as for the beat-to-beat variations. 

 

7.4 Suggestions for future work 

Further validation of the techniques on recordings from a larger number of patients with 

different age groups and different types of cardiovascular disorders needs to be carried out. 

Other processing techniques, e.g. Kalman filtering (Mneimneh et al. 2006; Sayadi and 

Shamsollahi, 2008), need to be investigated for further enhancement of the signal. As 

discussed in the thesis, the Kubicek’s formula and its variants are based on the assumption 

that the aortic blood flow is a square wave pulse lasting until the end of the systole. Actual 

aortic blood flow profile significantly differs from a square pulse and varies across 

individuals. Artifact-free ICG signals will be helpful in the research for developing modified 

model for precise and accurate estimation of the stroke volume and other indices for 

cardiovascular diagnosis. Further, the morphology of artifact-free ICG signal waveshape may 

help in the diagnosis of cardiovascular disorders. Use of wearable instruments can be used for 

extended ambulatory recordings and for studying the beat-to-beat variations in stroke volume 

and other cardiovascular indices, particularly the respiratory modulation of these parameters. 

 

 



 

 

 

Appendix A 

 

COMMERCIALLY AVAILABLE  

IMPEDANCE CARDIOGRAPHS 

 

 

Some of the commercially available instruments for impedance cardiography are  

1) HIC-2000/ 3000 (Bio-Impedance Technology, Chapel Hill, NC, USA)  

[http://www.microtronics-nc.com/BIT/HICProductInfo.html] 

2) HIC-4000 (Microtronics Corp. of Chapel Hill, NC, USA) 

[http://www.microtronics-nc.com/BIT/PDF%20files/HIC4000prodsheet.pdf] 

3) NCCOM3 (BoMed Medical Manufacturing Ltd., Irvine, CA, USA)    

4) BioZ (CardioDynamics, San Diego, CA, USA)  

[http://www.cdic.com/cdprod10.html] 

5) Niccomo (Medizinische Messtechnik GmbH, Germany) 

[http://www.niccomo.com/en/index.html] 

6) CircMon (J R Medical, Estonia) 

[http://www.online.ee/~medical/] 

7) TEBCO (Hemo Sapinens Inc., Sedona, AZ, USA) 

[http://www.hemosapiens.com/tebco.html] 

8) THRIM (UFI, Morro Bay, CA, USA) 

[http://www.ufiservingscience.com/DSThrim1.html] 

9) LifeGard (Peabody, MA, USA) 

[http://analogic.com/lifegard/special/sub_pages/life_icg_hemo_stat.html] 

10) Philips Impedance Cardiograph (Philips Medical Systems, Andover, MA, USA) 

[http://www.medical.philips.com/main/products/patient_monitoring/products/icg/] 

For some of the research applications, we need to simultaneously acquire impedance 

cardiogram and signals from some other instruments. This can be easily carried out by 

applying the analog outputs from the impedance cardiograph and other instruments as inputs 

to a multi-channel signal acquisition set-up. Hence, for such applications we need impedance 

cardiograph with analog outputs. The key features of the above instruments are briefly 

described here including the availability of analog outputs.  

The HIC-2000/HIC-3000 (Hutcheson Impedance Cardiograph) provides basal 

impedance (Zo), ICG (dz/dt), ∆z, ECG, and phonocardiogram (PCG) as analog outputs. It uses 

excitation frequency of 100 kHz and can be used for thoracic impedance in the range of 5-

80 Ω. HIC-4000 is an impedance cardiograph instrument which acquires and displays basal 

impedance (Zo), ICG (dz/dt), ∆z, ECG, PCG, and respiration (with the help of a separate 

respiration transducer). It uses excitation frequency of 95 kHz and can be used for thoracic 

impedance in the range of 5-100 Ω. This instrument can also be used for monitoring of 

pulmonary congestion, pulmonary edema, pleural effusion, and numerous indices related to 

cardiac dynamics. This instrument provides analog output for Zo, ICG (dz/dt), ∆z, ECG, PCG, 

and respiration. HIC series instruments use external medical-grade power supply. COP-WIN 

software (optional for HIC series instruments) may be used for acquisition and ensemble 

averaging of the ICG waveform.  
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BioZ uses proprietary DISQ (digital impedance signal quantifier) technology and Z-

MARC algorithm for processing and calculation of cardiac output, systemic vascular 

resistance, contractility, thoracic fluid status. It uses excitation frequency of 60 kHz and 

current amplitude of 4.0 mA.  

Niccomo monitors cardiac output and systemic vascular resistance. This instrument 

combined with blood pressure measurement enables the therapy optimization of patients with 

hypertension. Niccomo pacemaker software, provided with the instrument, enables 

homodynamic monitoring during cardiac pacing. Also, this instrument offers a diagnostic 

screen to evaluate ICG curve shape characteristics which could be used for identifying some 

of the cardiac diseases.  

CircMon can be used for continuous monitoring of cardiac output, systemic vascular 

resistance, and extracellular water.  

TEBCO (Thoracic Electrical Bioimpedance Cardiac Output) measures cardiac index 

(CI) and nine other cardiodynamic parameters (stroke index, heart rate, respiratory rate, 

ventricular ejection time, pre-ejection period, ejection phase contractility index, inotropic 

state index, estimate of ejection fraction, and end-diastolic index). TEBCO can be interfaced 

to a PC either via serial RS232 or via USB.  

THRIM (Tetra-polar High Resolution Impedance Meter) provides complex impedance 

(Ro and Xc) as well as pulsatile (∆R and dR/dt) signal outputs. This instrument can be 

configured for up-to four channels of impedance measurement. This instrument provides four 

analog outputs Ro, Xc, ∆R, and dR/dt.  

LifeGard is an impedance cardiograph instrument with an option of signal quality 

indicator. Integrated printer is provided with this instrument for instant documentation.  

