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Abstract 

Impedance cardiography is a low-cost noninvasive technique, based on monitoring 

of the thoracic impedance, for estimation of stroke volume (SV) and some other 

cardiovascular indices. Impedance cardiogram (ICG) is the negative of the first 

derivative of the impedance signal. Detection of its characteristic points B, C, and X 

is used for SV estimation. Our research objective is to develop a method for 

automatic beat-to-beat SV estimation to improve the acceptability of this technique 

for use in clinical practice. For this purpose, two investigations are carried out: (i) 

development of a technique for characteristic point detection and (ii) use of 

artificial neural network (ANN) for SV estimation using echocardiography as the 

reference technique. An ICG-echocardiography database is developed with 

recordings from subjects with normal health under rest and in the post -exercise 

condition and from subjects with cardiovascular disorders under rest. 

 A technique for automatic detection of B, C, and X points  is proposed. It 

uses wavelet-based artifact suppression and multiple time-domain features in ICG 

along with R and T peaks of ECG as reference points to reduce errors due to 

morphological variations. Evaluation with reference to the visually marked points in 

ICG and with reference to the intervals measured from echocardiography showed its 

performance to be better than the established techniques. For estimation of the B-X 

interval, the mean and standard deviation of differences, as referred to the mean R-R 

interval, were 3.2% and 7.1%, respectively.  

 An ANN-based technique for SV estimation is proposed, with the input ICG 

parameters obtained by automatic detection of the characteristic points and the 

target values obtained by beat-to-beat SV measurements from time-aligned Doppler 

echocardiogram. A three-layer feed-forward ANN with error back-propagation 

algorithm is optimized by examining the effects of the number of neurons in the 

hidden layer, activation function, training algorithm, and set of input parameters . 

Performance of the optimized ANN was much better than that of equation-based 

estimations. Results showed that the ANN trained using the pooling of the under-

rest and post-exercise recordings from subjects with normal health can be used for 

SV estimation for the recordings from subjects with cardiovascular disorders, it 

resulted in mean error of −0.1 mL, standard deviation of errors of 7.2 mL, and 

correlation coefficient of 0.93. Thus the proposed method may be helpful in 

improving the acceptability of impedance cardiography in clinical practice and as a 

research tool for study of SV variability. 
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Chapter 1 

INTRODUCTION 

 

1.1 Problem Overview 

The time interval between two successive contractions of the heart is known as the cardiac 

cycle. Stroke volume (SV) is the amount of blood pumped out in one cardiac cycle and 

cardiac output (CO) is the amount of blood pumped by the heart in one minute and is obtained 

as the product of SV and the heart rate (Guyton and Hall 2006). SV and CO are important 

parameters for assessing the functioning of the cardiovascular system (Kerr et al 1998, 

Korhonen et al 1999, Siebert et al 1999, Nelson and Janerot-Sjoberg 2001, Liu et al 2004, 

Siebert et al 2004). 

 The established techniques for CO estimation are Fick's method, dye dilution, and 

thermodilution. These techniques are invasive and expensive. Risks associated with them 

restrict their use for subjects with cardiovascular disorders. Further, they are not usable for 

continuous monitoring (Kubicek et al 1974, Pianosi and Garros 1996, De Maria and 

Raisinghani 2000, Scherhag et al 2005, Tang and Tong 2009). The commonly used 

noninvasive technique is transthoracic echocardiography (Lewis et al 1984, Peterson et al 

2003, Baumgartner et al 2009). It requires expensive equipment and skilled manpower. 

Several studies have investigated SV variability and its relationship with respiration (Marik et 

al 2009, Hoff et al 2014, Elstad and Walloe 2015, Holme et al 2016). Automatic beat-to-beat 

SV monitoring over an extended period using impedance cardiography can facilitate use of 

SV variability, like that of heart rate variability, for diagnosis of cardiovascular disorders. 

 Impedance cardiography is a low-cost noninvasive technique, based on monitoring of 

the thoracic impedance, for SV estimation (Kubicek et al 1974, Qu et al 1986, Kim 1989, 

Patterson 1989, Van De Water et al 2003). It involves applying a low-level current (< 5 mA) 

of high frequency (20 – 100 kHz) through a pair of electrodes placed on the thorax and 

measuring the resulting amplitude-modulated voltage developed across another pair of 

electrodes placed inside the region bounded by the current injecting electrodes. It can be used 

as a tool for early diagnosis of cardiovascular disorders (Kubicek et al 1974, Woltjer et al 

1997, Ventura et al 2000, Van De Water et al 2003, Heinroth et al 2007, Bour and Kellett 

2008). However, it is still not considered as a replacement for the existing techniques for use 

in clinical diagnosis or as part of patient bedside monitor, due to lack of repeatability of the 

measurements and agreement with the reference techniques. Areas of further investigation for 
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improving acceptance of this technique include establishing the sources of the impedance 

signal and mathematical modelling of the thorax, establishing the most suitable electrode 

configuration, SV estimation technique, establishing the effect of physical parameters 

(weight, height, age, etc.) in SV estimation, suppression of respiratory and motion artifacts to 

enable beat-to-beat estimation, and clinical applications (Jensen et al 1995, Raaijmakers et al 

1997, Kamath et al 2009, Pandey and Pandey 2009, Tang and Tong 2009, Patterson 2010). 

 The negative of the derivative of the thoracic impedance signal is known as the 

impedance cardiogram (ICG). Landmarks in ICG associated with significant events in the 

cardiac cycle are known as the characteristic points, named as the A, B, C, X, and O points 

(Lababidi et al 1970, Takada et al 1977, Patterson 1989, Hurwitz et al 1990, Summers et al 

2003). The B, C, and X points are detected for obtaining the parameters for SV estimation. As 

ICG is often contaminated with motion and respiratory artifacts, ensemble averaging of the 

waveform is generally employed to suppress the artifacts (Kubicek et al 1974, Qu et al 1989, 

Hurwitz et al 1990, Sherwood et al 1998, Riese et al 2003). It leads to averaging of event 

latencies and distortion in the ICG features and therefore the estimated parameters from 

ensemble-averaged ICG may not be well related to SV. 

 Several equations for SV estimation, based on models of the thoracic impedance and 

the aortic blood flow profile, have been proposed (Kubicek et al 1966, Kubicek et al 1970, 

Kubicek et al 1974, Kubicek 1989, Patterson 1989, Sramek et al 1983, Sramek 1984, 

Sherwood et al 1990, Van De Water et al 2003, Bernstein and Lemmens 2005). These 

equations use parameters obtained from the ICG waveform and patient-dependent physical 

parameters. Several studies have compared the measurements using impedance cardiography 

with those using reference techniques like thermodilution and echocardiography (Lababidi 

et al 1971, Aust et al 1982, Lewis et al 1984, Wang et al 1989, Northridge et al 1990, Castor 

et al 1994, Kizakevich et al 1994, Jensen et al 1995, Woltjer et al 1996, van der Meer et al 

1999, De Maria and Raisinghani 2000, Summers et al 2003, Van De Water et al 2003, 

Summers et al 2004, Bernstein and Lemmens 2005, Fortin et al 2006, Arora et al 2007, 

Baumgartner et al 2009, Fellahi et al 2009, Kieback et al 2009, Tang and Tong 2009). Most 

of these studies involved subjects with normal health and some involved subjects with 

cardiovascular disorders. The results generally do not show a good agreement in case of 

subjects with cardiovascular disorders. Assuming the estimation from the reference technique 

to be error-free, the disagreements could be due to three sources: (i) errors in estimation of 

ICG parameters due to artifacts, smearing during ensemble averaging, and errors in detection 

of the characteristic points; (ii) inadequacies of the ICG parameter set and the SV equation; 

and (iii) use of body-related measurements that are unrelated to the type of disorder. 
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Therefore, further investigations are needed to develop a technique for SV estimation under 

clinical conditions. 

1.2 Research Objectives 

The research objective is to develop a technique for automatic beat-to-beat SV estimation 

using ICG parameters, without using models of the thoracic impedance and the aortic blood 

flow profile. For this purpose, two investigations are carried out: (i) development of a 

technique for improved detection of the ICG characteristic points as needed for SV estimation 

and (ii) use of artificial neural network (ANN) for SV estimation using Doppler 

echocardiography as the reference technique. 

  A time-domain technique for automatic detection of ICG characteristic points is 

proposed. It does not require estimation of the baseline and manual selection of the processing 

parameters. The technique is validated on recordings from subjects with normal health under 

rest and in the post-exercise condition with an increase in the heart rate introduced by exercise 

and the recordings from subjects with cardiovascular disorders under rest. A technique for 

beat-to-beat SV estimation using artificial neural network is developed using Doppler 

echocardiography as the reference technique. The proposed technique is investigated on the 

recordings from subjects with normal health for finalizing the set of input parameters and 

optimizing the network. Subsequently, the technique is evaluated on the recordings from both 

sets of subjects by comparing the results with those from the equation-based estimations. 

1.3  Thesis Outline 

The second chapter provides an overview of impedance cardiography and presents the scope 

of research. The third chapter presents the proposed technique for automatic detection of ICG 

characteristic points and its validation. The investigations for beat-to-beat SV estimation 

using artificial neural networks and the evaluation results are presented in the fourth chapter. 

Summary of the investigations carried out, conclusions, and some suggestions for further 

investigations are presented in the last chapter. Supplementary information is provided in the 

four appendices. 



 

 

Chapter 2 

IMPEDANCE CARDIOGRAPHY 

 

2.1 Introduction 

Impedance cardiography is a noninvasive technique, based on monitoring of the thoracic 

impedance during the cardiac cycle, for estimation of several cardiovascular indices. It was 

primarily developed by Kubicek et al (1966) as a low-cost technique for SV estimation. It can 

be used for early diagnosis of cardiovascular disorders (Kubicek et al 1974, Woltjer et al 

1997, Ventura 2000, Van De Water et al 2003, Ono et al 2004, Heinroth et al 2007, Bour and 

Kellett 2008). This chapter provides an overview of the instrumentation for impedance 

cardiography, the physiological correlates of the impedance signal, equations for SV 

estimation, applications of impedance cardiography, and clinical studies on SV estimation. 

The last section presents the scope of research reported in the thesis. 

2.2 Instrumentation for Impedance Cardiography 

The technique involves applying a low-level current (< 5 mA) of high frequency (20 –

100 kHz) into the thorax through a pair of electrodes placed on the thorax and measuring the 

resulting voltage developed across another pair of electrodes placed inside the region bounded 

by the current injecting electrodes (Kubicek et al 1966, Kubicek 1970, Kubicek et al 1974, 

Qu et al 1986, Kim 1989, Patterson 1989, Van De Water et al 2003). The impedance 

cardiography instrument generally consists of a current source, an impedance detector and 

differentiator, an ECG extraction circuit, and two pairs of electrodes, as shown in Figure 2.1. 

The picked-up voltage has two components. The first component is the voltage drop caused 

by the excitation current passing through the thoracic impedance. This component is an 

amplitude modulated waveform with the frequency of the excitation current as the carrier 

frequency and a very small modulation index due to variation in the thoracic impedance. The 

second component is contributed by ECG. The impedance detector comprises a difference 

amplifier and bandpass filter to supress common-mode interference, ECG component, and 

high-frequency noise, followed by an amplitude demodulator to extract a voltage proportional 

to the thoracic impedance. The impedance of a body segment measured using low-level high-

frequency current is nearly resistive (Rosell and Webster 1995) and the term impedance in the 

context of impedance cardiography refers to the resistance of the thoracic segment. The 

impedance signal refers to the voltage waveform proportional to the time-varying thoracic 
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resistance. Negative of the first derivative of the impedance signal is known as the impedance 

cardiogram (ICG) and it is obtained as the output of the differentiator. The ECG extraction 

circuit extracts the ECG signal which is used as reference for processing the ICG signal. 

 In impedance cardiography, generally four-electrode configuration is used, with surface 

electrodes in the form of either band or spot electrodes. Several studies have been conducted 

regarding the placement of electrodes for recording the ICG signals (Bonjer et al 1952, 

Kubicek et al 1966, Kubicek et al 1970, Sramek 1984, Penney et al 1985, Bernstein et al 

1986, as cited in Woltjer et al 1997, Boomsma et al 1989, Patterson et al 1991, Ragheb et al 

1992, Yamakoshi et al 2003, Ikarashi et al 2006). 

 Bonjer et al (1952) used four band electrodes, with the outer pair of electrodes to inject 

the current and the inner pair to measure the voltage. Use of separate electrode pairs for 

current injection and voltage measurement helps in reducing the contribution of electrode-

tissue interface impedances in the sensed voltage and therefore in reducing motion artifacts in 

the detected impedance signal. Use of the four-band electrode configuration, as shown in 

Figure 2.2(a), has been reported in many studies (Kubicek et al 1966, Kubicek et al 1970, 

Woltjer et al 1997, Patterson 2010). Use of band electrodes for current injection is meant to 

provide a uniform current distribution in the thoracic region. However, band electrodes may 

not be suitable for clinical use and their use in long-term monitoring can cause a chocking 

sensation. To overcome these limitations, Sramek (1984) proposed a twelve-spot electrode 

configuration, replacing each band electrode by a set of shorted together spot electrodes. In 

this configuration, two spot electrodes placed laterally on the neck at the intersection of the 

circumference of the neck with the frontal plane and shorted together serve as the upper 

ECG

Impedance 

Detector

Current 

Source

ECG Extraction 

Circuit

Differentiator

Current Electrodes

Voltage Electrodes

Impedance 

Signal

ICG

ICG Instrument

 

Figure 2.1 Block diagram of instrumentation for impedance cardiography. 
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voltage electrode. Two spot electrodes placed on the neck approximately 3 – 5 cm above the 

upper voltage electrodes and shorted together serve as the upper current electrode. Two spot 

electrodes are placed at the anterior intercostal space at each mid-clavicular line at the level of 

xiphoidal process and two spot electrodes are placed at the same level on the back. These four 

spot electrodes shorted together serve as the lower voltage electrode. Four spot electrodes are 

placed approximately 4 – 6 cm below the lower set of voltage electrodes. These spot 

electrodes are shorted together and serve as lower current electrode. 

 Penney et al (1985) used four-spot electrode configuration, as shown in Figure 2.2(b), 

to avoid the practical difficulty associated with band electrodes for critically ill patients. In 

this configuration, two electrodes are placed with approximately 6 cm separation at the base 

of the neck. Two electrodes are placed on the lower left anterolateral of the thorax, with one 

near the mid-clavicular line and the other one at 8 cm from the first and in the tenth inter-

costal space near mid-auxiliary line. They used two-channel impedance cardiography for 

recordings from spot and band electrodes and reported a good similarity between the two 

signals, in terms of peak and shape of the waveform. Qu et al (1986) evaluated different 

placements of the four-spot electrode configurations. They concluded that better SNR was 

achieved with the current electrode pair placed at the back of the sternum, with one electrode 

on the neck and the other electrode above the xiphoidal process, and the voltage electrode pair 

in the front, with the two electrodes placed inside the region of the current electrodes. 

  Bernstein et al (1986, as cited in Woltjer et al 1997) proposed an eight-spot electrode 

configuration. In this configuration, two spot electrodes placed laterally on the neck at the 

intersection of the circumference of the neck with the frontal plane and shorted together serve 

as the upper voltage electrode. Two spot electrodes placed on the neck approximately 5 cm 

text

text

Current 

Electrodes

Voltage 

Electrodes

text

text

Current 

Electrodes

Voltage 

Electrodes
 

 (a) (b) 

Figure 2.2 Electrode configurations: (a) Four-band electrode configuration, (b) Four-spot 

electrode configuration. 
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above the upper voltage electrodes and shorted together serve as the upper current electrode. 

Two spot electrodes placed laterally at the level of xiphoidal process and shorted together 

serve as the lower voltage electrode. Two spot electrodes placed approximately 5 cm below 

the lower set of voltage electrodes and shorted together serve as the lower current electrode. 

Woltjer et al (1997) reported that the results from the lateral spot electrode array were 

different from those obtained using band electrodes, possibly due to the inhomogeneous 

electrical field caused by these spot electrodes. They modified the electrode array to nine-spot 

electrode array, called as modified semi-circular configuration. In this configuration, an 

electrode placed on the forehead serves as the upper current electrode. Two spot electrodes 

placed laterally on the neck at the intersection of the circumference of the neck with the 

frontal plane and shorted together serve as the upper voltage electrode. The lower voltage 

electrode is formed by two shorted-together spot electrodes placed on the two lateral sides at 

the level of xiphoidal process. The lower current electrode is formed by four shorted-together 

spot electrodes placed horizontally on the frontal line and below the lower voltage electrodes. 

It was reported that this configuration generated a relatively homogeneous electrical field in 

the thoracic region and was interchangeable with the band electrode configuration. 

 Several instrument designs and electrode configurations have been reported and some 

instruments are commercially available. A test setup is needed for comparing the performance 

of these instruments in terms of linearity, sensitivity, accuracy, frequency response, and noise 

rejection. For this purpose, thoracic bioimpedance simulators have been reported with settable 

step changes in the impedance (Pandey et al 2008, Ulbrich et al 2015). As the step change in 

the simulated impedance is not suitable for extraction of ICG, there is a need to develop a 

thoracic bioimpedance simulator to simulate the time-varying bioimpedance with selectable 

waveform along with settable basal impedance, and simulation of noise and artifacts. 