Philips Impedance Cardiograph can display ICG parameters along with other 

physiological measurements, including heart rate, blood pressure, pulse oximetry, cardiac 

output, and system vascular resistance.  

 



 

 

 

Appendix B 

 

IMPEDANCE CARDIOGRAPH  

DEVELOPED AT IIT BOMBAY 
 

 

B.1  Introduction 
In this appendix, an impedance cardiogram and respiration sensing instrument “ICRS06” 

developed in our lab (Pandey and Pandey, 2007; Venkatachalam, 2006; Naidu, 2005; Pandey 

et al., 2005; Manigandan, 2004; Pandey et al., 2004; Kuriakose, 2000; Patwardhan, 1997; 

Joshi and Pandey, 1994; Joshi, 1993) is described. The instrument is basically based on the 

circuit reported earlier by Qu et al. (1986), with the baseline restoration circuit as reported in 

Chapter 3. A prototype instrument has been developed and extensively tested. It has been 

used for the recordings for the research reported in this thesis.  

 

B.2 Impedance cardiograph instrument developed at IIT Bombay 
Basic blocks of the prototype of the ICG hardware are: excitation circuit, demodulator, and 

baseline restoration circuit, as shown in Fig. B.1. The excitation circuit generates a sinusoidal 

voltage of frequency 100 kHz and amplitude < 5 mA. For generating a stable high frequency 

sinusoidal wave, modified Wein bridge oscillator has been used. The oscillator output is given 

as input to the voltage-to-current converter. The current is injected into the thorax using a 

ferrite core transformer and a pair of electrodes I1 and I2. The amplitude modulated voltage 

developed is picked up by another pair of electrodes E1 and E2.  

The front end of the sensing circuit is an instrumentation amplifier followed by a high 

pass filter with cutoff frequency of 16 kHz. This high pass filter suppresses ECG signal and 

power line interference. The output of the instrumentation amplifier is an amplitude 

modulated wave with modulation proportional to varying thoracic impedance. A full-wave 

precision rectifier followed by a low pass filter is used for demodulation. The resulting output 

is sum of the basal impedance Zo, time varying component of the impedance z(t), and 

respiratory and other artifacts. The respiratory component amplitude may be much higher 

than signal range and it is partly suppressed by baseline restoration circuit. The output of the 

demodulator is fed to a low pass filter for getting basal impedance Zo, to baseline circuit to 

get z(t) waveform and to the differentiator to get the dz/dt signal. In the baseline restoration 

circuit, discussed in Chapter 3, two comparators are used to set threshold and whenever the 

ICG signal crosses the threshold range, signal is pulled in the threshold range, hence restoring 

the baseline. Differentiator acts as high pass filter and hence further suppresses the lower 

frequency component, related to respiration and motion artifacts present in the waveform.  

Another instrumentation amplifier is used for picking-up the ECG signal. This, 

simultaneously acquired ECG is used for heart rate calculation and ensemble averaging of 

ICG waveform. This ECG is helpful in identifying various cardiac phases, particularly during 

high contamination of ICG.  
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Circuit diagram of ICG unit is shown in Fig. B.2. The baseline restoration circuit is 

separately shown in Fig. B.3.  

 For testing and calibration of the impedance cardiograph, an impedance simulator is 

developed by using a microcontroller and analog switches. It can be used for measuring 

sensitivity and frequency response of the instrument, and for studying the effect of various 

electrode configurations and common mode interference caused by bioelectric sources and 

external pickups. The simulator has facility for varying beat rate, magnitude of common and 

differential mode ECG, multiple basal impedances and fixed percentage in change in 

impedance (Pandey et al., 2008). 

 

B.2  Respiration sensing 
The respiratory signal was recorded using a thermistor based airflow sensor (Pamtrons, 

Mumbai, India) placed inside a plastic mask, located beneath one nostril. Thermistor based 

airflow sensor monitors the variation in its temperature caused by airflow in different 

respiratory phases. The measured airflow is related to change the intra-thoracic pressure, 

which causes change in the air into the lungs and venous return to the thorax. Output of the 

sensor is amplified, filtered, and given as an analog output. The measured airflow is referred 

here as the respiration signal and it is used in the adaptive filtering based techniques. It may 

be noted that the sensed respiration signal and the respiratory artifact may be different in 

shape. This instrument has an option to detect breathing rate. Also, this instrument offers a 

threshold adjustment to detect the breathing rate and a screen to display respiratory rate.   

 

B.3  Data acquisition   

The analog outputs of the impedance cardiograph instrument are ECG, Zo, z(t), and dz/dt. The 

estimation of cardiac output requires value of heart rate and stroke volume, which can be 

obtained by processing the signals ECG, Zo, z(t), and dz/dt. In order to obtain stroke volume 

and other cardiac indices, these waveforms need to be digitized and processed. In order to 

have a low noise system, it was decided to use a USB based signal acquisition unit. We have 

used data acquisition unit (DAQ) KUSB-3102, manufactured by Keithley Instruments Inc. 

(Cleveland, Ohio, USA). This unit has 16 single-ended or 8 differential 12-bit A/D inputs and 

2 D/A outputs. 

 

Fig. B.1 Block diagram of impedance cardiograph developed at IIT Bombay. 
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U1 – U4, U6 – U13, U15 – U17: LF357 

U5, U14: INA128 

U18: LM7805, U19: LM79065  
 

Fig. B.2 Complete circuit diagram of ICG hardware. 
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Fig. B.3 Baseline restoration circuit. 

  

Fig. B.4 Output of the baseline restoration circuit for the thoracic impedance signal z(t), from a 

subject, with large baseline shifts (a) input (in V), (b) correction voltage (in V), (c) output (in V). 
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Some of the important features of the unit are  

• Up-to 100 kSa/s continuous A/D sampling 

• 500 V isolation barrier for protecting the computer and module from voltage spikes, ESD, 

and surges 

• Programmable input range (bipolar: ± 10 V, ± 5 V, ± 2.5 V, ± 1.25 V; unipolar: 0–10 V, 5 

V, 2.5 V, 1.25 V)  

• Programmable Gain (1, 2, 4, 8) 

• 17 Digital I/O Channels 

• Two general purpose timer/counters (8254) with programmable interface 

The inter-channel cross-talk for this DAQ was found to be less than -70 dB at 1 kHz.   

A program ‘DATAQ’ for signal acquisition was developed using A/D driver routines 

in Visual Basic 6 as well as in Matlab 7. The Visual Basic code can be used to generate a 

standalone Windows executable program. However, the Matlab code needs an installed 

version of the software. The specified input channels are sampled at specified sampling rate 

for the specified number of samples and the data are stored on the computer’s hard disk. The 

specifications of the final hardware-software set-up are 

• Sampling frequency: 1 Hz to 100 kHz 

• Acquisition length: 5 s to 30 min 

• Channels: upto 6 channel simultaneously 

• Output format: binary/ascii 

 

B.4  Recordings from impedance cardiograph 
Figure B.4 shows the output obtained when baseline restoration circuit has been used in the 

impedance cardiograph instrument for recording the signals from a subject. The input signal is 

the variation in the thoracic impedance z(t) superimposed on a slowly varying baseline drift 

due to respiration, superimposed on the basal impedance Zo. The output waveform shows that 

the baseline is restored when the signal after amplification crosses the threshold range in 

either direction. In this example, two corrections happened between 8 s and 12 s. The baseline 

correction introduces a discontinuity and hence the correction during the cardiac cycle makes 

the output waveform during that cycle unsuitable for estimation of the parameters. 

Figure B.5 shows ICG waveform, acquired from a volunteer, using the instrument 

developed in our lab and the commercial impedance cardiograph instrument ‘HIC2000’ 

respectively. Figure B.7 shows ICG waveform acquired from another volunteer by using the 

two impedance cardiograph instruments. For recordings from both the instruments, spot 

electrodes were used. Location of injection and sensing electrodes were also same for the two 

instruments. All these recordings were made with the subjects in the resting state. It may be 

noted that the recordings from the two instruments were made one after the other, and not 

simultaneously. Several signal recordings from 14 male subjects, using both the instruments, 

were carried out and it was found that the ICG waveforms acquired from both the instruments 

were nearly the same and they exhibited similar artifacts.  
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Fig. B.5 Signal ICG (in Ω/s): (a) using impedance cardiograph “ICRS06” developed in our lab and (b) 

using commercial impedance cardiograph ‘HIC2000’ from subject ‘LV’. 

 

 

 
 

Fig. B.6 Signal ICG (in Ω/s): (a) using impedance cardiograph “ICRS06” developed in our lab and (b) 

using commercial impedance cardiograph ‘HIC2000’ from subject ‘MS’. 

 

 
 

 



 

 

 

Appendix C 

 

RESULTS FROM ADAPTIVE FILTERING 

 

 

C.1  Introduction 
To assess the performance of the two adaptive filtering techniques, they were applied on signal, 

from 23 volunteers, with different levels of simulated artifacts. Improvement in the signal-to-

artifact ratio (SAR) was used as the performance index. Results for input SAR for the range of -9 

to 9 dB are presented in this appendix. Both the techniques were applied on the signals acquired 

from 52 volunteers with normal health and no known cardiovascular history. Results for 4 

volunteers are presented here.  

 

C.2 Adaptive filtering by sensing respiration (AFSR)  
The technique AFSR is based on LMS based adaptive filtering. In this technique, the airflow 

signal acquired from a respiratory sensor, simultaneously along with the ICG and z(t) signals, is 

taken as the reference input and sensed contaminated impedance signal is used as the primary 

input to the filter. This technique permits beat-by-beat stroke volume (SV) estimation, even in the 

presence of large respiratory artifacts.  

Signals with different levels of simulated artifacts were processed using the technique 

AFSR. Figure C.1 shows waveforms: (a) artifact-free ICG, (b) ICG-free artifact, (c) sensed 

respiration, (d) ICG with simulated -9 dB artifact, (e) ICG with simulated -6 dB artifact, (f) ICG 

with simulated -3 dB artifact, (g) ICG with simulated 0 dB artifact, (h) ICG with simulated 3 dB 

artifact, (i) ICG with simulated 6 dB artifact, and (j) ICG with simulated 9 dB artifact. The 

processed outputs, by the technique AFSR, for the inputs given in Fig. C.1, are presented in Fig. 

C.2.  

 

C.3 Adaptive filtering by using estimated respiration (AFER)  
An analysis of the results obtained using the AFSR technique showed that that the sensed 

respiration did not approximate the higher frequencies in the respiratory artifact. Hence, 

investigations were carried out for a better approximation of the respiratory artifact using the 

sensed respiration. In the recordings with controlled respiration it was observed that change in the 

slope of the sensed respiration corresponded to the beginning of the inhale and exhale phases. 

Hence, for approximation of respiratory artifact we experimented with fitting different waveforms 

through the points of beginning of inhale and exhale phases.   

For sinusoidal wave fitting, estimated reference signal had constant amplitude with 

frequency equal to that of the respiration cycle. For square wave fitting, estimated reference 

signal had constant amplitude with polarity change at the change of respiration phases. Reference 

signal as triangular wave was generated by inverting the slope of a straight line at the change of 
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respiration phases. For bipolar Gaussian pulse, estimated reference signal had Gaussian pulse of 

constant amplitude with polarity change at the change of respiration phases. Similarly, for bipolar 

impulses, estimated reference signal had bipolar impulse of constant amplitude with polarity 

change at the change of respiration phases. Sinusoidal waveform, as the reference signal, was 

unable to cancel the harmonics of the artifacts present in the recorded signal. References based on 

the use of square and bipolar Gaussian pulse introduced distortion in the processed output. Use of 

bipolar impulses as the reference failed to significantly cancel the lower frequency components of 

the artifacts present in the recorded signal.  