2.3 Impedance Signal and Its Physiological Correlates 

The source of the impedance signal has been subject of several studies involving experiments 

on animals and humans, using electrical model of the thorax, and those using 3D finite 

difference thorax models developed using magnetic resonance imaging (Bonjer et al 1952, 

Kubicek et al 1970, Visser et al 1977, Kim et al 1988, Wang and Patterson 1995, Patterson 

2010). Initially it was assumed that the lung was the major contributor to the impedance 

signal (Kubicek et al 1970). Later, it was reported that aorta was the source of the impedance 

signal (Kubicek et al 1974, Kim et al 1988). Visser et al (1977) found from an experiment 

conducted on dogs that impedance change was caused by, apart from the cardiac related 

volume changes, change in blood resistivity due to change of orientation of the erythrocytes. 
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This has been supported by several studies conducted on humans (Sakamoto and Kanai 1979, 

Wang and Patterson 1995, Bernstein 2010). Figure 2.3 shows the change in erythrocyte 

orientations during the cardiac cycle, from random during the diastole to align along the flow 

direction during the systole. 

 The landmarks in ICG associated with the significant events in the cardiac cycle are 

known as the ICG characteristic points and these are labeled as A, B, C, X, and O (Lababidi 

et al 1970, Takada et al 1977, Kim 1989, Patterson 1989, Hurwitz et al 1990, Woltjer et al 

1997, Summers et al 2003). The simultaneously recorded thoracic impedance signal, ICG 

along with its characteristic points marked on it, phonocardiogram (PCG) showing the heart 

sounds, and ECG are shown in Figure 2.4. 

 A point: It follows the P wave of the ECG signal and it is the negative deflection before 

the B point in the ICG waveform. It generally coincides with the atrial contraction, but the 

contribution of the contraction of the left and right atria has not been established (Karnegis 

and Kubicek 1970, Lababidi et al 1970, Takada et al 1977, Woltjer et al 1997). 

 B point: It occurs after the QRS complex, in the region of the first heart sound, as a 

notch in the ICG waveform just before the rapid upstroke ascending towards the C point. It is 

associated with the aortic valve opening, as confirmed by echocardiography and aortic 

pressure technique (Lababidi et al 1970, Kizakevich et al 1993, Visser et al 1993). 

 C point: It is the highest peak in the ICG waveform during the systole and it is 

associated with the peak in the aortic blood flow (Karnegis and Kubicek 1970, Kubicek et al 

1974, Welham et al 1978, Kizakevich et al 1993, Woltjer et al 1997). Kizakevich et al (1993) 

used Doppler echocardiography to measure peak aortic blood velocity and found the C point 

to be associated with the ventricular contraction. 

 X point: It is below the baseline and is the lowest point in the ICG waveform followed 

by the O point in a cardiac cycle. It is associated with the aortic valve closure (Lababidi et al 

 

Fig. 3 Randomly oriented and oriented erythrocytes in diastolic and systolic phases respectively [28] 

 

Figure 2.3 Orientation of erythrocytes during different phases of the 

cardiac cycle. Adapted from Bernstein (2010). 
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Figure 2.4 ICG with its characteristic points and other related signals. Adapted from Patterson 

(1989). 

1970, Kubicek et al 1974) and occurs in the region of the second heart sound. Its association 

with the aortic valve closure has been confirmed by studies using echocardiography and aortic 

pressure technique (Kizakevich et al 1993, Visser et al 1993). 

 O point: It is the peak after the X point. It coincides with the wide opening of the mitral 

valve. It lies in the interval from the mitral transition, above the lowest point i.e. aortic valve 

closure to the A point during the early diastole (Lababidi et al 1970, Bour and Kellett 2008). 

It is strongly influenced by the pulmonary venous return and abnormalities in its location are 

associated with aortic valve insufficiency or acute myocardial injury in heart failure patients 

(Woltjer et al 1997). 

2.4 Equations for SV Estimation 

Several equations for estimating the stroke volume from the parameters of ICG waveform 

have been developed. Some of these equations are based on physiological models and some 

are empirically derived (Kubicek et al 1966, Nyboer et al 1970, Sramek et al 1984, 

Raaijmakers et al 1997, Van De Water et al 2003, Bernstein and Lemmens 2005). In all these 

equations, the thoracic impedance is assumed to be resistive. 
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 Nyboer et al (1970) proposed the relationship between change in impedance and 

change in blood volume in a body segment during the cardiac cycle, modelling the segment as 

two parallel columns, as shown in Figure 2.5. The first column has constant impedance 0Z  

representing the basal impedance. The second column is modelled as a cylindrical conductor 

of resistivity  , fixed length ,L  and time-varying cross-sectional area ,A  and it represents 

the time-varying impedance var ( )Z t . The equivalent impedance ( )Z t  of the parallel-column 

model is  

 0 var( ) ( )Z t Z || Z t  (2.1) 

The small change in the time-varying impedance, with reference to the basal impedance 0Z  is 

given as 0( ) ( )z t Z t Z  , or as 

 
2
0

0 var

( )
( )

Z
z t

Z Z t





 (2.2) 

Assuming that var 0( ) ,Z t Z  the time-varying component is given as  

 
2
0 var( ) / ( )z t Z Z t   (2.3) 

The impedance of the variable impedance column is / ( )L A t . With volume ( ) ( )V t LA t , 

the variable impedance is given as  

 
2

var ( ) / ( )Z t L V t   (2.4) 

The time-varying component of the impedance, from (2.3) and (2.4), is given as 

 
2
0

2
( ) ( )

Z
z t V t

L
  (2.5) 

Therefore, V(t) can be obtained as 

Z(t)
Zvar(t)

oZ
L

A

 

Figure 2.5 Parallel column model. Adapted from Patterson (1989) 
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 Nyboer (1970) assumed that the blood inflow into the thorax was the cause of 

impedance change and there was insignificant outflow during the ejection phase. Impedance 

decreases with increase in the blood volume, and hence the maximum decrease in the 

impedance, max( ( ))Z z t   , corresponds to maximum change in the blood volume in the 

thorax. It can be given as 

 

2

2
0

L
V Z

Z
     (2.7)

 

 As the change in the blood volume is the net result of inflow and outflow of the blood, 

the backward slope extrapolation was proposed to estimate the change in the blood volume 

due to inflow during the cardiac cycle (Nyboer 1970). It is based on the assumption that the 

inflow lasts for a short interval at the beginning of the cardiac cycle and outflow rate remains 

nearly constant. Hence the maximum change in the impedance is calculated by drawing a 

linear extrapolation line to the down slope edge of the “volume difference graph”, a plot of 

the impedance as a function of time, and extending the line upward and downward until it 

intersects the vertical coordinates determined by the end of systole and the beginning of the 

diastole as shown in Figure 2.6. The upward intersecting point is the probable height of the 

curve due to outflow, which is equal to the change due to inflow had there been no outflow. 

Thus the measured maximum change in the impedance as estimated using the backward 

extrapolation is proportional to the maximum volume change due to ventricular ejection (SV). 

Possibly due to difficulty in applying the backward extrapolation, this technique has not been 

reported in subsequent studies. 

 To take care of the blood that leaves the thoracic region during the ejection phase, a 

forward-slope extrapolation technique was reported by Kubicek et al (1966, 1970, 1974). It is 

based on the assumptions that the blood ejection from the ventricle is in the form of a square 

pulse, i.e., the flow rate is constant over the blood ejection phase, that the blood starts 

significantly leaving the thoracic region sometime after the aortic valve opens, and that the 

maximum rate of change in the impedance is proportional to the rate of blood ejection. As 

shown in Figure 2.4, a straight line is drawn from the steepest part of ( )z t  until the end of 

the ejection phase. Thus Z is obtained as the product of the slope of the straight line and the 

left ventricular ejection time lvetT . The slope is measured by finding the peak height (C point) 

of the ICG, i.e., maximum of dz / dt . The interval lvetT  is the interval from the opening of 
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aortic valve as marked by the B point to the aortic valve closure as marked by the X point. 

The stroke volume is estimated using Kubicek equation as 

 

2

Kubicek lvet2
max0

SV
L dz

T
dtZ


 

  
 

 (2.8) 

 The main shortcomings of the Kubicek equation are associated with the validity of 

fixed-length conductor model of the thorax, difficulty in determining ,  and inconsistencies 

in measurement of L . Sramek et al (1983, as cited in Van De Water et al 2003, Sramek 1984) 

substituted the cylindrical conductor model with a truncated cone model. They approximated 

L  as 0.17H, where H is the subject height, and related  with 0Z  and L , resulting in the 

following equation, known as the Sramek SV equation: 

 

 3
max

Sramek lvet
0

/(0.17 )
SV

4.25

dz dtH
T

Z


  (2.9) 

where H is in cm, 0Z is in  , max( / )dz dt is in -1s , lvetT is in s, and SV is in mL. 

 Bernstein et al (1986, as cited in Van De Water et al 2003, Bernstein and Lemmens 

2005) modified the Sramek's equation by introducing the weight deviation term 

actual idealBMI / BMI  , where actualBMI is the body mass index (calculated as weight / 

 

 

Figure 2.6 Volume difference curve (impedance) with backward extrapolation used by Nyboer 

(1970). 
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height
2
, with weight in kg and height in m) and idealBMI = 24 -2kg m . The modified 

equation, known as the Sramek-Bernstein equation is given as 

 

 3
max

Sramek-Bernstein lvet
0

(0.17 ) /
SV

4.25

H

Z

dz dt
T


  (2.10) 

 To improve the estimation accuracy, Bernstein and Lemmens (2005) proposed an SV 

equation derived from a multi-component parallel column model of the thorax. It uses square 

root of max( / )dz dt  normalized with 0Z , in order to relate ( / )dz dt  to the variation in the 

blood resistivity caused by variation in the blood velocity. With 0Z  in  , max( / )dz dt  in 

-1s , and lvetT  in s, SV in mL is given as 

 

 
1.02

Bernstein 0 lvetmax2

16
SV / /

W
dz dt Z T


   (2.11) 

where W  = body weight (kg), 

   = index of transthoracic conduction  
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 CZ  = critical impedance (taken empirically as 20 ). 

 Some of the SV equations are based on the physiological models and some are 

empirically derived. Validity of the models used in SV equations in explaining the origin of 

the impedance signal and its physiological correlates has been questioned due to 

inconsistency of the results obtained using them (Jensen et al 1995, Raaijmakers et al 1997, 

Woltjer et al 1997, Ventura et al 2000, Scherhag et al 2005, Patterson 2010). Several 

simulation models (Kim et al 1988, Wang and Patterson 1995, Patterson 2010) have been 

used to investigate the origin of the impedance signal. Some of the parameters in the SV 

equations are body related and may lead to a bias in case of subjects with cardiovascular 

disorders, because they are unrelated to the type of cardiovascular disorder. Therefore, further 

investigations are needed to develop a technique using an appropriate set of contributing 

inputs, which can give error-free SV estimation under clinical conditions. 

2.5 Impedance Cardiography Applications  

Impedance cardiography has been developed primarily as a noninvasive technique for SV 

measurement. The ICG waveform can also be used for estimating several indices with 
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potential applications in diagnosis of cardiovascular disorders (Kim 1989, Visser et al 1993, 

Summers et al 1999, Summers et al 2003, Braun et al 2005, Sodolski and Kutarski 2007).  

 The thoracic fluid content (TFC) is related to the total fluid in the thorax, including the 

intravascular and extravascular fluids (Kubicek et al 1974, Saunders 1988) and it is given as  

 0TFC = 1/Z  (2.12) 

 The velocity index (VI) index is related to the peak velocity of the blood in the aorta 

(Packer et al 2006) and it is given as 

   0max
VI = / /dz dt Z  (2.13) 

 Acceleration index (ACI) is related to the peak acceleration of the blood flow in the 

aorta (Packer et al 2006) and it is defined as  

  2 2
0

max
ACI = / /d z dt Z  (2.14) 

 Pre-ejection period (PEP) is the time interval from the Q peak of ECG to the opening of 

the aortic valve. Systolic time ratio (STR) is the ratio of the pre-ejection period to the left 

ventricular ejection time (Packer et al 2006) and is given as  

  lvetSTR = PEP / T  (2.15) 

 Heather index (HI) is the ratio of the maximum rate of change in the impedance to the 

time interval from the Q wave of ECG to the C point of ICG, QCT (Kubicek et al 1974) and is 

given as 

  
max

HI = / / QCdz dt T  (2.16) 

 Systolic vascular resistance (SVR) is the index of the arteriolar constriction of the body 

(Packer et al 2006). It is the ratio of difference of mean arterial pressure (MAP) and central 

venous pressure (CVP) to the cardiac output (CO) and is given as 

 SVR = (MAP − CVP)/CO (2.17) 

 These indices are related to the electromechanical events of the heart and have been 

reported to be useful in diagnosing atrial and ventricular dysfunctions, valve related disorders, 

and arterial disorders. 

 The A point abnormality in ICG may be indicative of diastolic dysfunction related to 

the atrial and ventricular premature contractions (Lababidi et al 1970, Kubicek et al 1974). 

Double peaking at the C point is generally related with the ventricular abnormality, 

particularly ventricular asynchrony or severe mitral insufficiency (Kubicek et al 1974, Bour 

and Kellett 2008). The O point generally coincides with the opening of the mitral valve and 

corresponds to the E wave in the Doppler echocardiogram. Abnormality in the O point is seen 

in cases of the aortic stenosis or increased venous return. Ratio of the O peak to the C peak is 
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related to the pulmonary capillary wedge pressure and it may be useful in classification of 

heart failure patients (Karnegis and Kubicek 1970, Lababidi et al 1970, Visser et al 1977, 

Scherhag et al 2005, Bour and Kellett 2008). Left ventricular ejection fraction is the ratio of 

the amount of blood pumped out of the ventricle to the total blood in it at the end of diastole. 

On the basis of several earlier studies, Bour and Kellett (2008) concluded that 40 – 60% of 

heart failure patients have normal values of left ventricular ejection fraction and have heart 

failure due to diastolic dysfunction, i.e., relative shift in the left ventricular filling towards the 

late diastole. In such patients, the ICG shows an enlargement of the O and A points. In atrial 

fibrillation, both A and O points may disappear (Bour and Kellett 2008). 

 Effects of exercise related stress and drugs on ICG have also been reported (Lababidi et 

al 1970, Kubicek et al 1974). High-level exercise introduced enlargement of the O point 

during the rapid filling phase of the ventricles and that of the A point during the left atrial 

contraction. After low-level exercise, effects of the cardiac problems related to the 

mechanical activity of the heart were much more visible in ICG than in ECG. In healthy 

subjects, SV increased with exercise and lvetT  decreased. Pulmonary oedema, pleural effusion 

or haemorrhage into the chest resulted in lower value of 0Z . In healthy subjects, the R-C 

interval (interval from the R peak of ECG to the C point of ICG) shortened in post-exercise 

stress condition and in response to drugs. 

 Several researchers have reported the usefulness of ICG for estimation of SV (Kubicek 

et al 1974, Woltjer et al 1997, Ventura et al 2000, Ono et al 2004, Heinroth et al 2007, Bour 

and Kellett 2008). Kim et al (1992) reported the use of ICG for diagnosing the cardiac 

diseases related to pulmonary artery, dilated cardiomyopathy, aortic stenosis and other 

valvular diseases by monitoring the SV during exercise. Zhang and Li (2008) reported that 

ICG can be used to monitor cardiac function under transient conditions. Sherwood et al 

(1998) reported that the ICG may be useful for assessing the effect of physical exercise, sleep, 

and use of drugs on the cardiac system. 

 Strickberger et al (2005) reported the use of ICG in cardiac resynchronization therapy 

(CRT). Objective of CRT is to correct ventricular dysfunction in severe heart failure patients 

by simultaneously pacing both the left and right ventricles. It has been reported to work well 

in patients with QRS complex wider than 120 ms. Tissue Doppler imaging echocardiography 

(TDI) is currently used for detection of ventricular dys-synchrony for CRT (Tassan-Mangina 

et al 2006). Bour and Kellett (2008) and Heinroth et al (2007) have also reported use of ICG 

for this purpose. 
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 ICG may be useful in emergency departments because it is a noninvasive technique 

providing primary information about the cause and severity of attack in heart patients 

(Ventura et al 2000, Summers et al 2003, Lo et al 2007). It can be used for examining the 

effects of various stimuli (exercise, sleep, during drug testing, etc.) on the cardiovascular 

system (Sherwood et al 1998, Ono et al 2004). It has been reported to be useful in 

determining the coronary artery diseases and ischemia, a localized vasoconstriction during 

exercise (Kizakevich et al 1989, Summers et al 2003). It has been used as a prognostic tool in 

predicting short-term risk in stable chronic heart failure patients (Packer et al 2006). Hill and 

Lowe (1973) used it for monitoring blood flow during anaesthesia. Lopez-Saucedo et al 

(1989) used it to monitor resuscitation of a patient during the treatment in intensive care unit. 

Yu et al (2001) used hemodynamic parameters measured from ICG to explore the 

psychological mood states. Variations in R-C time intervals and CO have been used to 

examine the effect of different diseases on the autonomic nervous system (Jindal et al 2003, 

Meijer et al 2007). You-ten et al (2008) used ICG for continuous monitoring of the cardiac 

hemodynamic parameters during the caesarean delivery under spinal anaesthesia and used 

SV, systolic blood pressure, and cardiac indices to maintain the normal baseline blood 

pressure by drug administration to avoid hypotension. A study by Wong et al (2009), 

involving subjects with normal blood pleasure, reported that ECG and ICG together can be 

used for monitoring the systolic blood pressure. 