 On the basis of the observation, it was decided to estimate the respiration reference by 

using the sensed respiration and the ICG. For this purpose, a polynomial spline fitting on 

contaminated ICG was used for estimating the respiratory artifact. A separate spline was fitted on 

each respiratory phase by using two knots and 10 control points equally spaced between knots. 

The waveform thus obtained can be used as the reference input for adaptive filtering. The 

estimated reference inputs (sinusoidal, square, triangular, bipolar Gaussian pulse, bipolar 

impulses, and spline fit on the signal) and corresponding processed outputs for signal ICG with 

simulated 0 dB artifact are shown in Fig. C.3 and Fig. C.4, respectively. Figure C.5 shows 

estimated reference input for AFER by fitting spline on the signal with different levels of 

simulated artifact. Processed outputs by AFER for the primary input signal of Fig. C.1, using the 

reference of Fig. C.5, are shown in Fig. C.6.  

 

C.4  Results for recorded signal 
The recorded z(t), ICG, and other related waveforms and their processed outputs, by technique 

AFSR and AFER, for 4 subjects in post-exercise relaxation, are presented in Figs. C.7 to C.26. It 

can be observed that point B, point X, and ICG peaks are not stable in contaminated ICG signal 

and hence parameters estimation from contaminated ICG results in large error in the estimated 

stroke volume. In processed output, points B, point X, and ICG peaks are found to be stable and 

hence suited for estimation of stroke volume and other cardiac indices.  
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Fig. C.1 Waveforms: (a) artifact-free ICG, (b) ICG-free artifact, (c) sensed respiration, (d) ICG with 

simulated -9 dB artifact, (e) ICG with simulated -6 dB artifact, (f) ICG with simulated -3 dB artifact, (g) 

ICG with simulated 0 dB artifact, (h) ICG with simulated 3 dB artifact, (i) ICG with simulated 6 dB 

artifact, and (j) ICG with simulated 9 dB artifact (all the waveforms are in arbitrary units). 
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Fig. C.3 Processed output by AFSR of signal: (a) artifact-free ICG, (b) ICG with simulated -9 dB artifact, 

(c) ICG with simulated -6 dB artifact, (d) ICG with simulated -3 dB artifact, (e) ICG with simulated 0 dB 

artifact, (f) ICG with simulated 3 dB artifact, (g) ICG with simulated 6 dB artifact, (h) ICG with simulated 

9 dB artifact, and (i) ICG-free artifact (all the waveforms are in arbitrary units). 
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Fig. C.3 Waveforms related to estimation of respiratory reference in AFER: (a) artifact-free ICG, (b) ICG-

free artifact, (c), ICG with simulated 0 dB artifact (d) sensed respiration, (e) estimated reference by 

sinusoidal fitting, (f) estimated reference by square wave fitting, (g) estimated reference by triangular wave 

fitting, (h) bipolar Gaussian pulses, (i) bipolar impulses, and (j) estimated reference by spline fitting on the 

signal (all the waveforms are in arbitrary units). 
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Fig. C.4 Processed output for signal ICG with simulated 0 dB artifact by AFER using estimated reference 

input: (a) sinusoidal (b) square, (c) triangular, (d) bipolar Gaussian pulses, (e) bipolar impulses, and (f) 

spline fit on the signal (all the waveforms are in arbitrary units). 
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Fig. C.5 Waveforms related to reference input for AFER by spling fitting on the signal: (a) artifact-free 

ICG, (b) ICG-free artifact, (c), ICG with simulated 0 dB artifact (d) sensed respiration, reference input for 

AFER by fitting spline on the signal: (e) ICG-free artifact, (f) ICG with simulated -6 dB artifact, (g) ICG 

with simulated 0 dB artifact, (h) ICG with simulated 6 dB artifact, and (i) artifact-free ICG (all the 

waveforms are in arbitrary units). 
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Fig. C.6 Processed output, using reference obtained by fitting spline on the signal, by AFER of signal: (a) 

artifact-free ICG, (b) ICG with simulated -9 dB artifact, (c) ICG with simulated -6 dB artifact, (d) ICG with 

simulated -3 dB artifact, (e) ICG with simulated 0 dB artifact, (f) ICG with simulated 3 dB artifact, (g) ICG 

with simulated 6 dB artifact, and (h) ICG with simulated 9 dB artifact, and (i) ICG-free artifact (all the 

waveforms are in arbitrary units). 
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Fig. C.7 Waveforms for processing: (a) ECG (in arbitrary units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG  (in 

Ω/s), and (e) sensed airflow (in arbitrary units) from subject ‘MS’. 

 

 

 
 

Fig. C.8 Processing of ICG by AFSR: (a) recorded ICG (in Ω/s), (b) sensed airflow (in arbitrary units), and 

(c) processed ICG (in Ω/s) from subject ‘MS’. 
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Fig. C.9 Processing of ICG by AFER: (a) recorded ICG (in Ω/s), (b) fitted spline on recorded ICG (in 

arbitrary units), and (c) processed ICG (in Ω/s) from subject ‘MS’. 

 

 

 

Fig. C.10 Processing of impedance signal by AFSR: (a) recorded z(t) (in Ω), (b) sensed airflow (in 

arbitrary units), and (c) processed z(t) (in Ω) from subject ‘MS’. 