2.6 Clinical Studies on SV Estimation 

Several studies have been reported for comparison of SV and CO estimated using impedance 

cardiography with those measured using some of the established techniques (Jensen et al 

1995, Woltjer et al 1996, Woltjer et al 1997, De Maria and Raisinghani 2000, Summers et al 

2003, Bernstein and Lemmens 2005, Kamath et al 2009, Tang and Tong 2009).  

  Woltjer et al (1996) estimated SV using ICG on subjects with cardiovascular disorders, 

with lateral spot and modified semi-circular spot electrode configurations. They compared 

both sets of values with those obtained using thermodilution as the reference technique. 

Kubicek and Sramek-Bernstein equations were used for SV calculation in both the electrode 

configurations. Comparison with reference technique was carried out by calculating the mean 

difference, standard deviation of differences, linear regressing (intercept and slope), and 

correlation coefficient. The results, summarized in Table 2.1, showed that the best 

performance was observed for Kubicek equation with modified semi-circular spot electrode 

array (correlation coefficient of 0.90, mean difference of 0.5 mL, and standard deviation of 

differences = 8.6 mL). Lateral spot electrode array gave relatively poor results for both the 
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equations. The authors emphasized the need for further studies to examine the validity of 

impedance cardiography for monitoring SV variation under different conditions in the same 

patient. Bernstein and Lemmens (2005) compared CO estimation from ICG using their 

proposed SV equation with the Kubicek, Sramek, and Sramek-Bernstein equations, using 

thermodilution as the reference technique. They used lateral spot electrode configuration 

(eight-spot electrode configuration) in their study. The ICG parameters were obtained after 

ensemble averaging of the signal over 30 cardiac cycles. The bias and precision errors for the 

Kubicek equation were 51% and 32%, respectively. The corresponding values were 41% and 

34% for the Sramek equation, and 36% and 33% for the Sramek-Bernstein equation. Their 

proposed equation resulted in much better performance, with bias of −1% and with precision 

error of 16%.  

 Summers et al (2003) have summarized results from around 201 studies on estimation 

of SV using ICG and those with some of the other established techniques, using weighted 

average and meta-analytic values of correlation coefficients. The values as given in Table 2.2 

show a large variation across the reference techniques. Tang and Tong (2009), in a review of 

impedance cardiography and its suitability for clinical use, have summarised results from 

several studies involving CO measurement on patients with cardiovascular disorders with 

thermodilution as the reference technique. They reported correlation coefficients ranging from 

0.34 to 0.93, with large interpatient variation. 

 There is no universally accepted reference technique for SV measurement (Tang and 

Tong 2009, Kieback et al 2010). The thermodilution technique is considered as the gold 

standard, but it is invasive and expensive. It cannot be used for continuous monitoring and has 

the limitation of being usable only for patients with severe cardiovascular disorders (Pianosi 

and Garros 1996, De Maria and Raisinghani 2000, Scherhag 2005). In several recent studies 

on use of impedance cardiography for estimation of SV and some other cardiovascular indices, 

Table 2.1 Comparison of SV estimation from ICG using Kubicek (K) and Sramek-Bernstein (SB) 

equations with those from thermodilution, as reported by Woltjer et al (1996). Number of subjects: 37 

(28 males, 9 females). 

 

Electrode array  
Equa-

tion 
 

Mean 

diff. 

(mL) 

 

Std. dev. 

of diff. 

(mL) 

 

Linear 

regress. 

intercept 

 

Linear 

regress. 

slope 

 
Corr.  

coeff. 

Lateral spot 
 K  −27.9  11.6  0.2  0.5  0.69 

 SB  −2.7  14.6  12.4  0.8  0.64 

Modified semi-

circular spot 

 K  0.5  8.6  −5.0  1.1  0.90 

 SB  19.3  16.6  11.8  1.1  0.73 
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Doppler echocardiography, which is noninvasive, has been used as the reference technique 

(Aust et al 1982, Lewis et al 1984, Northridge et al 1990, Kizakevich et al 1993, Castor et al 

1994, van der Meer et al 1999, Arora et al 2007, Baumgartner et al 2009, Fellahi et al 2009, 

Kieback et al 2010). A summary of results reported in some of the earlier studies on 

evaluation of impedance cardiography with reference to Doppler echocardiography is given in 

Table 2.3. 

 Aust et al (1982) estimated SV using ICG and Doppler echocardiograms recorded from 

six healthy subjects under transient conditions. SV values were estimated using the Kubicek 

equation and subject-specific blood resistivity measurement. Despite large errors, the 

correlation coefficient was 0.83 and it was concluded that impedance cardiography was better 

suited for monitoring SV variation than for absolute measurement. In the study by Northridge 

et al (1990) on 25 cardiac patients with acute myocardial infraction, the range with 95% 

confidence limits for CO estimated with thermodilution as the reference technique was ‒1.43 

to 1.11 L/min for Doppler echocardiography and ‒1.23 to 1.32 L/min for ICG.  

 Kizakevich et al (1993) measured systolic events and indices by impedance 

cardiography and Doppler echocardiography from 31 subjects admitted for coronary 

Table 2.2 Correlation coefficients (r) between SV values using ICG and those 

using some of the established methods: weighted average and meta-analytic 

values from 201 studies, as reported by Summers et al (2003). 

 

Reference  

method 
 

No. of 

measurements  
Average  

r 
 Meta-analytic 

r 

Thermodilution  10,959  0.81  0.95 

Direct Fick  587  0.79  0.95 

Indirect Fick  541  0.80  0.90 

Doppler  284  0.61  0.86 

Dye-dilution  902  0.81  0.93 

Ventriculography  295  0.72  0.81 

Echocardiography  281  0.69  0.92 

Isotope dilution  41  0.88  0.88 

Integrated flow  49  0.83  0.83 

Pulsatile flow  17  0.76  0.76 

LVAD  30  0.89  0.89 

MRI  20  0.92  0.98 

EM flow probe  2,807  0.84  0.88 

Overall  16,803  0.81  0.94 
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angiography and who could exercise to a moderate symptom-limited Bruce protocol. ICG was 

recorded using four-band electrode configuration. They observed that the aortic valve opening 

in Doppler echocardiogram was closely associated with the onset of the rapid systolic rise of 

( )z t . The characteristic points were detected and parameters were obtained after ensemble 

averaging over 32 cardiac cycles. Using ICG and Doppler echocardiography, locations of 

systolic events were measured, as time intervals with reference to the Q wave of ECG. The 

mean differences of aortic valve opening time, peak ejection velocity time, and aortic valve 

closure time were 20 ms, 25 ms, −21 ms, respectively. Regression coefficients for aortic valve 

opening time, peak ejection velocity time, aortic valve closure time, and peak aortic 

acceleration were 0.78, 0.86, 0.73, and 0.74 respectively. 

 Castor et al (1994) measured CO using impedance cardiography, Doppler echocardio-

graphy, and thermodilution, from 10 subjects with severe cardiovascular disorders, under the 

conditions of controlled ventilation, apnoea, and spontaneous breathing. Mean difference and 

standard deviation of differences of CO measurement using impedance cardiography and 

Doppler echocardiography with reference to thermodilution were calculated in three 

Table 2.3. A summary of results reported in some earlier studies on evaluation of impedance 

cardiography with reference to Doppler echocardiography. 

 

Study  Subjects  Results 

Aust et al 

(1982) 

 6 healthy subjects  Correlation coefficient of SV estimation with 

reference to Doppler echocardiography = 0.83.  

Northridge 

et al (1990) 

 24 cardiac patients  95% limits of agreement of CO estimation with 

thermodilution: ‒1.23 to 1.32 L/min for Doppler 

echocardiography, ‒1.43 to 1.11 L/min for ICG. 

Kizakevich 

et al (1993) 

 5 healthy subjects & 

26 patients with 

coronary artery 

disease 

 Correlation coefficients of systolic ejection measures 

with reference to Doppler echocardiography: 0.78 for 

aortic valve opening time, 0.86 for peak ejection 

velocity time, 0.73 for aortic valve closure time, 0.74 

for peak acceleration, 0.79 for normalized 

acceleration. 

Castor et al 

(1994) 

 10 cardiac patients  Mean difference of CO estimation with reference to 

thermodilution: ‒2.2% to 1.4% for ICG, ‒16% to 

‒32% for Doppler echocardiography. 

van der 

Meer et al 

(1999) 

 26 cardiac patients  Correlation coefficient of CO estimation with 

reference to Doppler echocardiography = 0.85. 

Fellahi et al 

(2009) 

 25 healthy subjects  Correlation coefficient of cardiac index (CO / body 

surface area) with reference to Doppler 

echocardiography = 0.36. 
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conditions. The mean differences were ‒2.2% to 1.4% for impedance cardiography and ‒16% 

to ‒32% for Doppler echocardiography. The corresponding values of standard deviations of 

differences were 11% to 16% and 12% to 21%. They concluded that the measurement errors 

with impedance cardiography were less than those with Doppler echocardiography. 

van der Meer et al (1999) used impedance cardiography, with 8-spot electrode configuration, 

ensemble averaging over six cardiac cycles, and Sramek-Bernstein equation, for CO 

measurement on 26 patients (17 patients with no valvular disorders, 9 with mitral 

regurgitation), along with Doppler echocardiography as the reference technique. For all 

patients grouped together, the mean of differences was 0.20 L/min, the standard deviation of 

differences was 0.74 L/min, and the correlation coefficient was 0.85. The performance for the 

patients with valvular disorders was somewhat lower than that for those without valvular 

disorders. 

 Fellahi et al (2009) used impedance cardiography, with SV calculated using Sramek-

Bernstein equation every cardiac cycle and averaged over 15 cycles, for the measurement of 

cardiac index (CO/body surface area) on 25 healthy subjects, along with Doppler 

echocardiography as the reference technique. The measurements were made under the 

conditions of (i) normal rest, (ii) positive end-expiratory pressure of 10 cm H2O by means of a 

continuous positive airway pressure ventilator, and (iii) 30 cm H2O positive pressure on the 

lower body applied by means of inflated medical anti-shock trousers. Doppler 

echocardiography showed a significant decrease in the values for the second condition with 

reference to the first condition and a significant increase in the values for the third condition. 

Impedance cardiography did not show such changes. The correlation coefficients were 0.36 

(significant) for the three conditions taken together, 0.21 (not significant) for the second 

condition, and 0.22 (not significant) for the third condition, indicating that the impedance 

cardiography was not suited for monitoring of CO changes during hemodynamic load 

challenges.  

2.7 Scope of Research 

Impedance cardiography is a noninvasive and low-cost technique for monitoring of SV and 

several other cardiovascular indices. Studies on evaluation of the technique have often 

reported lack of repeatability in estimation and poor agreement between the estimated values 

and the measurements using the reference techniques. Therefore, impedance cardiography is 

still not considered as a replacement for the existing techniques for clinical diagnosis, 

continuous monitoring in intensive care unit, and for decision making in emergency 
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departments. Based on the review of earlier investigations, it emerges that further work in the 

following areas may be helpful for clinical application of this technique:  

(i) Development of instrumentation for acquisition of ICG signal with low distortion, low 

ripple, and high SNR; 

(ii) Establishing most suitable electrode configuration; 

(iii) Developing signal processing techniques for suppression of respiratory and motion 

artifacts in order to avoid distortions associated with ensemble averaging and detection of 

characteristic points to enable study of beat-to-beat variability of parameters; 

(iv) Developing a technique for estimating SV from ICG parameters with low bias and high 

precision, for signals acquired from a large number of subjects (subjects with normal 

health and patients with different cardiovascular disorders and with different weight, 

height, and age) under different physiological conditions. 

 Our research objective is to develop a technique for automatic beat-to-beat SV 

estimation using impedance cardiography. Most of the existing techniques use the ICG 

parameters along with a few patient-dependent parameters (blood resistivity, inter-electrode 

distance, patient height, weight, etc.). Disagreement between the estimation using impedance 

cardiography and the measurements using the reference techniques could be due to (i) errors 

in ICG parameters due to artifacts, smearing introduced by ensemble averaging, and errors in 

automatic detection of the characteristic points; (ii) inadequacies of the parameter set and the 

SV equations; and (iii) use of body-related measurements that are not related to the type of 

disorder. As validation using ensemble-averaged ICG and measurement across subjects 

cannot help in isolating these sources, we use beat-to-beat estimation over a large number of 

cardiac cycles. To address the inadequacies of the model-based techniques, use of artificial 

neural networks (ANN) for SV estimation is investigated, as this technique does not involve 

models of the thoracic impedance and the aortic blood flow profile. Doppler 

echocardiography is used as the reference technique as it is noninvasive and can be used for 

beat-to-beat SV measurements on healthy subjects and patients and it can be used 

simultaneously along with impedance cardiography. 

 For the purpose of developing a technique for automatic beat-to-beat SV estimation, 

two investigations are carried out: (i) development of a technique for improved detection of 

the ICG characteristic points as needed for SV estimation and (ii) use of artificial neural 

networks for SV estimation using Doppler echocardiography as the reference technique. For 

these investigations, a database of simultaneously acquired ICG related signals and Doppler 

echocardiograms is developed by recording the signals from subjects with normal health and 

subjects with cardiovascular disorders. 
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 On the basis of examination of morphological variations of ICG signals, a time-domain 

technique for automatic beat-to-beat detection of ICG characteristic points is developed. It 

does not require estimation of the baseline and manual selection of the processing parameters. 

It retains information related to beat-to-beat variability in event latencies. The technique is 

validated on recordings from subjects with normal health under rest and in the post-exercise 

condition with an increase in the heart rate introduced by exercise and subjects with 

cardiovascular disorders under rest. The proposed technique is subsequently used for 

obtaining the ICG parameters for SV estimation. 

 Use of artificial neural network is investigated for automatic beat-to-beat SV estimation 

using the ICG parameters, without involving models of the thoracic impedance and the aortic 

blood flow profile. The network is trained using beat-to-beat datasets from the recordings 

from subjects with normal health under rest and in post-exercise condition and investigations 

are carried out for optimizing the network and the set of input parameters. The optimized 

network is subsequently evaluated on the recordings from both sets of subjects and the results 

are compared with those from the model-based techniques. 



Chapter 3 

DETECTION OF ICG CHARACTERISTIC POINTS 

 

3.1 Introduction 

Estimation of SV and several other cardiovascular indices from ICG requires error-free detection 

of the B, C, and X points. The ICG signal is often contaminated with components related to 

respiration and body movements, collectively known as artifacts (Miyamoto et al 1981, Qu et al 

1986, Zhang et al 1986, Hurwitz et al 1990, Wang et al 1991, Raza et al 1992, Barrows et al 1995, 

Webster 1998, Yamamoto et al 1998, Ernst et al 1999, Riese et al 2003, Krivoshei et al 2008). 

These artifacts cause errors in detection of the characteristic points, particularly in the detection of 

the less prominent B and X points (Ono et al 2004, Shyu et al 2004, Rizzi et al 2009). Difficulties 

in detection of these points also occur due to significant morphological variations in the waveform, 

particularly in recordings from subjects with cardiovascular disorders. 

 A technique is proposed and investigated for automatic detection of B, C, and X points. It is 

a time-domain technique using multiple features and reference points obtained from ECG and it 

has been developed after an empirical examination of a large number of artifact-free and artifact-

contaminated recordings. It does not require estimation of the baseline and selection of the 

processing parameters. It does not involve high-order derivatives and therefore is not significantly 

affected by noise in the input signal. Unlike the wavelet-based techniques, it can be used on short 

record lengths. 

 The second section provides a review of the signal processing techniques for detection of 

the B, C, and X points, followed by a description of the proposed technique. The material and 

method used for validation of the technique are described in the third section followed by the 

results and discussion in the subsequent sections. 

3.2 Signal Processing 

A. Detection of the B, C, and X Points   

A denoising technique is generally employed to suppress the artifacts before attempting detection 

of the characteristic points. As the spectra of the artifacts related to respiration (0.4 – 2 Hz) and 

body movements (0.1 – 10 Hz) overlap with that of ICG (0.8 – 20 Hz), it is difficult to suppress 
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the artifacts by filtering. Several signal processing techniques have been developed for artifact 

suppression. Ensemble averaging, coherent ensemble filtering, adaptive filtering, and wavelet-

based techniques have been reported for suppressing the artifacts (Zhang et al 1986, Shyu et al 

1988, Nagel et al 1989, Wang et al 1989, Hurwitz et al 1990, Kim et al 1992, Raza et al 1992, 

Ono et al 2004, Pandey and Pandey 2005, Pandey and Pandey 2007, Pandey and Pandey 2009, 

Rizzi et al 2009, Pandey et al 2011). Kim et al (1992) reported that an averaging technique can 

effectively suppress the respiratory artifacts in ICG. However, ensemble average suppresses the 

beat-to-beat information related to event latencies and variable shape of ICG signal during 

respiration (Raza et al 1992). To retain the beat-to-beat information, a wavelet-based denoising 

technique with scale-dependent thresholding for processing of the ICG signals has been developed 

by Pandey and Pandey (2007). It has been reported to provide SNR improvement of 23 dB in case 

of ICG signals contaminated with respiratory artifact. 

 Several techniques have been reported for detection of ICG characteristic points 

(Kubicek et al 1966, Kubicek et al 1970, Ono et al 2004, Shyu et al 2004, Rizzi et al 2009, 

Carvalho et al 2011). The highest peak in the ICG waveform in a cardiac cycle is taken as the C 

point. It is generally prominent and its detection is not significantly affected by the artifacts. The 

B and X points are much less distinct and their detection gets severely affected. The notch 

representing the B point in ICG waveform is often difficult to detect and it may be indistinct or 

disappear during exercise (Sherwood et al 1990, Ono et al 2004, Ermishkin et al 2014). The 

techniques used for artifact suppression often introduce some distortions in the waveform and 

therefore may degrade the detection of the less distinct characteristic points. 

 Some of the morphological variations in ICG are shown in Figure 3.1 from the recordings 

from subjects with normal-health under-rest and post-exercise conditions and subjects with 

cardiovascular disorders under-rest. The waveform of Figure 3.1(a), from a recording under-rest 

from a subject with normal-health, has a clear notch just before the upstroke preceding the C 

point. In the waveform in Figure 3.1(b), from a post-exercise recording from a subject with 

normal-health, the B point may be considered to be the nearly flat segment before the upstroke. 

The waveform of Figure 3.1(c), from another post-exercise recording, has no notch or flat 

segment and the B point may be considered to be the point of significant change in the slope of 

the upstroke preceding the C point.  
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(e) (f) 

  

(g) (h) 
 

Figure 3.1. ICG waveform examples. X-axis: time in ms, Y-axis: ICG in Ω/s. 
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 The waveforms of Figures 3.1(d)–(h) are from under-rest recording from different subjects 

with cardiovascular disorders. The waveforms of Figures 3.1(d) and 3.1(e) have two valleys 

preceding the C point and the second valley may be considered as the B point. The waveforms in 

Figures 3.1(f) and 3.1(g) have single rapid upstroke before the C point and the B point has to be 

located within it. The waveform of Figure 3.1(h) is very different from that of Figure 3.1(a), but it 

has the notch corresponding to the B point. 

 The morphological variations in ICG pose difficulties in detection of the B and X points. 

As a solution for these difficulties, several techniques have been proposed. In the ‘zero crossing’ 

technique of Kubicek et al (1966), the zero crossing before the C point is marked as the B point 

and the valley after the C point is marked as the X point. To avoid ambiguities in marking the 

zero crossing in the presence of noise and artifacts, Kubicek et al (1970) proposed the ‘15% from 

baseline’ technique in which the point at 15% of the peak value from the baseline is marked as 

the B point. In the ‘baseline-upstroke intersection’ technique proposed by Ono et al (2004), the 

upstroke is approximated by a line joining the points on ICG segment at 40% and 80% of the 

peak value from the baseline. The point on ICG corresponding to the intersection of upstroke with 

baseline is marked as the B point. They reported that the technique improved the consistency in 

calculation of pre-ejection period (PEP) and Tlvet. This technique is reported to be prone to 

significant errors in presence of baseline wander (Pandey and Pandey 2005). 

  Shyu et al (2004) reported a wavelet-based technique for detection of the B and X points 

and its validation by simultaneous recording of ICG and pressure-volume (PV) loop. The 

technique uses 7-level decomposition of the ICG with quadratic spline wavelet. The minimum 

before the C point in the sixth level of decomposition is taken as the B point. The first zero 

crossing after the C point in the fourth level is taken as the X point. The technique proposed by 

Zhao et al (2005) uses 5-level decomposition of the ICG with bior3.3 wavelet. The minimum 

points preceding and following the C point in the fourth level of decomposition are marked as the 

B and X points respectively.  

 Carvalho et al (2011) reported a technique using first four derivatives of the ICG to detect 

the B and X points as being related to the opening and closing movements of aortic cusps in 

systolic and diastolic phases, respectively. In this technique, the peak before the notch preceding 

the C point is taken as the B point and the onset of the notch following the C point is taken as the 

X point. The ‘baseline-upstroke intersection’ technique of Ono et al (2004) is used to get an 

initial estimate of the B point. The presence of notch before the C point is checked by locating 
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sign change in the second derivative. If the notch is present, the first minimum in the third 

derivative occurring before the initial estimate is taken as the revised estimate, otherwise the first 

zero crossing in the first derivative occurring before the initial estimate is taken as the revised 

estimate. The lowest ICG point occurring in the 0.75 of R-T interval after the T-peak is taken as 

the initial estimation of the X point. Use of the revised B and X points resulted in lower mean 

absolute errors. But it also resulted in lower correlation coefficients, possibly due to random 

errors in detection caused by noise associated with calculation of the high-order derivatives. In 

the B-point detection technique reported by DeMarzo and Lang (1996), first difference of the 

ICG is scanned backwards starting from the C point and the point of inflection is taken as the B 

point. The onset of the upward slope reaching towards the peak of the Doppler echocardiogram is 

marked as the aortic valve opening (AVO). 

 Rizzi et al (2009) investigated the variable threshold dependent multi-scale wavelet-based 

technique for C point detection. Hu et al (2014) proposed a wavelet-based technique for detection 

of B, C, and X points in ICG, using quadratic spline wavelet for decomposition of ICG signal. The 

ICG cycles in different levels of decomposition are examined for maximum-minimum pairs 

preceding the zero crossing. The points corresponding to zero crossing, maximum, and minimum 

are taken as B, C, and X points respectively. In the B-point detection technique by Arbol et al 

(2017), the highest point of the third derivative occurring in the 300-ms segment preceding the C 

is taken as the B point. In the time-domain technique by Naidu et al (2011) for automatic 

detection of the B, C, and X points, the R peak of simultaneously recorded ECG is used as the 

reference for cycle identification. The C point is detected as the highest point within the ICG 

segment starting at the point corresponding to the R peak and of duration equal to one-fifth of the 

R-R interval. The first minimum preceding the C point is taken as the B point. The lowest point in 

the ICG segment starting at the C point and of duration equal to one-third of the C-C interval is 

taken as the X point. It was reported that the technique resulted in lower errors in estimation of 

the B-X time intervals. 

 The earlier techniques for detections of ICG characteristic points have been generally 

evaluated on different recordings and using different performance indicators. 

B. Proposed Technique for Automatic Detection of ICG Points 

Based on an empirical examination of the application of the earlier techniques on ICG signals with 

significant morphological variations, the technique by Naidu et al (2011) was modified to develop 
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a time-domain technique for automatic detection of B, C, and X points for use in beat-to-beat SV 

estimation. The technique uses simultaneously acquired ICG and ECG as inputs and its block 

diagram is shown in Figure 3.2. The ICG is denoised using a wavelet-based technique with scale-

dependent thresholding (Pandey and Pandey 2007). The R-peaks in the ECG signal are located 

using Pan-Tompkins algorithm (Pan and Tompkins 1985) and these serve as reference points for 

cardiac cycle identification. In each cardiac cycle, the peak of the T wave is located as the peak of 

the ECG segment lying within 20% to 45% of the R-R interval. 

 The ICG segment starting at the point corresponding to the R peak and duration equal to 

35% of the R-R interval is scanned and the highest point is marked as the C point. The ICG 

segment preceding the C point and of duration equal to one-fifth of the C-C interval is scanned and 

the point with the lowest value is marked as the valley point. The difference between the values at 

the C point and the valley point is calculated as the peak-to-valley height Hpv. The first difference 

of the ICG is scanned backwards starting from the point corresponding to 0.3Hpv below the C 

point to the point corresponding to the valley point, and the point with a change of sign is marked 

as the B point. If there is no sign change, the point 0.3Hpv above the valley point is marked as the 

C Locations

Denoised ICG

C-Point Detection

Respiratory Artifact
Suppression

ECGICG

R-Peak Detection

R-Peak 
Locations

B Locations C Locations X Locations

X-Point DetectionB-Point Detection

T-Peak Detection

T-Peak 
Locations

 

Figure 3.2 Signal processing for detection of B, C, and X points in ICG. 
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B point. The ICG segment starting at the point corresponding to the T peak in ECG and duration 

equal to one-third of the C-C interval is scanned and the lowest point is marked as the X point. 

 A qualitative visual examination of the automatically detected points in the recordings from 

six healthy subjects and four cardiac patients, consisting of a total of 447 cardiac cycles, showed 

that the proposed technique significantly reduced the errors in detection of the B and X points, as 

compared to the earlier technique (Naidu et al 2011). The technique was further evaluated, as 

described in the next section, on clinical recordings by comparing the automatically detected 

points with the visually marked ones and the corresponding points obtained using Doppler 

echocardiography as a reference technique. 

3.3 Material and Method 

A. Signal Recording 

The ICG, ECG, and Doppler echocardiogram signals were simultaneously recorded in a clinical 

setting from subjects with normal health and subjects with cardiovascular disorders. The same 

recordings were used for evaluation of characteristic point detection and SV estimation. Details of 

signal recording are given later in Section 4.2 of the next chapter. 

 For a subject with normal health, two recordings were carried out. The first recording was 

carried out with the subject having relaxed and rested. The second recording was carried out after 

the subject had undergone an exercise to significantly increase the heart rate. The first and second 

sets of recordings are referred to as ‘under-rest’ and ‘post-exercise’ recordings, respectively. For 

a subject with cardiovascular disorder, only the under-rest recording was carried out. The under-

rest (UR) and post-exercise (PE) recordings from the 16 subjects with normal health (SNH) have 

416 and 469 cardiac cycles, respectively and these are referred to as SNH-UR and SNH-PE. The 

under-rest recordings from the 14 subjects with cardiovascular disorders (SCD) have 632 cardiac 

cycles and these are referred to as SCD-UR. 
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B. Evaluation Method 

The proposed technique for automatic detection of B and X points was applied on the recordings 

from (i) SNH-UR, (ii) SNH-PE, and (iii) SCD-UR as described in the previous section. 

Evaluation of the detection technique was carried out by comparing the automatically detected 

points with visually marked and the corresponding points obtained using Doppler 

echocardiography as a reference technique. For this purpose, the ICG signals and Doppler 

echocardiograms were time-aligned using the ECG waveforms simultaneously recorded by the 

two machines. An example of the simultaneously recorded ICG and ECG along with the time-

aligned Doppler echocardiogram is shown in Figure 3.3. 

 For evaluation of the automatically detected points with reference to the visually marked 

points, the B, C, and X points were marked graphically by moving a cursor on the waveform and 

beat-to-beat recording of the positions of the points, without access to the automatically detected 

B 

R 

X 

C 

AVC 
AVO 

PAV 

C

R 

R

R 

Figure 3.3 Example of simultaneously recorded ICG and ECG with time-aligned Doppler 

echocardiogram showing the B, C, and X points of ICG along with the AVO, PAV, and AVC 

points of the Doppler echocardiogram from subject with normal health (SD) post-exercise. First 

trace (top): ECG from the ICG machine, second trace: ICG, third trace: ECG from the Doppler 

echocardiography machine, and fourth trace (bottom): blood velocity profile from the Doppler 

echocardiography machine. X-axis: time. 
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ones. For evaluation with reference to the points observed using Doppler echocardiography, the 

corresponding points were graphically marked on the peak velocity profile in the Doppler 

echocardiogram time-aligned with the ICG. The B point was compared with the point of aortic 

valve opening (AVO) marked as the onset of the sharp rise of the velocity profile. The C point 

was compared with the peak of aortic velocity (PAV) profile. The X point was compared with the 

point of aortic valve closure (AVC) marked as the end of the velocity profile. 

 For evaluation of the detected points across cardiac cycles and across recordings, statistical 

analysis was applied on the intervals between the ECG-R peak and the detected points. The first 

set of evaluations involved comparison of R-B, R-C, and R-X intervals as obtained by automatic 

detection of the points with corresponding intervals as obtained by visual marking. For the second 

set of evaluations, the R-B, R-C, and R-X intervals obtained by automatic detection were 

compared with R-AVO, R-PAV, and R-AVC intervals obtained from time-aligned Doppler 

echocardiograms. 

 Comparisons were made by calculating the mean error as a bias indicator and standard 

deviation of errors as an imprecision indicator. As another performance indicator for B point 

detection, detection error was calculated by treating position errors exceeding 30 ms as failed 

detection. Agreement between the corresponding intervals was examined by calculating 

correlation coefficients and by using Bland-Altman plots of difference of the measurements 

versus mean of the measurements. 

 For comparing the results obtained using the proposed technique with the earlier techniques 

on the same set of recordings and same performance indicators, we implemented some of the 

earlier techniques. Two earlier techniques were implemented for B-point detection: (i) the ‘15% 

from baseline’ technique by Kubicek et al (1970) and (ii) the ‘baseline-upstroke intersection’ 

technique by Ono et al (2004) These techniques are subsequently referred to as the 'Kubicek' and 

'Ono' techniques, respectively. The ‘minnimum after C peak’ technique by Kubicek et al (1966) 

was implemented for X-point detection and is subsequently referred to as the 'Kubicek' technique. 

The ICG signals in the recordings have significant respiratory artifacts. Therefore, processing for 

characteristic point detection was preceeded by artifact suppression using the wavelet-based 

denoising as used in the proposed technique.  
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Figure 3.4 Examples of the automatically detected B points in the ICG with different 

morphologies arround the B point. 
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 The results of application of the proposed technique and the two earlier techniques for B-

point detection on some of the waveforms with different morphologies around the B point (as 

shown earlier in Figure 3.1) are shown in Figure 3.4. An example of the application of the 

techniques on a waveform with multiple cycles is shown in Figure 3.5. An example of the 

application of the X point detection is shown in Figure 3.6.  

3.4 Results  

The recordings from both sets of subjects showed significant variation in heart rate as well as in 

the morphology of ICG waveforms. Evaluation of the automatic detection of the C, B, and X 

points was carried out by examining the agreement of automatically detected points with the 

visually marked ones. Further evaluation was carried out by comparing the beat-to-beat values of 

the R-C, R-B, and R-X intervals with the R-PAV, R-AVO, and R-AVC intervals, respectively. 

Figure 3.5 Example of automatically detected B point in the ICG recording from a subject with 

normal health (SD) post-exercise. X-axis: time in ms, Y-axis: ICG in Ω/s. 

Proposed technique 

Ono tech. 

Kubicek tech. 
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 The automatically detected C points closely matched with the visually marked ones. 

Results of beat-to-beat comparison of the R-C intervals measured using automatic detection of C 

points with the R-PAV intervals measured using visual markings on the echocardiogram are 

summarized in Table 3.1. For the overall recordings, the mean and standard deviation (S.D.) of 

the R-PAV intervals were 94 and 22 ms, respectively. The values of correlation coefficients 

between the R-PAV and R-C intervals were 0.87, 0.85, 0.90, and 0.89 for the SNH-UR, SNH-PE, 

SCD-UR, and overall recordings, respectively. The mean differences between the R-PAV and 

R-C intervals were 4, 2, 6, and 8 ms for the SNH-UR, SNH-PE, SCD-UR, and overall recordings, 

respectively. The corresponding values of standard deviation of differences were 8, 10, 12, and 10 

ms, which were less than 10% of the mean intervals. 

Figure 3.6 Examples of automatically detected X points in the ICG recording from a subject 

with normal health (SD) post-exercise. X-axis: time in ms, Y-axis: ICG in Ω/s. 

 

Kubicek tech. 

Proposed technique 
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 The positions of the automatically detected B points were compared with those of the 

visually marked points. Means of the differences in all cases were less than 1 ms, indicating no 

significant position bias. With the Kubicek technique, S.D. of differences for the SNH-UR, SNH-

PE, SCD-UR, and overall recordings were 36, 28, 20, and 28 ms, respectively. The corresponding 

values were almost similar with the Ono technique. The corresponding values with the proposed 

technique were 22, 18, 18, and 20 ms, thus indicating a more precise detection. Considering a 

position difference beyond ± 30 ms as a failed detection, the percentage detection errors for 

overall recordings were 21% and 16%, with the Kubicek and Ono techniques, respectively. The 

corresponding error with the proposed technique was 8%. 

 The results of comparison of the beat-to-beat R-B intervals with the corresponding R-AVO 

intervals are summarized in Table 3.2. The mean and S.D. of the R-AVO intervals for the overall 

recordings were 38 and 12 ms, respectively. The correlation coefficients with the visual, Kubicek, 

Ono, and proposed techniques for overall recordings were 0.79, 0.25, 0.28, and 0.56, respectively. 

The mean differences with the visual, Kubicek, Ono, and proposed techniques for overall 

recordings were 2, –4, –2, and 2 ms, respectively. The corresponding S.D. of differences were 10, 

26, 24, and 22 ms. Similar results were observed for the three sets of recordings. Therefore in 

Table 3.1 Comparison of R-C intervals measured using ICG with R-PAV intervals measured using 

Doppler echocardiogram. r  = correlation coefficient,   = mean of differences, and   = standard 

deviation of differences. 

Measurement 

 Signal recording (subject type, recording condition) 

 SNH-UR  SNH-PE  SCD-UR  Overall 

No. of 

cycles 
   416  469  632  1517 

R-R 

interval  

 Mean (ms)  824  652  798  760 

 S.D. (ms)  124  98  162  154 

R-PAV 

interval  

 

 Mean (ms)  100  84  100  94 

 S.D. (ms)  18  18  26  22 

R-C 

interval  

 

 Mean (ms)  94  82  93  90 

 S.D. (ms)  16  16  23  20 

 r   0.87  0.85  0.90  0.89 

   (ms)  4  2  6  4 

  (ms)  8  10  12  10 
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terms of agreement with the AVO points, the proposed technique performed better than the 

earlier ones. Similar results were obtained for the three sets of recordings separately. 

 The results of beat-to-beat comparison of R-X and R-AVC intervals are summarized in 

Table 3.3. The mean and standard deviation of the R-AVC intervals for the overall recordings 

were 322 and 42 ms, respectively. The correlation coefficients with the Kubicek and proposed 

techniques for overall recordings were 0.71 and 0.64, respectively. The mean differences with the 

Kubicek and proposed techniques for overall recordings were 58 and 26 ms, respectively. The 

Table 3.2 Comparison of R-B intervals measured using ICG with R-AVO intervals (AVO: aortic 

valve opening point) measured using Doppler echocardiogram. r  = correlation coefficient,   = 

mean of differences, and   = standard deviation of differences. 