 

 

 

Fig. C.11 Processing of impedance signal by AFER: (a) recorded z(t) (in Ω), (b) fitted spline on recorded 

z(t) (in arbitrary units), and (c) processed z(t) (in Ω) from subject ‘MS’. 
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Fig. C.12 Waveforms for processing: (a) ECG (in arbitrary units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG  (in 

Ω/s), and (e) sensed airflow (in arbitrary units) from subject ‘PP’. 

 

 
 

Fig. C.13 Processing of ICG by AFSR: (a) recorded ICG (in Ω/s), (b) sensed airflow (in arbitrary units), 

and (c) processed ICG (in Ω/s) from subject ‘PP’. 
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Fig. C.14 Processing of ICG by AFER: (a) recorded ICG (in Ω/s), (b) fitted spline on recorded ICG (in 

arbitrary units), and (c) processed ICG (in Ω/s) from subject ‘PP’. 

 

 
 

Fig. C.15 Processing of impedance signal by AFSR: (a) recorded z(t) (in Ω), (b) sensed airflow (in 

arbitrary units), and (c) processed z(t) (in Ω) from subject ‘PP’. 

 

 
 

Fig. C.16 Processing of impedance signal by AFER: (a) recorded z(t) (in Ω), (b) fitted spline on recorded 

z(t) (in arbitrary units), and (c) processed z(t) (in Ω) from subject ‘PP’. 
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Fig. C.17 Waveforms for processing: (a) ECG (in arbitrary units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG  (in 

Ω/s), and (e) sensed airflow (in arbitrary units) from subject ‘KI’. 

 

 

 
 

Fig. C.18 Processing of ICG by AFSR: (a) recorded ICG (in Ω/s), (b) sensed airflow (in arbitrary units), 

and (c) processed ICG (in Ω/s) from subject ‘KI’. 
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Fig. C.19 Processing of ICG by AFER: (a) recorded ICG (in Ω/s), (b) fitted spline on recorded ICG (in 

arbitrary units), and (c) processed ICG (in Ω/s) from subject ‘KI’. 

 

 

 
 

Fig. C.20 Processing of impedance signal by AFSR: (a) recorded z(t) (in Ω), (b) sensed airflow (in 

arbitrary units), and (c) processed z(t) (in Ω) from subject ‘KI’. 

 

 

 

Fig. C.21 Processing of impedance signal by AFER: (a) recorded z(t) (in Ω), (b) fitted spline on recorded 

z(t) (in arbitrary units), and (c) processed z(t) (in Ω) from subject ‘KI’. 
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Fig. C.22 Waveforms for processing: (a) ECG (in arbitrary units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG  (in 

Ω/s), and (e) sensed airflow (in arbitrary units) from subject ‘AJ’. 

 

 

 
 

Fig. C.23 Processing of ICG by AFSR: (a) recorded ICG (in Ω/s), (b) sensed airflow (in arbitrary units), 

and (c) processed ICG (in Ω/s) from subject ‘AJ’. 
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Fig. C.24 Processing of ICG by AFER: (a) recorded ICG (in Ω/s), (b) fitted spline on recorded ICG (in 

arbitrary units), and (c) processed ICG (in Ω/s) from subject ‘AJ’. 

 

 
 

Fig. C.25 Processing of impedance signal by AFSR: (a) recorded z(t) (in Ω), (b) sensed airflow (in 

arbitrary units), and (c) processed z(t) (in Ω) from subject ‘AJ’. 

 

 

Fig. C.26 Processing of impedance signal by AFER: (a) recorded z(t) (in Ω), (b) fitted spline on recorded 

z(t) (in arbitrary units), and (c) processed z(t) (in Ω) from subject ‘AJ’. 

 



 

 

 

Appendix D 

 

RESULTS FROM WAVELET BASED DENOISING  

 

 

D.1  Introduction 

In this appendix, supplementary results of wavelet based denoising (WBD) technique are given. 

In the technique, FIR based Meyer wavelet has been used for decomposition of the signal, and the 

first 8 details have been used to reconstruct the signal. 

  

D.2 Results for simulated contamination of ICG 

In this technique, we have used linear denoising, also known as scale-dependent thresholding, for 

artifact suppression. Selection of the mother-wavelet and the number of scales in the 

decomposition is an important issue. For decomposition, we studied several types of wavelet 

families: Daubechies, coiflets, symlets, and discrete Meyer. For the signal acquired at sampling 

frequency of 500 Hz, the wavelet function and the scaling function along with their magnitude 

spectra are shown in Fig. D.1 for discrete Meyer wavelet. Similar plots for coiflets (order 5) and 

Daubechies (order 6) wavelet are given in Fig. D.2 and D.3, respectively. As seen in the figure, 

scaling function acts as a lowpass filter and corresponding wavelet acts as highpass filter. The 

lowpass filter coefficients for discrete Meyer, Coiflets (order 5) and Daubechies (order 6) are 

given in Table D.1.Figures D.4 and D.5 show the details and approximation at each scales of an 

ICG-free artifact and an artifact-free ICG signal using discrete Meyer wavelet. As shown in the 

figure, artifact-free ICG signal is captured within first eight details while ICG-free artifact related 

components are captured at higher scales. Figures D.6 to Fig. D9 show the details and 

approximation at each scales of an ICG-free artifact and an artifact-free ICG signal using Coiflets 

(order 5) and Daubechies (order 6) wavelet. It is seen that the signal component at different scales 

for artifact-free ICG signal and ICG-free artifact are overlapping and hence difficult to separate 

them. Discrete Meyer wavelet is able to separate the signal and artifact component at different 

scales, hence we have used discrete Meyer wavelet in the technique WBD.  

Signals with different levels of simulated artifacts were processed using the technique 

WBD. Figure D.10 shows waveforms: (a) artifact-free ICG, (b) ICG-free artifact, (c) sensed 

respiration, (d) ICG with simulated -9 dB artifact, (e) ICG with simulated -6 dB artifact, (f) ICG 

with simulated -3 dB artifact, (g) ICG with simulated 0 dB artifact, (h) ICG with simulated 3 dB 

artifact, (i) ICG with simulated 6 dB artifact, and (j) ICG with simulated 9 dB artifact. The 

processed outputs, by the technique WBD, for the inputs given in Fig. D.10, are presented in 

Fig. D.11.  

 

D.3  Results for recorded signal 

The recorded z(t), ICG, and other related waveforms and their processed outputs, by the 

technique WBD, for 4 subjects in post-exercise relaxation, are presented in Figs. D.12 to D.23. 
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D.3  Tabulation of SAR improvement 

The SAR improvement (output SAR – input SAR) by the three techniques are given in Table D.2. 

Plots of output SAR versus input SAR with simulated input in the range of -9 to 9 dB for 

recordings from different subjects sowed a nearly straight line relationship, similar to the plot in 

Fig. 5.5. We see that the mean of the SAR improvements were 18.5, 19.6, and 21.7 dB for the 

technique AFSR, AFER, and WBD, respectively, with a very small (< 0.2 dB) standard deviation 

across the subjects. 

 
 

 

 
 

Fig. D.1 Discrete Meyer wavelet: (a) wavelet function, (b) scaling function, (c) magnitude spectrum of the 

wavelet function, (d) magnitude spectrum of the scaling function.  

 

 

 

 
 

Fig. D.2 Coiflets (order 5) wavelet: (a) wavelet function, (b) scaling function, (c) magnitude spectrum of 

the wavelet function, (d) magnitude spectrum of the scaling function. 

 

 

 

 
 

Fig. D.3 Daubechies (order 6) wavelet: (a) wavelet function, (b) scaling function, (c) magnitude spectrum 

of the wavelet function, (d) magnitude spectrum of the scaling function. 
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Table D.1 The lowpass filter coefficients (hn) for discrete Meyer, Coiflets (order 5) and Daubechies (order 

6) wavelets. 

 

 

Discrete Meyer     Coiflets   Daubechies  

h1- h40 h41- h80 h81- h101   h1- h30  h1- h12 

0.0000 -0.0064 0.0000 0.0000  -0.0011 

0.0000 -0.0110 0.0000 0.0000  0.0048 

0.0000 0.0153 0.0000 0.0000  0.0006 

0.0000 0.0174 0.0000 0.0000  -0.0316 

0.0000 -0.0321 0.0000 0.0000  0.0275 

0.0000 -0.0243 0.0000 0.0000  0.0975 

0.0000 0.0637 0.0000 0.0001  -0.1298 

0.0000 0.0306 0.0000 0.0003  -0.2263 

0.0000 -0.1327 0.0000 -0.0006  0.3153 

0.0000 -0.0350 0.0000 -0.0017  0.7511 

0.0000 0.4441 0.0000 0.0024  0.4946 

0.0000 0.7438 0.0000 0.0068  0.1115 

0.0000 0.4441 0.0000 -0.0092   

0.0000 -0.0350 0.0000 -0.0198   

0.0000 -0.1327 0.0000 0.0327   

0.0000 0.0306 0.0000 0.0413   

0.0000 0.0637 0.0000 -0.1056   

0.0000 -0.0243 0.0000 -0.0620   

0.0000 -0.0321 0.0000 0.4380   

0.0000 0.0174 0.0000 0.7743   

0.0000 0.0153 0.0000 0.4216   

0.0000 -0.0110   -0.0520   

0.0000 -0.0064   -0.0919   

0.0000 0.0060   0.0282   

0.0000 0.0022   0.0234   

0.0000 -0.0027   -0.0101   

0.0000 -0.0006   -0.0042   

0.0000 0.0009   0.0022   

-0.0001 0.0002   0.0004   

0.0000 -0.0001   -0.0002   

0.0001 -0.0001      

-0.0001 -0.0001      

-0.0001 0.0001      

-0.0001 0.0000      

0.0002 -0.0001      

0.0009 0.0000      

-0.0006 0.0000      

-0.0027 0.0000      

0.0022 0.0000      

0.0060 

 

0.0000 
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Fig. D.4 Details D1-D10 and approximation A10 of ICG-free artifacts x(n), using discrete Meyer wavelet 

(all the waveforms are in arbitrary units). 

 

 

Fig. D.5 Details D1-D10 and approximation A10 of artifact-free ICG x(n), using discrete Meyer wavelet 

(all the waveforms are in arbitrary units). 
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Fig. D.6 Details D1-D10 and approximation A10 of ICG-free artifacts x(n), using Coiflets (order 5) 

wavelet (all the waveforms are in arbitrary units). 

 

 
 

Fig. D.7 Details D1-D10 and approximation A10 of artifact-free ICG x(n), using Coiflets (order 5) wavelet 

(all the waveforms are in arbitrary units). 
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Fig. D.8 Details D1-D10 and approximation A10 of ICG-free artifacts x(n), using Daubechies (order 6) 

wavelet (all the waveforms are in arbitrary units). 