Measurement 
 Signal recording (subject type, recording condition) 

 SNH-UR  SNH-PE  SCD-UR  Overall 

No. of cycles      416  469  632  1517 

R-AVO 

interval 

 Mean (ms)  40  34  38  38 

 S.D. (ms)  12  14  12  12 

R-B interval  

 

Mean 

(ms) 
 

Visual marking  38  32  38  36 

 Kubicek tech.  36  36  50  42 

 Ono tech.  34  34  46  40 

 Proposed tech.  38  28  38  34 

 

S.D. 

(ms) 
 

Visual marking  20  16  16  16 

 Kubicek tech.  30  24  22  26 

 Ono tech.  30  24  20  24 

 Proposed tech.  30  24  24  26 

 

r   

Visual marking  0.77  0.83  0.77 

 

 

0.79 

 Kubicek tech.  0.00  0.22  0.55 0.25 

 Ono tech.  0.19  0.14  0.51 0.28 

 Proposed tech.  0.50  0.62  0.54 0.56 

 

   

(ms) 
 

Visual marking  2  2  0 2 

 Kubicek tech.  6  –2  –12 –4 

 Ono tech.  6  0  –8  –2 

 Proposed tech.  4  4  0  2 

 

  

(ms) 
 

Visual marking  12  8  10  10 

 Kubicek tech.  32  24  18  26 

 Ono tech.  30  26  18  24 

 Proposed tech.  26  18  20  22 
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corresponding S.D. of differences were 52 and 48 ms. Thus in comparison to the Kubicek 

technique, the proposed technique significantly reduced the bias and also improved the precision. 

 For examining the suitability of the proposed technique for measurement of the left-

ventricular ejection time, beat-to-beat comparison of the B-X and AVO-AVC intervals was 

carried out. The results are summarized in Table 3.4 for the proposed technique and the Kubicek 

technique. The mean and standard deviation of the AVO-AVC intervals for the overall recordings 

were 284 and 36 ms, respectively. The correlation coefficients with the Kubicek and proposed 

techniques for overall recordings were 0.56 and 0.50, respectively. The mean differences with the 

Kubicek and proposed techniques for overall recordings were 64 and 24 ms, respectively. The 

corresponding S.D. of differences were 58 and 54 ms. Thus in comparison to the Kubicek 

technique, the proposed technique significantly reduced the bias and slightly improved the 

precision of the beat-to-beat measurements. 

Table 3.3 Comparison of R-X intervals measured using ICG with R-AVC intervals measured using 

Doppler echocardiogram. r  = correlation coefficient,   = mean of differences, and   = standard 

deviation of differences. 

Measurement 

 Signal recording (subject type, recording condition) 

 SNH-UR  SNH-PE  SCD-UR  Overall 

No. of cycles      416  469  632  1517 

R-AVC 

intervl 

 Mean (ms)     332  288  340  322 

 S.D. (ms)    30  36  38  42 

R-X interval 

 
Mean 

(ms) 
 
Kubicek tech.  258  224  294  262 

Proposed tech.  290  264  322  296 

 
S.D. 

(ms) 
 
Kubicek tech.  60  56  75  72 

Proposed tech.  56  44  68  64 

 r   
Kubicek tech.  0.57  0.67  0.70 

 

 

0.71 

Proposed tech.  0.60  0.44  0.65 0.64 

   (ms)  
Kubicek tech.  74  64  44 58 

Proposed tech.  42  24  16  26 

  (ms)  
Kubicek tech.  48  42  56  52 

Proposed tech.  46  42  52  48 
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3.5 Discussion  

The B, C, and X points in the ICG waveform are considered to be related to the aortic valve 

opening, peak of the aortic velocity, and aortic valve closure, respectively. These points need to be 

detected in an error-free manner for obtaining the ICG parameters for SV estimation. While the C 

point is generally prominent, the B and X points are much less distinct and their detection gets 

severely affected by artifacts and due to morphological variations in the waveform. The techniques 

for detection of these points are based on saliencies in the waveform, features based on higher-

order derivatives, and features obtained by wavelet decomposition. These techniques often result 

in non-constant bias and random errors. The techniques using saliencies in the waveform show 

large errors or lack of detection in the cardiac cycles having significant deviations from the defined 

features or significant baseline wander. The techniques based on features derived from higher-

order derivatives lead to significant random errors due to noise associated with these derivatives. 

Table 3.4 Comparison of B-X intervals measured using ICG with AVO-AVC intervals measured   

using Doppler echocardiogram. r  = correlation coefficient,   = mean of differences, and   = 

standard deviation of differences. 

Measurement 

 Signal recording (subject type, recording condition) 

 SNH-UR  SNH-PE  SCD-UR  Overall 

No. of cycles      416  469  632  1517 

AVO-AVC 

interval 

 Mean (ms)    290  254  302  284 

 S.D. (ms)    26  33  32  36 

B-X interval 

 
Mean  

(ms) 
 Kubicek tech.  222  188  246  222 

Proposed tech.  252  234  286  260 

 
S.D. 

(ms) 
 Kubicek tech.  64  50  70  70 

Proposed tech.  56  50  62  62 

 r   Kubicek tech.   0.30  0.50  0.55 
 

 

0.56 

Proposed tech.  0.40  0.39  0.46 0.50 

   (ms)  Kubicek tech.  68  68  56 64 

Proposed tech.  38  20  16  24 

   (ms)  
Kubicek tech.  62  50  60  58 

Proposed tech.  52  48  56  54 
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The techniques based on wavelet decomposition may result in inter-cycle smearing and cause 

errors during significant cardiac variability.  

 Based on an empirical examination of the morphological variations in the ICG waveforms, a 

time-domain technique for automatic detection of B, C, and X points for use in beat-to-beat SV 

estimation has been developed and evaluated. The proposed technique uses simultaneously 

acquired ECG and ICG data as inputs. It uses R and T peaks of ECG as reference points and 

multiple time-domain features to reduce errors due to morphological variations. Detection is 

carried out on a beat-to-beat basis after marking of the ICG cycles with reference to the R peaks 

and hence the technique avoids inter-cycle smearing. It does not require estimation of the baseline 

and selection of the processing parameters. As high-order derivatives are not used, the detection 

is not significantly affected by the presence of a moderate level of noise in the input signal. A 

wavelet-based denoising is employed for suppression of respiratory artifacts in ICG and the 

technique can be used without any restriction on breathing.  

 The proposed technique was evaluated on the ICG-echocardiography database comprising 

simultaneously acquired and time-aligned ICG, ECG, and Doppler echocardiogram recordings. 

The evaluation was carried out on data with 1517 cardiac cycles, consisting of 416 cardiac cycles 

recorded under the resting condition and 469 cycles in the post-exercise condition from 16 subjects 

with normal health and 632 cardiac cycles recorded from 14 subjects with cardiovascular disorders 

under resting condition. The data exhibited large heart rate and morphological variations. The 

mean R-R intervals for the three sets of recordings were 824, 652, and 798 ms and the 

corresponding standard deviations were 124, 98, and 162 ms. The corresponding values for the 

three sets of recordings pooled together were 760 ms and 154 ms. The performance of the 

technique was evaluated with reference to the visually marked points in the ICG waveform and 

with reference to the intervals measured using echocardiography. 

 Despite large heart rate and morphological variations in the data, there were no significant 

differences in the performance of the proposed technique across the three sets of recordings. 

Therefore, the performance can be discussed by examining the results for the cardiac cycles from 

the three sets of recordings pooled together. The C points detected by the proposed technique 

closely matched with the visually marked ones in all cycles. The beat-to-beat comparison of R-C 

intervals with the corresponding intervals measured using echocardiography showed mean 

difference and standard deviation of differences as 4 ms and 10 ms, respectively. For the B-point 

detection, the mean difference and standard deviation of differences with reference to the visually 



 Chapter 3 Detection of ICG characteristic points 

40 

 

marked points were 1 ms and 20 ms, respectively. Considering a position difference beyond ± 30 

ms as a failed detection, the detection error was 8%. The mean difference and standard deviation 

of differences for beat-to-beat comparison of R-B intervals with the corresponding intervals 

measured using Doppler echocardiograms were 2 ms and 22 ms, respectively. The beat-to-beat 

comparison of R-X intervals with reference to the corresponding intervals measured from 

echocardiography showed the mean difference and the standard deviation of differences as 26 ms 

and 48 ms, respectively. In terms of bias and precision, the proposed technique performed better 

than the established techniques reported earlier. The bias-related errors (means of differences), as 

referred to the mean R-R interval, in the estimation of R-C, R-B, and R-X intervals with the 

corresponding measurements using echocardiography as the reference were 0.5%, 0.3%, and 

3.4%, respectively. The corresponding precision related errors (standard deviations of 

differences) were 1.3%, 2.9%, and 6.3%. The bias and precision related errors for estimation of 

the B-X interval as a measure of the left ventricular ejection time were 3.2% and 7.1%, 

respectively.  

 The improved performance of the proposed technique in comparison to earlier techniques 

may be attributed to the use of artifact suppression, use of R and T peaks as reference points for 

marking ICG segments for locating the features, and use of multiple time-domain features for 

resolving ambiguities caused by morphological variations. The results of objective evaluation of 

the proposed technique, in terms of bias and precision in the estimation of R-C, R-B, R-X, and B-

X intervals with the corresponding measurements using echocardiography as the reference, shows 

its usefulness for obtaining ICG parameters for automatic beat-to-beat SV estimation. 



Chapter 4 

SV ESTIMATION USING ARTIFICIAL NEURAL NETWORK 

 

4.1 Introduction 

The SV estimation methods using impedance cardiography are generally based on models of 

the thoracic impedance and the aortic blood flow profile. The results obtained do not show a 

good agreement with the established techniques like thermodilution and other invasive 

techniques or with the noninvasive technique of Doppler echocardiography. Considering the 

difficulties in developing models with adequate physiological justification, some researchers 

have proposed the use of artificial neural network (ANN) for SV estimation, assuming that 

the nonlinear relationship between SV and the ICG-related and other input parameters can be 

captured during the training of the network.  

 Mulavara et al (1998) reported an ANN-based method for SV estimation from ICG 

with Doppler echocardiography as the reference technique. They used a three-layer feed-

forward neural network trained using error back-propagation algorithm. The study was 

conducted on recordings from 20 subjects with normal health, acquired in three supine body 

positions (horizontal, o10 head down, and o30 head up), during six 5-s breath-hold durations 

separated by 15-s normal breathing over a period of two minutes. The ICG recording from 

each breath-hold duration was ensemble averaged and used to get the values of ICG peak and 

left ventricular ejection time. These values along with average heart rate over the breath-hold 

duration, inter-electrode distance, basal impedance, volume of electrically participating 

thoracic tissues (calculated from height and weight) formed the set of inputs and the SV value 

measured from Doppler echocardiogram served as the target value. RMS error and maximum 

iteration count were used as the stopping criteria during training. The neurons in the hidden 

layer used hyperbolic tangent activation function and the optimal number of neurons was 

empirically determined. Half of the total 360 datasets (20 subjects, 3 positions, 6 recordings) 

were randomly selected for training and the other half of the datasets were used for testing. 

Eight networks with different combination of inputs as used in the Kubicek and the Sramek 

equations were evaluated and the network with the superset of the inputs as used in the two 

equations provided the best performance. Coefficients of determination for estimations using 

the Kubicek equation, the Sramek equation, and the ANN with the superset of inputs were 

8.2%, 9.9%, and 77.4%, respectively, indicating the ANN-based approach to be better suited 

for SV estimation than the approaches based on biophysical modeling. 
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 Baura (2001) in a patent has described an ANN-based technique for noninvasive 

cardiac output monitoring using ICG parameters with thermodilution as the reference 

technique. The method uses a three-layer feed-forward network, with three neurons in the 

hidden-layer and hyperbolic tangent activation function, trained using error back-propagation 

algorithm. The inputs to the network comprise the heart rate, basal impedance, ICG peak, left 

ventricular ejection time, inter-electrode distance, and the CO value as calculated by Kubicek 

equation. The training requires CO measurement on a large number of patients using 

thermodilution and the corresponding ICG parameters. 

 The earlier investigations on SV estimation used input parameters obtained from 

ensemble-averaged ICG and across-the-subjects training and testing. We propose to use an 

ANN for SV estimation, with ICG parameters from a large number of cycles without 

ensemble averaging as the inputs and the corresponding beat-to-beat SV values from Doppler 

echocardiography as the reference.  

 The second section presents the material and method for signal recording, parameter 

extraction, and ANN model implementation, optimization, and testing. The results are 

presented in the third section, followed by the discussion in the last section. An overview of 

SV estimation using Doppler echocardiography (Quinones et al 2002, Oh et al 2006) is 

provided in Appendix A. 

4.2 Material and Method 

The ANN-based technique for beat-to-beat estimation of stroke volume was applied and 

tested on signals recorded from a set of subjects with normal health and those with 

cardiovascular disorders. The following subsections describe the signal recording, parameter 

extraction, and ANN model implementation, optimization, and testing. 

A. Signal Recording 

The ANN model is trained using the beat-to-beat values of SV estimated from Doppler 

echocardiography as the target values. Detection of ICG characteristic points for estimation of 

ICG parameters uses R and T peaks of simultaneously recorded ECG. For this purpose, the 

ICG, ECG, and Doppler echocardiogram signals were simultaneously recorded in a clinical 

setting from a number of subjects under rest and in post-exercise condition.  

 The signals were recorded in a clinical setting at Hardas Heart Care (Pune, 

Maharashtra, India), after approval of the protocol by the Ethics Committee of the hospital. 

The subjects for participating in the study were recruited from among the persons visiting the 

hospital for health check-up, diagnosis, or post-operative treatment, without efforts for gender 
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and age balancing. They were informed about the study and they read and signed the consent 

if willing to participate in it. There was no monetary cost or benefit for participation. 

 The subjects with normal health had no known history of cardiovascular disorders and 

were screened by a cardiologist on the basis of physical examination and ECG report. The 

subjects with cardiovascular disorders were the patients undergoing post-operative treatment 

or with past history of cardiovascular disorders. They were screened for suitability to 

participate in the study by the concerned cardiologist. The gender, age, height, and weight of 

the subjects were noted. The group of subjects with normal health comprised seventeen males 

and one female with age of 26 – 65 years (mean = 46.3 years, S.D. = 10.7 years), height of 

1.54 – 1.80 m (mean = 1.69 m, S.D. = 0.06 m), and weight of 61 – 100 kg (mean = 76.2 kg, 

S.D. = 10.0 kg). The group of subjects with cardiovascular disorders had nineteen males and 

three females with age of 24 – 78 years (mean = 51.5 years, S.D. = 15.8 years), height of 1.43 

– 1.76 m (mean = 1.66 m, S.D. = 0.08 m), and weight of 52 – 97 kg (mean = 71.6 kg, S.D. = 

11.7 kg). The recordings were carried out during the period extending from June 2014 to June 

2015. 

 The ICG related signals were recorded using ‘HIC-2000 Impedance Cardiograph’ from 

Bio-Impedance Technology (Chapel Hill, NC, USA). The impedance sensing was carried out 

using four-electrode configuration with Ag-AgCl disposable ECG spot electrodes. The outer 

two electrodes were used for injecting the excitation current and the resulting voltage was 

picked-up across the inner two electrodes. The upper current electrode was placed above the 

suprasternal notch on the front of the neck, with the lower one placed below the xiphoid 

process on the left lateral side of the thorax. The upper voltage electrode was placed at the 

base of the neck below the upper current electrode and the lower voltage electrode was placed 

at the level of xiphoid process on the left lateral side of the thorax above the lower current 

electrode. The placement of ICG electrodes is shown in Figure 4.1. The instrument used 1 

mA excitation current of 100 kHz and provided analog output signals corresponding to basal 

impedance ( 0Z ), deviation from basal impedance ( ( ))z t , and ICG ( dz dt ) with the 

sensitivities of 40 mV/ , 0.5 V/ , and 400 mV/
-1( s ) , respectively. It also provided 

analog ECG signal as sensed using the voltage electrodes. The output signals from the ICG 

instrument were acquired using the 8-channel, 12-bit signal acquisition module ‘KUSB-3102’ 

from Keithley Instruments (Cleveland, Ohio, USA) and connected through USB to a battery-

powered Notebook PC. The sampling frequency was set at 500 Hz. The distance between the 

voltage sensing electrodes was noted. 
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 The echocardiography recordings were carried out using ‘iE33 echocardiography 

system’ from Philips Ultrasound (Bothell, Wash., USA) with a 5 MHz phased-array probe 

placed on the chest after applying an ultrasound gel for good contact with the skin. The aortic 

blood flow velocity profile was recorded using apical five-chamber view of the ascending 

aorta. The aortic diameter was measured using parasternal long-axis view at the level of the 

aortic annulus during mid-systole. The velocity-time integral (VTI) was estimated as the area 

between the envelope of the Doppler spectrum and its baseline with the help of the built-in 

software of the echocardiography machine by tracing the spectral envelope with its track ball. 

As described later in Appendix A (Section A.3), the inter-operator variability of VTI 

measurement was observed to be less than 7% of the mean values. The machine has a facility 

for three-electrode ECG recording and this facility was used, with electrode placement as 

shown earlier in Figure 4.1, for time-aligned display of ICG and Doppler echocardiogram 

waveforms. As the recordings of ICG and Doppler echocardiogram waveforms employed 

independent time bases, the cardiac cycles of the two recordings were synchronized by 

alignment of the corresponding ECG-R peaks. An example of the simultaneously recorded 

ICG and ECG along with the time-aligned Doppler echocardiogram is shown in Figure 4.2. 

L

ECG-RA
ECG-LA

ECG-LL

ICG-I1

ICG-I2

ICG-V1

ICG-V2

 

 

Figure 4.1 Placement of electrodes on the chest: four electrodes of the ICG machine (current 

injection electrodes ICG-I1 and ICG-I2; voltage sensing electrodes ICG-V1 and ICG-V2) and three 

ECG electrodes of the echocardiogram machine. 
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 For a subject with normal health, two recordings were carried out. The first recording 

was carried out with the subject having relaxed and rested. The ICG electrodes and 

echocardiography probe were placed as described earlier and the ICG and Doppler 

echocardiogram signals were simultaneously recorded, with the subject lying in the left-

lateral position with a slight folding of the right leg. For the second recording, the subject 

underwent an exercise to increase the heart rate. The exercise was carried out, following the 

first four stages of the Bruce exercise protocol (Bruce et al 1949), for about ten minutes on 

 

 

Figure 4.2 Simultaneously recorded ICG and ECG with time-aligned Doppler echocardiogram 

frame. Upper trace is the blood velocity profile at aortic annulus with ECG recorded as recorded by 

the Doppler echocardiograph. The middle trace shows the unprocessed ICG and simultaneously 

acquired ECG by the impedance cardiograph. The lower trace shows the denoised ICG along with 

ECG. ICG: marked with the detected B, C, and X points. ECG: marked with R-peaks. 
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the ‘GE T-2100’ treadmill from GE Healthcare (Wauwatosa, Wis., USA) attached with 

‘Smart Biphasic’ defibrillator from Philips Healthcare (Andover, Mass., USA). The recording 

was carried out soon after cessation of the exercise and in the same way as the first recording. 

The subject was advised to avoid any movements during both the recordings in order to 

minimize the motion artifacts, but no restrictions were placed on breathing. The first and 

second sets of recordings are referred to as ‘under-rest’ and ‘post-exercise’ recordings. For a 

subject with cardiovascular disorder, only the under-rest recording was carried out. A 

summary of information on subjects with normal health and subjects with cardiovascular 

disorders along with the corresponding values of aortic annulus diameter, R-R interval of 

ECG, and stroke volume estimated using Doppler echocardiography are given in Table 4.1 

and Table 4.2, respectively. The recordings have been organized as a database for ICG related 

research as described in Appendix C. The under-rest (UR) and post-exercise (PE) recordings 

from the 18 subjects with normal health (SNH) have 630 and 625 cardiac cycles, respectively 

and these are referred to as SNH-UR and SNH-PE. These cycles pooled together result in 

1255 cardiac cycles and are referred to as SNH-UR+PE. The under-rest recordings from the 

22 subjects with cardiovascular disorders (SCD) have 842 cardiac cycles and these are 

referred to as SCD-UR. 

B. Extraction of Parameters  

SV estimation uses three parameters obtained from impedance cardiography: the basal 

impedance 0Z , the ICG peak max( )dz dt , and the left ventricular ejection time lvetT . 

Extraction of max( )dz dt  and lvetT  requires detection of the B, C, and X points in the ICG 

waveform. The automatic beat-to-beat detection of these points was carried out using the 

technique presented in Chapter 3 (Naidu et al 2014), with the simultaneously recorded ICG 

and ECG waveforms as the inputs. The technique provides automatic marking of the R peak 

of ECG and the B, C, and X points of ICG in each cardiac cycle. From these markings, the 

time interval from the B point to the X point in a cardiac cycle was taken as lvetT  and the 

height of the C point from the B point was taken as max( / )dz dt . These values along with 

subject data are used as the inputs for SV estimation. The reference SV values are calculated 

as the product of VTI obtained from time-aligned Doppler echocardiogram and the cross- 

sectional area calculated from the measurement of aortic diameter at the annulus assuming 

circular cross-section, as described earlier as part of signal recording. 
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Table 4.1 Information on subjects with normal health (SNH): age, aortic annulus diameter (Ao), 

recording condition (UR: under rest, PE: post-exercise), number of cardiac cycles, mean and S.D. 

of R-R intervals (RR), and mean and S.D. of stroke volume (SV) estimated using Doppler 

echocardiography. 

 

Subject 
   

Ao 

(cm) 
 Condi-

tion 

 
No. of 

cycles 

R

R 
RR (ms)  SV (mL)  Age 

(year) 

     

     Mean  S.D.  Mean  S.D. 

                 
SNH-AG 

 
44 

 
2.15 

 UR  22  758  10.7  93.0  4.5 

   PE  45  554  6.1  101.5  6.5 

                 
SNH-BS 

 
50 

 
2.10 

 UR  31  901  27.7  96.6  5.4 

   PE  59  750  16.7  110.4  10.3 

                 
SNH-GS 

 
26 

 
2.36 

 UR  24  931  25.3  84.3  5.6 

   PE  19  737  42.4  93.2  9.2 

                 
SNH-KS 

 
47 

 
2.06 

 UR  22  637  8.1  81.9  8.2 

   PE  18  506  16.7  84.3  5.9 

                 
SNH-MN 

 
32 

 
1.62 

 UR  64  738  19.5  51.8  5.6 

   PE  35  511  6.7  60.2  5.2 

                 
SNH-MS 

 
58 

 
1.86 

 UR  44  739  9.3  79.7  8.6 

   PE  33  504  6.9  71.6  5.0 

                 
SNH-NC 

 
58 

 
2.12 

 UR  49  782  7.6  90.0  4.5 

   PE  25  531  6.1  131.0  7.9 

                 
SNH-NL 

 
60 

 
2.13 

 UR  32  776  17.3  72.7  5.6 

   PE  30  582  12.6  84.1  7.6 

                 
SNH-RM 

 
37 

 
2.10 

 UR  23  759  28.3  85.9  3.6 

   PE  36  636  12.3  91.1  8.0 

                 
SNH-SA 

 
50 

 
1.98 

 UR  47  802  15.8  85.4  4.5 

   PE  61  603  9.4  112.0  5.1 

                 
SNH-SD 

 
42 

 
1.90 

 UR  21  963  38.9  75.0  3.9 

   PE  22  788  25.9  75.1  5.0 

                 
SNH-SG 

 
39 

 
2.30 

 UR  31  744  33.8  89.3  8.8 

   PE  50  520  14.6   91.5  11.0 

                 
SNH-SK 

 
60 

 
2.29 

 UR  37  1011  52.7  96.4  7.7 

   PE  31  743  21.9  104.0  6.7 

                 
SNH-SM 

 
48 

 
2.00 

 UR  15  769  26.9  68.8  3.8 

   PE  40  586  12.9  81.0  3.7 

                 
SNH-SP 

 
44 

 
2.30 

 UR  25  650  9.1  94.7  5.6 

   PE  26  553  6.8  97.3  5.7 

                 
SNH-SZ 

 
65 

 
2.34 

 UR  36  969  22.6  108.2  7.4 

   PE  18  838  29.3  108.4  5.1 

                 
SNH-VK 

 
35 

 
2.02 

 UR  46  891  32.5  71.6  4.8 

   PE  57  690  17.9  73.2  5.2 

                 
SNH-ZP 

 
43 

 
2.05 

 UR  57  830  39.7  72.8  3.5 

   PE  24  628  20.1  82.7  4.3 

                 

Across18 

subjects 

 Mean = 

46.3, 

S.D. = 

10.7 

 Mean = 

2.09, 

S.D. = 

0.19 

 UR  630  811  102.6  82.2  17.6 

   PE  625  625  93.8  90.5  20.0 

   UR+PE  1255  718  136.5  86.3  18.8 
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Table 4.2 Information on subjects with cardiovascular disorders (SCD): age, aortic annulus 

diameter (Ao), recording condition (UR: under rest), number of cardiac cycles, mean and S.D. of 

R-R intervals (RR), and mean and S.D. of stroke volume (SV) estimated using Doppler 

echocardiography. 

 

Subject  
Age 

(year) 
 Ao (cm)  

Condi-

tion 
 

No. of 

cycles 
 

RR (ms)  SV (mL) 

Mean  S.D.  Mean  S.D. 

SCD-AB  30  1.80  UR  41  866  35.8  76.1  2.7 

SCD-DS  54  2.00  UR  64  703  6.4  77.5  5.2 

SCD-GH  24  2.00  UR  40  514  35.8  42.1  4.7 

SCD-GU  63  1.90  UR  39  884  34.8  71.9  3.1 

SCD-IP  78  1.70  UR  21  1089  10.8  66.5  2.4 

SCD-JS  28  1.90  UR  44  783  42.0  70.9  4.2 

SCD-KP  60  1.98  UR  17  782  44.5  104.3  4.1 

SCD-MB  58  1.67  UR  21  1001  13.8  70.7  2.1 

SCD-MJ  53  1.96  UR  44  834  11.7  61.9  3.4 

SCD-PK  39  1.98  UR  46  924  49.9  67.9  4.2 

SCD-RH  55  2.02  UR  15  801  20.5  92.5  2.8 

SCD-RP  60  1.82  UR  18  1135  92.7  75.8  2.3 

SCD-SC  53  2.20  UR  55  808  46.7  111.6  6.7 

SCD-SD  61  2.20  UR  22  1188  25.5  89.9  4.3 

SCD-SK  76  2.09  UR  44  1054  23.2  93.5  8.2 

SCD-SP  69  2.30  UR  35  1098  27.9  109.3  10.4 

SCD-SS  50  2.10  UR  45  644  28.5  38.0  5.2 

SCD-ST  28  1.77  UR  19  881  21.2  95.7  2.7 

SCD-SU  48  1.87  UR  41  927  17.4  79.5  3.8 

SCD-SY  31  1.80  UR  54  533  7.8  59.9  3.2 

SCD-TH  67  1.70  UR  50  801  3.4  50.8  3.4 

SCD-TS  63  2.10  UR  67  646  20.6  87.9  2.8 

Across 22 

subjects 
 

Mean = 

52.2,  

S.D.= 

15.9 

 

Mean = 

1.95,  

S.D.= 

0.17 

 UR  842  834  176.3  76.7  19.5 
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C. ANN Model Implementation, Optimization, and Testing 

Artificial neural networks (ANN) are data-driven and self-learning systems whose 

development was inspired by the biological neural systems (Hagan et al 1996, Samarasinghe 

2006, Haykin 2009). An overview of ANN and some of its applications on estimation are 

provided in Appendix B. It has been reported that a three-layer feed-forward neural network 

with Levenberg-Marquardt or gradient decent class of learning algorithm can track a 

nonlinear input-output relationship (Nocedal and Wright 1999). Normally, the number of 

neurons in the input layer is equal to the number of inputs in the parameter set. The hidden 

layer typically consists of an empirically determined optimal number of neurons with a 

nonlinear transfer function (Haykin 2009). Designing ANN model for an estimation 

application involves a careful selection of ANN structure, training algorithm, the number of 

hidden layers and the number of neurons in each layer, the set of input parameters, pre-

processing of the input data, and criterion to stop training. Overfitting is a common issue in 

ANN model development and it can be controlled by varying the number of neurons in the 

hidden layers. A smaller number of neurons than the required may lead to under-fitting or 

bias. 

 We have used a three-layer feed-forward ANN, with training using error back-

propagation algorithm and nonlinear activation function in the hidden-layer, for SV 

estimation as shown in Figure 4.3. The implementation was carried out using MATLAB and 
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Figure 4.3 A three-layer feed-forward ANN, with training using error back-propagation 

algorithm and nonlinear activation function in the hidden-layer, for SV estimation. 
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Neural Network Toolbox Release 2013a (MathWorks, Inc., Natick, Mass., USA). In this 

implementation, the input parameters (subject-related data and beat-to-beat ICG parameters) 

and the target values (beat-to-beat SV values measured using the reference technique) were 

transformed to have zero mean and unity variance to equalize their contributions in 

generalization of the model. 

 Training and testing of the network were carried out using two disjoint datasets, known 

as the training set and the testing set, respectively. The training set was partitioned into two 

disjoint subsets, with the datasets corresponding to two-third of the randomly selected cardiac 

cycles assigned to the estimation set and the remaining ones assigned to the validation set. 

The weights of the network were initially set to random values. The estimation set was 

applied repeatedly for training of the network and weight adjustment was carried out in batch 

mode on an epoch-by-epoch basis for improving the accuracy of the estimated output values 

with reference to the corresponding target values. The maximum number of epochs during 

training was set as 10,000. After each epoch, the validation set was used for checking the 

overfitting of the network. Increase in accuracy over the estimation set with the accuracy over 

the validation set remaining the same or decreasing was considered to be an indicator of 

overfitting and validation failure. The training was stopped in the case of 100 successive 

validation failures. Subsequently, the estimation capability of the trained network was 

assessed on the testing set. 

 The commonly used ICG parameters in the different equation-based methods for SV 

estimation are L , 0Z , max( / )dz dt , and lvetT , or some transformations and combinations of 

these parameters. We have used these ICG parameters along with the R-to-R interval from 

ECG as the inputs. In addition to them, the subject’s age, height, and weight were also used as 

the inputs. The three-layer feed-forward network was implemented with these eight inputs. 

Several variations of the network, differing in terms of the number of neurons in the hidden 

layer, activation function in the hidden layer, and training algorithm for updating the weights, 

were investigated for selecting the optimal network. A set of informal investigations were 

used to find a near-optimal network. Subsequently, four investigations were carried out for 

optimizing the network by examining the effect of varying one aspect of the network at a time 

while keeping the other aspects fixed: (i) number of neurons in the hidden layer, (ii) 

activation function, (iii) training algorithm, and (iv) set of input parameters.  

 The investigations for optimizing the network were carried out using the datasets 

corresponding to SNH-UR and SNH-PE recordings from subjects with normal health pooled 

together, referred to as SNH-UR+PE. These datasets were partitioned into two disjoint sets, 



 Chapter 4 SV estimation using artificial neural network 

51 

 

with the datasets corresponding to 60% of the randomly selected cardiac cycles assigned to 

the training set and the remaining 40% assigned to the testing set. 

 The optimal network as selected on the basis of the results of the earlier four 

investigations was used for examining the effect of different datasets for training. The training 

was carried out using training sets obtained from the SNH-UR, SNH-PE, and SNH-UR+PE 

datasets, resulting in three trained networks. Each of these networks was tested on the testing 

sets obtained from SNH-UR, SNH-PE, SNH-UR+PE datasets. In each case, the training set 

comprised randomly selected 60% of the cardiac cycles with the remaining 40% used as the 

testing set. The three networks were subsequently tested on SCD-UR with 100% of the 

cardiac cycles used as the testing set. Performances of the three networks were compared with 

estimations using Kubicek, Sramek, and Bernstein equations as given in (2.8), (2.9), and 

(2.11), respectively. The blood resistivity   was taken as 150 -m  for Kubicek equation. 

 In addition to comparison of the performance indices ( ,  , and r ), the mean-versus-

difference plots, known as the Bland-Altman plots (Altman and Bland 1983; Bland and 

Altman 1999), were used to examine the distribution of errors. 

4.3 Results 

Results of the investigations for selection of the optimal network and those for comparison of 

the ANN and equation based methods for beat-to-beat SV estimation are given in the 

following two subsections. 

A. Selection of the Optimal Network 

For selection of the optimal network, the under-rest and post-exercise recordings from 

subjects with normal health were pooled together, resulting in 1255 cardiac cycles with the 

mean and standard deviation of the SV values as 86.3 mL and 18.8 mL, respectively. As 

described earlier, the training set comprised 60% of randomly selected cycles, i.e. there were 

753 cycles in the training set and remaining 502 cycles in the testing set. The training set was 

further partitioned into estimation set with 502 cycles (2/3 of the training set) and validation 

set with remaining 251 cycles. The network was implemented with 8 input parameters: L , 

0Z , max( / )dz dt , lvetT , RR (R-to-R interval from ECG), Age, Ht (height), and Wt (weight). 

Investigations were carried out for examining the effects of (i) number of neurons in the 

hidden layer, (ii) activation function, (iii) training algorithm for updating the weights, and (iv) 

set of input parameters.  
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 Performance comparison was carried out by tabulating the number of epochs for 

convergence during training and mean error ( ), standard deviation of errors (  ), and 

correlation coefficient ( r ) with reference to the target values for the estimation, validation, 

and testing sets. In selecting the optimal network, the number of epochs for convergence is 

given lower precedence than the error related performance indices.  

 For examining the effect of the number of neurons in the hidden layer, the hyperbolic 

tangent was selected as the activation function and the Levenberg-Marquardt algorithm was 

selected for updating the weights. The performance indices for the number of hidden-layer 

neurons varied from 3 to 20 are given in Table 4.3. The network with three-neuron hidden 

layer needed the largest number of epochs for training. The   values were small (< 1 mL) in 

all cases. On the basis of values of   and r , the networks with 8 or more neurons may be 

considered to have better performance than those with 3 or 5 neurons and the network with 10 

neurons may be considered to be optimal. 