 

 
 

Fig. D.9 Details D1-D10 and approximation A10 of artifact-free ICG x(n), using Daubechies (order 6) 

wavelet (all the waveforms are in arbitrary units). 
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Fig. D.10 Waveforms: (a) artifact-free ICG, (b) ICG-free artifact, (c) sensed respiration, (d) ICG with 

simulated -9 dB artifact, (e) ICG with simulated -6 dB artifact, (f) ICG with simulated -3 dB artifact, (g) 

ICG with simulated 0 dB artifact, (h) ICG with simulated 3 dB artifact, (i) ICG with simulated 6 dB 

artifact, and (j) ICG with simulated 9 dB artifact (all the waveforms are in arbitrary units). 
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Fig. D.11 Processed output by WBD of signal: (a) artifact-free ICG, (b) ICG with simulated -9 dB artifact, 

(c) ICG with simulated -6 dB artifact, (d) ICG with simulated -3 dB artifact, (e) ICG with simulated 0 dB 

artifact, (f) ICG with simulated 3 dB artifact, (g) ICG with simulated 6 dB artifact, and (h) ICG with 

simulated 9 dB artifact, and (i) ICG-free artifact (all the waveforms are in arbitrary units). 
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Fig. D.12 Waveforms contaminated by strong respiratory artifacts for processing: (a) ECG (in arbitrary 

units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG  (in Ω/s), and (e) sensed airflow (in arbitrary units) from 

subject ‘MS’. 

 

 
Fig. D.13 Processing of ICG by WBD: (a) recorded ICG (in Ω/s), and (b) processed ICG (in Ω/s), subject 

‘MS’. 

 

 
 

Fig. D.14 Processing of impedance signal by WBD: (a) recorded z(t) (in Ω), and (b) processed z(t) (in Ω), 

subject ‘MS’. 
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Fig. D.15 Waveforms contaminated by strong respiratory artifacts for processing: (a) ECG (in arbitrary 

units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG  (in Ω/s), and (e) sensed airflow (in arbitrary units) from 

subject ‘PP’. 

 

 
 

Fig. D.16 Processing of ICG by WBD: (a) recorded ICG (in Ω/s), and (b) processed ICG (in Ω/s), from 

subject ‘PP’. 

 

 
Fig. D.17 Processing of impedance signal by WBD: (a) recorded z(t) (in Ω), and (b) processed z(t) (in Ω), 

from subject ‘PP’. 
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Fig. D.18 Waveforms contaminated by strong respiratory artifacts for processing: (a) ECG (in arbitrary 

units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG  (in Ω/s), and (e) sensed airflow (in arbitrary units) from 

subject ‘KI’. 

 

 
Fig. D.19 Processing of ICG by WBD: (a) recorded ICG (in Ω/s), and (b) processed ICG (in Ω/s), from 

subject ‘KI’. 

 

 
Fig. D.20 Processing of impedance signal by WBD: (a) recorded z(t) (in Ω), and (b) processed z(t) (in Ω), 

from subject ‘KI’. 
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Fig. D.21 Waveforms contaminated by strong respiratory artifacts for processing: (a) ECG (in arbitrary 

units), (b) Zo (in Ω), (c) z(t) (in Ω), (d) ICG  (in Ω/s), and (e) sensed airflow (in arbitrary units) from 

subject ‘AJ’. 

 

 
 

Fig. D.22 Processing of ICG by WBD: (a) recorded ICG (in Ω/s), and (b) processed ICG (in Ω/s), from 

subject ‘AJ’. 

 

 
 

Fig. D.23 Processing of impedance signal by WBD: (a) recorded z(t) (in Ω), and (b) processed z(t) (in Ω), 

from subject ‘AJ’. 
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 Table D.2 SAR improvement in dB, for simulated input SAR in the –9 to 9 dB  

 range for recordings from different subjects. 

 

 

Subject  SAR improvement (dB) 

 AFSR AFER WBD 

AS  18.4 19.4 21.9 

AT  18.5 19.6 21.9 

BT  18.8 19.7 21.5 

CT  18.5 19.7 21.6 

DC  18.5 19.5 21.5 

DV  18.8 19.3 21.8 

GR  18.8 19.7 21.8 

GS  18.6 19.8 21.5 

LN  18.2 19.7 21.5 

LV  18.7 19.7 21.5 

MN  18.7 19.3 21.6 

MP  18.7 19.3 21.7 

MS  18.5 19.6 21.8 

PK  18.6 19.4 21.7 

PM  18.8 19.8 21.5 

RN  18.6 19.7 21.6 

RY  18.3 19.8 21.8 

SK  18.2 19.5 21.5 

SN  18.5 19.6 21.7 

SY  18.6 19.5 21.6 

VK  18.5 19.4 21.9 

UK  18.4 19.5 21.7 

VP   18.3 19.5 21.8 

     Min  18.2 19.3 21.5 

Max  18.8 19.8 21.9 

Mean  18.5 19.6 21.7 

s.d.    0.2   0.2   0.1 

 

 
 

 



 



 

 

 

Appendix E 

 

RESULTS FROM EVALUATION  

IN A CLINICAL SETTING  
 

 

In Chapter 6, the values of the left ventricular ejection time (Tlvet) and the stroke volume (SV) 

estimated using ICG are compared with those obtained by Doppler echocardiogram, and the 

effectiveness of the artifact suppression techniques in improving the beat-to-beat agreement is 

examined. Correlation coefficient, regression, and Bland-Altman test have been used to compare 

the values from impedance cardiography and Doppler echocardiography. This appendix includes 

scatter plots for signal recordings from the all the subjects with normal health and subjects with 

cardiovascular disorders. Figures E.1-E18 give scatter plots between SV values from the ICG and 

the echocardiogram for all the subjects with normal health. Scatter plots between SV values for 

all the subjects with cardiovascular disorders are given in Figs. E19-E26. It is observed that 

processing resulted in a considerable decrease in scatter from linear regression for all the subjects 

in both pre-exercise and post-exercise conditions. 
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Fig. E.1 Scatter plot and linear regression for SV (in mL) estimated for subject ‘DM’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 
  

Fig. E.2 Scatter plot and linear regression for SV (in mL) estimated for subject ‘DM’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 

Fig. E.3 Scatter plot and linear regression for SV (in mL) estimated for subject ‘ML’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 

 
  

Fig. E.4 Scatter plot and linear regression for SV (in mL) estimated for subject ‘ML’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 