 The effect of different activation functions was examined for the network with the 10-

neuron hidden layer and the Levenberg-Marquardt algorithm for updating the weights. The 

networks were implemented with three activation functions: radial basis, logistic, and 

hyperbolic tangent. The results are given in Table 4.4. The number of epochs was smallest for 

the radial basis function. The  values were small (< 1 mL) in all cases. The hyperbolic 

Table 4.3 Effect of different number of neurons in the ANN hidden-layer (activation function: 

hyperbolic tangent, training algorithm: Levenberg-Marquardt). Number of cardiac cycles in the testing 

set = 502. Nepoch = number of epochs for training,  = mean error,  = standard deviation of errors, 

and r = correlation coefficient. 

 

No. of neurons  Nepoch   (mL)  
e (mL)  r  

3  177  0.29  9.16  0.880 

5  18  −1.14  7.64  0.924 

8  31  −0.14  6.38  0.944 

10  66  0.42  6.06  0.947 

13  29  −0.45  7.06  0.934 

15  39  0.55  6.90  0.937 

20  10  −0.47  7.26  0.931 

 (p < 0.000l for all r values) 
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tangent had smallest  values and hence it may be considered to be the optimal choice 

although it had a somewhat larger number of epochs than the other two functions. 

 The approximation error and the number of epochs for convergence depend on the 

training algorithm used for updating the weights (Haykin 2009, Nocedal and Wright 1999). 

Effect of different training algorithms was examined on the network with 10 neurons in the 

hidden layer and the hyperbolic tangent activation function. Out of the several training 

algorithms, nine commonly used ones were used for implementing the networks: Broyden-

Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton, Polak-Ribiére conjugate gradient, scaled 

conjugate gradient, one step secant, resilient back-propagation, conjugate gradient with 

Powell-Beale restarts, variable learning rate back-propagation, Fletcher-Powell conjugate 

gradient, and Levenberg-Marquardt. The results are given in Table 4.5. All algorithms 

resulted in small  values (< 1.5 mL) and the variation in performance of different algorithms 

in terms of   and r  was small. There was a large variation in the number of epochs for 

different algorithms. It was smallest for Levenberg-Marquardt algorithm and much lower than 

that for other algorithms. This algorithm also resulted in nearly the smallest   and highest 

r . Therefore the Levenberg-Marquardt algorithm may be considered as the optimal choice 

for our application. 

 The investigations for examining the effect of number of neurons in the hidden layer, 

activation function, and training algorithm showed the network with 10-neuron hidden layer, 

hyperbolic tangent activation function, and Levenberg-Marquardt training algorithm was 

selected as the optimal choice. This was used for investigating the contribution of different 

non-ICG parameters by excluding them in different combinations. The results of training and 

Table 4.4 Effect of different activation functions used in the ANN hidden layer (number of hidden-

layer neurons: 10, training algorithm: Levenberg-Marquardt). Number of cardiac cycles in the 

testing set = 502. Nepoch = number of epochs for training,  = mean error,  = standard deviation 

of errors, and r = correlation coefficient. 

 

Activation function  Nepoch   (mL)  
e (mL)  r  

Radial basis  19  −0.16  6.33  0.942 

Logisitc  30  −0.56  6.22  0.952 

Hyperbolic tangent  66  0.42  6.06  0.947 

 (p < 0.000l for all r values) 
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testing of the networks are given in Table 4.6. The exclusion of different input parameters had 

a large effect on the number of epochs, with range of 14 – 417. For the testing set, the   

values were small (< 1.5 mL) in all cases, the   values range from 6.1 – 11.8 mL, and the r  

values range from 0.819 – 0.950. Small number of epochs was generally associated with large 

  values in most cases and hence cannot be used by itself as an indicator for comparing the 

importance of the parameters. Cases with small   values were generally associated with 

high r  values. 

 Network with exclusion of none of the input parameter had 66 epochs and smallest  . 

Among single-parameter exclusions, RR exclusion resulted in largest   indicating its 

importance. Among two-parameter exclusions, [RR, age] exclusion had largest  . Among 

three-parameter exclusions, largest   was observed for [age, Ht, Wt] exclusion indicating 

that these parameters were collectively important although not individually. Exclusion of all 

the non-ICG parameters together had largest number of epochs and largest  , indicating 

collective importance of these parameters for improving the speed of convergence and 

Table 4.5 Effect of different ANN training algorithms for updating the weights (number of hidden-

layer neurons: 10, activation function: hyperbolic tangent. Number of cardiac cycles in the testing set = 

502. Algorithms: BFGS (BFGS quasi-Newton), PRCG (Polak-Ribiere conjugate gradient), SCG 

(scaled conjugate gradient), OSS (one step secant), RBP (resilient back-propagation), CGPB 

(conjugate gradient with Powell-Beale restarts), VLRB (variable learning rate back-propagation), 

FPCG (Fletcher-Powell conjugate gradient), LM (Levenberg-Marquardt). Nepoch = number of epochs 

for training,  = mean error,  = standard deviation of errors, and r = correlation coefficient. 

 

Algorithm  Nepoch   (mL)  e (mL)  r  

BFGS  9999  −0.64  6.55  0.947 

PRCG  2621  −0.85  6.35  0.951 

SCG  2030  0.34  6.90  0.929 

OSS  892  0.79  7.97  0.914 

RBP  668  −0.81  7.24  0.922 

CGPB  2383  −0.86  7.47  0.927 

VLRB  9925  −1.46  7.20  0.924 

FPCG  1623  0.09  6.24  0.946 

LM  66  0.42  6.06  0.947 

(p < 0.000l for all r values) 
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decreasing the error in SV estimation. Therefore, it may be inferred that the four non-ICG 

parameters are needed for the optimal network and the R-R interval is the most important one 

out of these parameters. 

B. Comparison of ANN and Equation Based Methods for Beat-to-Beat SV Estimation 

Based on the results of the investigations presented in the previous subsection, ANN with 

eight inputs ( L , 0Z ,  
max

dz dt , lvetT , RR, age, Ht, Wt), 10 neurons in the hidden layer, 

hyperbolic tangent activation function, and Levenberg-Marquardt training algorithm was 

selected as the optimal network for beat-to-beat SV estimation. Further investigation was 

carried out to examine the performance of this network for different combinations of the 

training and testing sets and for comparing its performance with equation-based estimations. 

Table 4.6 Effect of exclusion of different non-ICG parameters (number of hidden-layer neurons: 10, 

activation function: hyperbolic tangent, training algorithm: Levenberg-Marquardt). Number of cardiac 

cycles in the testing set = 502. Nepoch = number of epochs for training,  = mean error,  = standard 

deviation of errors, and r = correlation coefficient. 

 

Excluded Parameter(s)   Nepoch   (mL)  e (mL)  r  

None   66  0.42  6.06  0.947 

Ht  51  −0.10  6.74  0.939 

Wt  62  −0.43  6.78  0.950 

Age  205  0.45  6.79  0.938 

RR  27  1.08  7.10  0.919 

Ht, Wt   37  0.63  6.96  0.932 

Ht, age  148  0.07  6.62  0.942 

Ht, RR   147  0.24  7.49  0.906 

Wt, age  213  −0.07  7.31  0.941 

Wt, RR  14  1.00  7.86  0.905 

Age, RR  162  0.56  7.91  0.915 

Ht, Wt, age   36  1.27  9.15  0.878 

Ht, Wt, RR  92  −0.09  8.33  0.895 

Ht, age, RR  77  −0.11  8.12  0.908 

Wt, age, RR  30  0.86  8.23  0.909 

Ht, Wt, age, RR  417  0.41  11.81  0.819 

(p < 0.0001 for all r values) 
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In the subsequent description, the networks trained on training sets with SNH-UR, SNH-PE, 

and SNH-UR+PE datasets are referred to as ANN1, ANN2, and ANN3, respectively. The SV 

estimations using the Kubicek, Sramek, and Bernstein equations are referred to as EQKB, 

EQSR, EQBR, respectively. The performance comparisons of the ANN-based and the 

equation-based estimations were carried out for the testing sets corresponding to SNH-UR, 

SNH-PE, SNH-UR+PE, and SCD-UR.  

 The results are summarized in Table 4.7. Results for the three trained networks ANN1, 

ANN2, and ANN3 show that the performance of each trained network was the best when the 

training and testing sets corresponded to the same datasets, with almost similar pattern for the 

three performance indices. The network ANN3 resulted in  = 0.1 mL,  = 6.6 mL, and r = 

0.946 for SNH-UR+PE. The performance of ANN1 on SNH-UR and that of ANN2 on SNH-

PE were almost similar. However, the performance of ANN1 on SNH-PE and SNH-UR+PE 

and that of ANN2 on SNH-UR and SNH-UR+PE were significantly poor. The performance 

of ANN3 on SNH-UR and SNH-PE was almost similar to that on SNH-UR+PE. These results 

Table 4.7 Comparison of ANN and equation based beat-to-beat SV estimations: mean error ( ), 

standard deviation of errors (  ), and correlation coefficient ( r ) with reference to the SV values 

obtained using Doppler echocardiography. 

 

Testing set  

(N = No. of 

cardiac cycles) 

 
Perform. 

index 

 Estimation method 

  ANN1  ANN2  ANN3  EQKB  EQSR  EQBR 

               

SNH-UR 

(N = 252) 

   (mL)  0.37  −5.62  −0.39  −52.70  −52.31  −42.03 

  (mL)  5.99  31.19  5.95  30.29  30.97  32.14 

 r   0.950  0.716  0.951  0.154  0.198  0.265 

               

SNH-PE 

(N = 250) 

   (mL)  5.79  −0.16  0.90  −42.13  −49.33  −33.68 

  (mL)  15.23  7.43  7.17  56.84  34.07  40.02 

 r   0.752  0.930  0.936  0.210  0.228  0.291 

               

SNH-UR+PE 

(N = 502) 

   (mL)  3.04  −2.15  0.07  −47.09  −50.77  −37.98 

  (mL)  12.65  14.30  6.59  46.23  32.61  48.73 

 r   0.773  0.725  0.946  0.363  0.295  0.364 

               

SCD-UR 

(N = 842) 

   (mL)  1.36  −2.21  −0.10  −42.08  −38.21  −44.84 

  (mL)  9.30  9.71  7.20  37.67  35.65  40.88 

 r   0.829  0.812  0.933  0.292  0.163  0.329 

               

(p < 0.0001 for all r values) 
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indicate that training of the network on the pooled data significantly improved its 

performance and that ANN3 can be used for SV estimation on all three SNH datasets.  

 Testing of ANN3 on SCD-UR resulted in  = −0.1 mL,  = 7.2 mL, and r = 0.933 

and thus only a slight performance degradation compared to the testing on SNH-UR+PE. 

Testing of ANN1 and ANN2 on SCD-UR gave relatively poor results. These results show that 

training of the optimal network on the training set obtained by pooling of the under-rest and 

post-exercise recordings from the subjects with normal health enabled the network for SV 

estimation on recordings from subjects with cardiovascular disorders. 

 As seen in Table 4.7, the three equation-based SV estimations resulted in relatively 

large  , large  , and low r  values for all the four testing sets. The performance of 

Bernstein equation (EQBR) was generally better than that of the other two equations. This 

equation resulted in  = −44.8 mL,  = 40.9 mL, and r = 0.329 for testing on SCD-UR. 

Thus, the ANN-based method, particularly with the training set obtained by pooling of the 

under-rest and post-exercise recordings from subjects with normal health, may be considered 

to be much more effective than the equation-based methods for beat-to-beat SV estimation 

from subjects with normal health as well as those with cardiovascular disorders. 

 Figure 4.4 gives plots of the difference of estimations versus the mean of estimations 

(Bland-Altman plots) for beat-to-beat SV estimation impedance cardiography using ANN3 

and Doppler echocardiography for the SNH-UR+PE and SCD-UR datasets, showing the 

distribution of differences along with 95% confidence interval ( 1 96.   ). The plots show 

that the distribution of differences between the two measurement techniques are similar for 

both the datasets, indicating that the performance of ANN3 for recordings from the subjects 

with cardiovascular disorders is similar to that for recordings from the subjects with normal 

health. There is an increase in the error at the higher SV values, which may be due to sparsity 

of training data at this end. 

  Earlier studies (Aust et al 1982, Northridge et al 1990, Castor et al 1994, Mulavara et 

al 1998, van der Meer et al 1999, Fellahi et al 2009) on evaluation of impedance 

cardiography with reference to Doppler echocardiography for SV estimation have used 

estimation over a set of cycles for each subject. In the study by Mulavara et al (1998) using 

ANN-based SV estimation on subjects with normal health, the correlation coefficients for 

estimations using the Kubicek equation, the Sramek equation, and the ANN-based method 

were 0.29, 0.32, and 0.88, respectively. For comparison with such studies, the beat-to-beat SV 

estimations in our study were evaluated for average of SV values across the cardiac cycles for 

each of the 22 subjects with cardiovascular disorders. All three equation-based estimations 
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resulted in large  and   values, and low r  values, with  = −43.1 mL,  = 43.5 mL, and 

r = 0.20 for EQBR. The ANN-based estimations resulted in much lower  and  values, 

and larger r values, with  = 0.4 mL,  = 5.7 mL, and r = 0.96 for ANN3. Thus, the ANN-

based estimation outperformed the equation-based estimation for beat-to-beat variation as 

well as for average SV estimation 

4.4 Discussion 

An ANN-based technique for beat-to-beat SV estimation has been proposed and investigated 

using an ICG-echocardiography database. The ICG parameters are obtained using a technique 

for automatic detection of the B, C, and X points as presented in the previous chapter. 

Echocardiography is used as the reference technique, as it is noninvasive, can be used for 

beat-to-beat SV estimation, and can be used simultaneously along with impedance 

cardiography. Our approach assumes that the input-output relationships in the datasets from 

subjects with normal health, with the recordings in the under-rest condition and in the post-

exercise condition after the heart rate has been increased by participation of the subject in the 

Bruce exercise protocol, can also be representative of the input-output relationships in the 

datasets from subjects with cardiovascular disorders. A three-layer feed-forward network with 

error back-propagation algorithm was selected for SV estimation. The network was 

implemented for eight input parameters: inter-electrode distance, basal impedance, ICG peak, 

left ventricular ejection time, R-R interval, age, height, and weight. Three of these parameters 

(ICG peak, left ventricular ejection time, and R-R interval) are estimated on beat-to-beat basis 

and the other five parameters are subject-dependent. The input parameters and the target 

values were transformed to equalize their contributions in generalization of the model. The 

investigations were carried out in two stages. The first stage involved optimization of the 

network by examining the effects of number of neurons in the hidden layer, activation 

function, and the training algorithm for updating the weights, and set of input parameters. The 

second stage involved testing of the network by examining the effect of different 

combinations of training and testing sets and comparison with equation-based estimations. 

 The investigations for optimizing the network were carried out using the datasets from 

the subjects with normal health with the under-rest and post-exercise recordings pooled 

together. These investigations showed the network with 10-neuron hidden layer, hyperbolic 

tangent activation function, and Levenberg-Marquardt training algorithm as the optimal 

choice. Exclusion of the four non-ICG parameters (R-R interval, age, height, and weight) in 

different combinations showed that R-R interval was important in decreasing the error and 
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combination of height, weight, and age together helped in significantly decreasing the number 

of epochs needed for convergence during training and also the errors. Therefore, it may be 

inferred that the four non-ICG parameters have an important role in ANN-based estimation. 

These parameters were retained as part of the inputs for the second stage of the investigation.  

 The second stage of investigation involved examining the effect of different 

combinations of training and testing sets on performance of the optimal network and 

comparing its performance with equation-based estimations. Three network models were 

developed by using three types of training sets from the recordings from the subjects with 

normal health: (i) under-rest, (ii) post-exercise, and (iii) under-rest and post-exercise pooled 

together. All the three trained networks were tested using the three testing sets. Results 

showed that the performance of each trained network was the best when the training and 

testing sets corresponded to the same datasets. Performance of the first two networks 

degraded when tested on different datasets. Performance of the third network did not change 

much across the testing sets. Performance of the network trained on the pooled datasets did 

 

 

 

  Figure 4.4 Bland-Altman plots of beat-to-beat SV estimation (mL) using ANN3 on the SNH-UR+PE and 

SCD-UR recordings with the SV values measured from Doppler echocardiogram as reference (solid line: 

 , dotted lines:   ± 1.96  ). 
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not degrade during testing on the other two types of datasets. Therefore, this network may be 

considered as better than the other two. 

 Performances of the trained networks were compared with the three established 

equation-based methods (Kubicek, Sramek, and Bernstein), for the recordings from the 

subjects with normal health and for recordings from the subjects with cardiovascular 

disorders. In comparison with the ANN-based estimations, the equation-based estimations 

had poor performance on all indicators. Bernstein equation generally performed better than 

the other two equations. It provided correlation coefficients of 0.36 and 0.33 for the 

recordings from the subjects with normal health and for subjects with cardiovascular 

disorders, respectively. The corresponding values for the best ANN-based estimation were 

0.95 and 0.93. The Bland-Altman plots showed the distribution of errors in SV estimation for 

recordings from the subjects with cardiovascular disorders to be similar to that for recordings 

from the subjects with normal health.  

 For a comparison of the results with earlier studies (Aust et al 1982, Northridge et al 

1990, Castor et al 1994, Mulavara et al 1998, van der Meer et al 1999, Fellahi et al 2009), the 

beat-to-beat SV estimations were averaged over the cardiac cycles for each subject. The 

correlation coefficients for the equation-based estimations were low and similar to those 

reported in earlier studies. The correlation coefficient for ANN-based estimation was 0.96 and 

higher than the earlier reported values.  Thus, the results show that the ANN-based 

estimation with training using the pooled datasets from the subjects with normal health can be 

used for different datasets and pooling is needed for training to extend the use of the trained 

network for SV estimation for the subjects with cardiovascular disorders. The results further 

show that the proposed method is useable for measuring SV averaged over a set of cardiac 

cycles and for beat-to-beat SV monitoring.  