 

 



Appendix E  Results from evaluation in a clinical setting 

 

 147

 

 

Fig. E.5 Scatter plot and linear regression for SV (in mL) estimated for subject ‘MR’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 
Fig. E.6 Scatter plot and linear regression for SV (in mL) estimated for subject ‘MR’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 

Fig. E.7 Scatter plot and linear regression for SV (in mL) estimated for subject ‘P0’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 
 

Fig. E.8 Scatter plot and linear regression for SV (in mL) estimated for subject ‘P0’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 
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Fig. E.9 Scatter plot and linear regression for SV (in mL) estimated for subject ‘P1’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 
  

Fig. E.10 Scatter plot and linear regression for SV (in mL) estimated for subject ‘P1’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 
 

Fig. E.11 Scatter plot and linear regression for SV (in mL) estimated for subject ‘PK’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

  
 

Fig. E.12 Scatter plot and linear regression for SV (in mL) estimated for subject ‘PK’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 



Appendix E  Results from evaluation in a clinical setting 

 

 149

 

Fig. E.13 Scatter plot and linear regression for SV (in mL) estimated for subject ‘RK’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

  

 
 

Fig. E.14 Scatter plot and linear regression for SV (in mL) estimated for subject ‘RK’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 
 

Fig. E.15 Scatter plot and linear regression for SV (in mL) estimated for subject ‘UT’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

  

 
 

Fig. E.16 Scatter plot and linear regression for SV (in mL) estimated for subject ‘UT’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 
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Fig. E.17 Scatter plot and linear regression for SV (in mL) estimated for subject ‘VM’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

  

 
 

Fig. E.18 Scatter plot and linear regression for SV (in mL) estimated for subject ‘VM’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 
 

Fig. E.19 Scatter plot and linear regression for SV (in mL) estimated for subject ‘AB’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

  

 
Fig. E.20 Scatter plot and linear regression for SV (in mL) estimated for subject ‘AB’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 
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Fig. E.21 Scatter plot and linear regression for SV (in mL) estimated for subject ‘ML’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

  

 
 

Fig. E.22 Scatter plot and linear regression for SV (in mL) estimated for subject ‘ML’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 

Fig. E.23 Scatter plot and linear regression for SV (in mL) estimated for subject ‘DD’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

  

 
 

Fig. E.24 Scatter plot and linear regression for SV (in mL) estimated for subject ‘DD’ in post-exercise 

condition: (a) UP, (b) AFSR, (c) AFER, and (d) WBD. 
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Fig. E.25 Scatter plot and linear regression for SV (in mL) estimated for subject ‘LR’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

  

 
 

Fig. E.26 Scatter plot and linear regression for SV (in mL) estimated for subject ‘IK’ in resting condition: 

(a) UP, (b) AFSR, (c) AFER, and (d) WBD. 

 

 

 



 

 

 

Appendix F 

 

FORMS FOR BACKGROUND INFORMATION  

AND SUBJECT’S INFORMED CONSENT  
 

 

F.1 Form for recording background information of the participating subjects  

 

 

SUBJECT’S BACKGROUND INFORMATION 

 

       Date __/__/ 2007 

 

Name: _______________________________ Code: _________________ 

Address:  _____________________________________________________ 

    _____________________________________________________ 

Phone: (       ) _______________________Extension: _________________ 

Sex:   _______          Age:   ___________________________ 

Occupation:       _____________________________________________ 

Place of birth:         ______________________________________________ 

First language:        ______________________________________________ 

Problem diagnosed:  _____________________________________________ 

Cardiac history:       _____________________________________________ 

                         _____________________________________________ 

History of other medical problems:  _________________________________ 

Other remarks:  ________________________________________________ 

________________________________________________ 
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F.2 Form for subject’s informed consent to participate in the investigation 

 

CONSENT FOR PARTICIPATION 

 

Investigation: Evaluation of signal processing techniques for impedance cardiography 

 

Investigators 

V. K. Pandey, Prof. P. C. Pandey, and Prof. L. R. Subramanyan, IIT Bombay 

Dr. N. Burkule, Asian Heart Institute and Research Centre, Bandra-Kurla Complex, Mumbai 

 

Information 

This investigation involves non-invasive recordings related to cardiovascular functioning with an 

Impedance Cardiograph and Doppler Echocardiograph. If you agree to participate in this 

investigation, recordings will be taken by using surface electrodes connected to an impedance 

cardiograph attached to signal acquisition interface unit. Four ECG disposable pre-gelled 

electrodes and one nostril sensor will be placed for a duration of approximately 10 minutes. 

During these recordings, Doppler echocardiogram will also be acquired in the left lateral position. 

At the end of the recordings, the nostril sensor and electrodes will be removed. Investigation may 

involve several recordings before and after mild levels of exercise. The risks of participating in 

this investigation are almost zero. 

 

Participation 

Your participation in this investigation is voluntary and you may decline to participate in this 

investigation at any time. If you withdraw from the investigation before recordings are 

completed, your data will be destroyed at your request. 

 

Benefits 

There are no direct benefits to you for participating in this investigation. No diagnostic 

information or inference based on these recordings will be made available to you. Knowledge 

gained from this research may help in developing better instruments for diagnosis of 

cardiovascular diseases in the future.  

 

Confidentiality 

The information in the investigation will be kept confidential. Data will be stored in files 

referenced by a number that is not linked to your identity. No reference will be made in oral or 

written reports which could link you to the investigation. 

 

Compensation 

No compensation will be given to you for your participation. 

 

Consent 

I have read and understood the above information. I have received a copy of this form. I agree to 

participate in this investigation with the understanding that I may withdraw at any time. 

 

Participant's Signature: _______________________________________  

Participant’s Name: _________________________________________ 

Date: __________________ Place: Mumbai 
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