 Investigations need to be carried out with a large database. Training data from a large 

number of subjects and particularly with higher levels of exercise can help in reducing 

sparsity of datasets at the ends of the SV range and in improving the effectiveness of ANN-

based estimation. The testing needs to be carried out with a large number of subjects with 

cardiovascular disorders. Use of other types of networks and techniques for detection of ICG 

characteristic points with smaller errors should be investigated. Use of the C-C interval in 

place of the R-R interval in the input parameter set may be helpful in further improving the 

performance. Effects of inclusion of additional ICG parameters, such as B-C interval, C-X 

interval, and ICG value at the X point, need to be investigated. 



Chapter 5 

SUMMARY AND CONCLUSION 

 

5.1 Introduction 

Impedance cardiography is a low-cost noninvasive technique for SV monitoring and it can be 

used for estimation of several other cardiovascular indices. Due to lack of repeatability in the 

estimated values and poor agreement between the estimated values and the measurements 

using the reference techniques, impedance cardiography has not received acceptance for use 

in clinical diagnosis, continuous monitoring in intensive care units, and for decision making 

in emergency departments. Our research objective was to develop an ANN-based method for 

automatic beat-to-beat SV estimation using impedance cardiography to improve the 

acceptability of this technique for use in clinical practice and as a research tool for the study 

of SV variability. 

 Most of the existing methods for SV estimation are based on models of the thoracic 

impedance and the aortic blood profile along with use of empirically derived scaling factors. 

Validations of these methods have often used parameters obtained from ensemble-averaged 

signals and across-the-subjects data. Use of ANN-based SV estimation can help in addressing 

the inadequacies of the model-based approaches. Further, training and testing of the network 

for beat-to-beat estimation can help in overcoming the limitations of ensemble averaging and 

across-the-subjects data. We have used Doppler echocardiography as the reference technique, 

as it is noninvasive, it can be used for beat-to-beat SV measurements on healthy subjects and 

patients, and it can be used simultaneously along with impedance cardiography. 

 The summary of the investigations, the conclusions drawn from the results, and some 

suggestions for further work are presented in the following sections. 

5.2 Summary of the Investigations 

For developing an ANN-based method for automatic beat-to-beat SV estimation using 

impedance cardiography, an ICG-echocardiography database was developed. Subsequently, 

this database was used for two sets of investigations: (i) beat-to-beat detection of the B, C, 

and X points for obtaining the ICG parameters for use in SV estimation and (ii) optimization 

and evaluation of the ANN-based SV estimation. 

 ICG-echocardiography database: The ICG, ECG, and Doppler echocardiogram signals 

were simultaneously recorded in a clinical setting from subjects with normal health and 



 Chapter 5 Summary and conclusion 

62 

 

subjects with cardiovascular disorders, without efforts for gender and age balancing. The 

gender, age, height, weight, and inter-electrode distance were noted for each of the subjects. 

The instrumentation and the method used for the recordings have been described in Section 

3.3 and Section 4.2 and the format related details of the database are given in Appendix C. 

There were 18 subjects with normal health and 22 subjects with cardiovascular disorders. All 

recordings were carried out with the subject in the left-lateral position with no restriction on 

breathing. For a subject with normal health, two recordings were carried out. The first 

recording was carried out with the subject having relaxed and rested. The second recording 

was carried out after the subject underwent an exercise, following the first four stages of the 

Bruce exercise protocol, to increase the heart rate. The first and second sets of recordings are 

referred to as ‘under-rest’ and ‘post-exercise’ recordings. For a subject with cardiovascular 

disorder, only the under-rest recording was carried out. The under-rest and post-exercise 

recordings from the 18 subjects with normal health have 630 and 625 cardiac cycles, 

respectively. The under-rest recordings from the 22 subjects with cardiovascular disorders 

have 842 cardiac cycles.  

 Automatic detection of ICG characteristic points: For obtaining the ICG parameters for 

SV estimation, the B, C, and X points in the ICG waveform need to be detected in an error-free 

manner. While the C point is generally prominent, the B and X points are much less distinct 

and their detection gets severely affected by the artifacts and due to morphological variations 

in the waveform. Based on an empirical examination of the morphological variations of the 

ICG waveforms, a time-domain technique for automatic detection of B, C, and X points has 

been proposed, as described in Section 3.2. The proposed technique uses simultaneously 

acquired ECG and ICG as inputs. It uses R and T peaks of ECG as reference points and 

multiple time-domain features to reduce errors due to morphological variations. A wavelet-

based denoising is employed for suppression of respiratory artifacts in ICG and the technique 

can be used without any restriction on breathing. It does not require estimation of the baseline 

and selection of the processing parameters. As high-order derivatives are not used, the 

detection is not significantly affected by the presence of a moderate level of noise in the input 

signal. Detection is carried out on beat-to-beat basis after marking of the ICG cycles with 

reference to the R peaks and hence the techniques avoids inter-cycle smearing. The proposed 

technique was evaluated on the ICG-echocardiography database comprising simultaneously 

acquired and time-aligned ICG and Doppler echocardiogram recordings. The performance of 

the technique was evaluated with reference to the visually marked points in the ICG 

waveform and with reference to the intervals measured using echocardiography. 
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 ANN-based SV estimation: An ANN-based method for SV estimation has been 

proposed, as described in Section 4.2. It is based on the assumption that the relationship 

between the SV values and the input parameters can be acquired by the network during its 

training and the trained network can be used subsequently for SV estimation. The training 

was carried out on the datasets obtained from the individual cardiac cycles without ensemble 

averaging. This approach assumes that the input-output relationships in the datasets from 

subjects with normal health, with the recordings under the resting condition and in the post-

exercise condition after the heart rate has been increased by participation of the subject in the 

Bruce exercise protocol, can also be representative of the input-output relationships in the 

datasets from subjects with cardiovascular disorders. The ICG parameters to serve as inputs 

for beat-to-beat SV estimation were obtained using the proposed technique for automatic 

detection of the B, C, and X points. Beat-to-beat SV measurements from Doppler 

echocardiograms were used as the target values. A three-layer feed-forward network with 

error back-propagation algorithm was selected for SV estimation and implemented for 8 input 

parameters: L , 0Z , max( / )dz dt , lvetT , R-R interval from ECG, age, height, and weight. The 

investigations on ANN-based SV estimation were carried out in two stages: (i) optimization 

of the network by examining the effects of number of neurons in the hidden layer, activation 

function, training algorithm for updating the weights, and set of input parameters and (ii) 

testing of the network with different combinations of training and testing sets and comparison 

with equation-based estimations. 

5.3 Conclusions 

The conclusions from the results of the investigations for evaluating the performance of the 

proposed technique for automatic detection of the B, C, and X points may be summarized as 

the following:  

i) There were no significant differences in the performance of the proposed technique across 

the three sets of recordings in the database, despite large heart rate and morphological 

variations in the data.  

ii) The proposed technique performed better than the established techniques reported earlier. 

The performance of the proposed technique may be attributed to the use of artifact 

suppression, use of R and T peaks as reference points for marking ICG segments for locating 

the features, and use of multiple time-domain features for resolving ambiguities caused by 

morphological variations. 
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iii) The bias related error (mean of differences) and the precision related error (standard 

deviations of differences), as referred to the mean R-R interval, for estimation of the B-X 

interval were 3.2% and 7.1%, respectively. Thus the proposed technique may be considered to 

be suitable for obtaining ICG parameters for automatic beat-to-beat SV estimation. 

 The investigations for optimizing the network for ANN-based SV estimation, its testing 

with different combinations of training and testing sets, and comparison with equation-based 

estimations resulted in the following conclusions: 

i) The investigations involving training and testing with the pooling of the under-rest and 

post-exercise datasets from the subjects with normal health showed that the best performance 

was provided by the network with 10-neuron hidden layer, hyperbolic tangent activation 

function, Levenberg-Marquardt training algorithm, and the set of 8 input parameters. 

ii) Testing of the network models developed by using three types of training sets from the 

recordings from the subjects with normal health showed that the training using the pooled 

datasets can be used for all types of datasets and that training on the pooled datasets is needed 

for extending the use of trained network for SV estimation for the subjects with 

cardiovascular disorders. 

iii) The ANN-based SV estimation using the optimal network resulted in mean error  = 0.1 

mL, standard deviation of errors  = 6.6 mL, and correlation coefficient r = 0.946 for 

testing sets from subjects with normal health. The results for testing sets from subjects with 

cardiovascular disorders were  = −0.1 mL,  = 7.2 mL, and r = 0.933, showing only a 

slight performance degradation. Among the equation-based estimations, Bernstein equation 

provided better performance than the other two equations, but its performance with  = −44.8 

mL,  = 40.9 mL, and r = 0.329 was significantly inferior to the ANN-based estimation. 

 In summary, it may be concluded that the proposed ANN-based method using the 

optimized network and the ICG parameters obtained by automatic beat-to-beat detection of 

the B, C, and X points can be used for SV estimation with low bias and high precision from 

different types of datasets. The proposed technique may be helpful in improving the 

acceptability of impedance cardiography for use in clinical practice and as a research tool for 

the study of SV variability.  

5.4 Suggestions 

For extending the applications of impedance cardiography as a low-cost diagnostic tool, the 

proposed technique for beat-to-beat detection of the B, C, and X points needs to be evaluated 

for estimation of other cardiovascular indices and study of their variabilities. Further 
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investigations for improving the detection technique, particularly for improving the agreement 

of the detected X point with the point of aortic valve closure, may help in improving the 

performance of ANN-based SV estimation. The proposed method needs to be investigated 

using other types of networks and a larger database. 

 

 



Appendix A 

SV MEASUREMENT  

USING DOPPLER ECHOCARDIOGRAPHY 

 

A.1 Introduction  

Echocardiography is an ultrasound-based noninvasive technique for detection of 

cardiovascular disorders. Several modes of this technique are used clinically: A-mode, B-

mode, M-mode, 2D, and Doppler (Quinones et al 2002, Oh et al 2006, Solomon and Bulwer 

2007). In the A-mode (amplitude mode), a short ultrasound pulse is transmitted and the 

received echoes are plotted as a function of time, with the position and intensity of the echoes 

being related to the distance of the reflecting tissues and their acoustic characteristics, 

respectively. In the B-mode (brightness mode), echoes are represented as dots along a line 

representing transmission path of the ultrasonic pulse, with the echo intensity represented by 

the brightness of the corresponding dot. In the M-mode (motion mode), B-mode display along 

with repeated transmission of pulses is used to provide a one-dimensional view of movements 

of the reflecting tissues. In 2D-mode (two-dimensional mode), a phased-array transducer is 

used to steer the pulse along different directions and M-mode display of the received echoes 

along the corresponding transmission paths is used to provide a two-dimensional scan of the 

reflecting tissues. Doppler echocardiography uses detection of Doppler shift in the echo for 

measuring blood flow velocity. It is useful in detection of cardio-valvular insufficiency, 

stenosis, and other abnormal blood flow conditions. In pulsed wave Doppler (PWD), short 

bursts of ultrasound are transmitted and the resulting echoes are received, using a single 

transducer, to measure the blood velocities from a selected discrete region of the heart. In 

continuous wave Doppler (CWD), two transducers are used for simultaneous transmission 

and reception for measuring the velocities of the blood cells in the transmission path. 

 The study of different structures of the heart and their movements involves imaging the 

heart using multiple transducer positions (parasternal, suprasternal, subcostal, and apical) and 

from multiple cross-sectional views (long axis, short-axis, four-chamber, five-chamber) 

(Henry et al 1980). Parasternal long-axis view is used for visualizing right ventricle, ventri-

cular septum, ascending aorta, anterior and posterior cups of the aortic valve, mitral valve, left 

atrium, and right ventricular outflow tract. Parasternal short-axis view helps in visualizing, 

mitral valve, right ventricle, and left ventricular cavity dimension and wall thickness. In 

apical four-chamber view, the four heart chambers can be visualized simultaneously. Apical 
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five-chamber view can be used for visualizing the left ventricular outflow tract, right and left 

leaflets of the aortic valve, and ascending aorta. 

 An example of echocardiogram for a subject with normal health is shown in Figure A.1 

and that for a subject with cardiovascular disorders is shown in Figure A.2. The textual 

information has the subject name and ID, the transducer type and frequency, power, gain, and 

pulse repetition frequency. In the graphical part of the display, the 2D gray sector image 

provides the structural and functional information of the heart. In the superimposed color flow 

Doppler mapping (CFM) image, blood flow is shown using the BART scale for velocity with 

blue representing the flow away from the transducer and red representing the flow towards it. 

Lower half of the display shows the blood flow velocity profile obtained using CWD in apical 

five-chamber view along with tracing of simultaneously acquired ECG.  

 A graphical representation of an aortic segment from LVOT to ascending aorta with 

markings of the diameter at different levels is shown in Figure A.3. The aortic blood velocity 

profile was recorded in apical five-chamber view of the ascending aorta using CWD as shown 

in Figure A.2. The aortic diameter was measured from 2D sector image in parasternal long-

axis view at the level of the aortic annulus during mid-systole, as shown in Figure A.4. 

 

 

2D image 

parameters 

CWD 

parameters

Probe type

DatePatient name & ID 

ECG trace Time scale

Velocity 

scale

Systole & diastole 

velocity profile 

 Machine name
Depth scale

Time

Baseline

XXXXXXXXXXXXX

Hospital name

 

Figure A.1 Echocardiogram (2D and CWD) in apical five-chamber view (machine: Philips 'iE33') 

recorded from the subject SNH-ZP, along with description of different fields in the display. 
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A.2 SV Measurement 

The blood flow rate is the product of blood velocity in the aorta and cross-sectional area 

(CSA) of the aorta at the velocity measuring site. The sites for blood flow measurement using 

Doppler echocardiography, in descending preference order, are (i) left ventricular outflow 

tract (LVOT) or aortic annulus, (ii) mitral annulus, and (iii) pulmonic annulus (Quinones et al 
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Figure A.2 Echocardiogram (2D and CWD) in apical five-chamber view (machine: Philips 'iE33') 

recorded from the subject SCD-GG, along with description of different fields in the display. 
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Figure A.3 Locations for measurement of VTI and CSA in the segment from LVOT to ascending 

aorta: (a) LVOT, around 5 – 10 cm proximal from the aortic valve, (b) aortic annulus/root AO, (c) 

aortic sinus AS, (d) sino-tubular junction STJ, and (e) proximal ascending aorta PAA. 
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2002, Baumgartner et al 2009). As the flow is pulsatile and the velocity varies during the 

cardiac cycle,  velocity-time integral (VTI) is calculated over the ejection phase by finding the 

area between the envelope of the Doppler spectrum and its baseline. It is equal to the stroke 

distance i.e. the average distance travelled by the ejected blood in each cardiac cycle. SV is 

calculated as the product of VTI and CSA. The aortic CSA of aorta is calculated from the 

measurement of aortic diameter at the annulus assuming circular cross-section. 

 The agreement of results of left ventricular SV measurement using Doppler 

echocardiography with other SV estimation methods has been reported by several researchers 

(Rasmussen et al 1982, Lewis et al 1984, Bouchard et al 1987, Northridge et al 1990). Some 

of these studies have used PWD and rest have used CWD for VTI calculation from the 

Doppler spectrum. In calculation of CSA, some have measured the aortic valve diameter, 

some have used the LVOT diameter, and some have measured the diameter at a level of aortic 

annulus/root or ascending aorta. When PWD is used, the ultrasound should be directed to the 

location being used for CSA calculation. In this method, there is a possibility of location 

mismatch and aliasing in the measurement of high velocities. These difficulties get avoided 

by using CWD. 

XXXXXXXXXXXX

 

Figure A.4 2D echocardiogram in parasternal long-axis view (machine: Philips 'iE33') for 

measurement of aortic annulus diameter, recorded from the subject SNH-ZP. 



 Appendix A Stroke volume measurement using Doppler echocardiography 

70 

 

A.3 Consistency of VTI Estimation for SV Measurement 

As described in the previous section, SV measurement involves manual tracing of the blood 

velocity for VTI estimation. To assess the consistency of VTI estimation, the velocity tracings 

were carried out on the recordings from two subjects by three trained operators (A, B, and C). 

The first subject was suffering from hypertension and the second subject had severe aortic 

stenosis. The VTI values for the second subject were about three times those for the first 

subject. The statistical measures (minimum, maximum, mean, and S.D.) of the beat-to-beat 

values as estimated from the manual tracings of the blood velocity profile by three operators 

for the two subjects are given in Table A.1 and these values show good match across the 

operators. For a quantitative assessment of the consistency of the measurements, agreement 

between the VTI values estimated on beat-to-beat basis was examined by calculating the 

mean difference ( ), standard deviation of differences (  ), and correlation coefficient ( r ) 

for the three operator pairs (AB, BC, CA) and the results are given in Table A.2. The inter-

operator biases, indicated by the   values, are very small. The inter-operator random 

differences, indicated by the  values are 1.67 – 2.24 cm or less than 7% (considering mean 

VTI of about 25 – 30 cm for most subjects). The r  values are higher than 0.99, showing high 

inter-operator consistency in VTI estimation.  

Table A.1 Measurements of VTI (cm) by three operators (A, B, C) on recordings from two subjects 

(SCD-AB with hypertension, SCD-GG with severe aortic stenosis): minimum (min), maximum (max), 

mean, and standard deviation (S.D.). 

Measure 
 Subject SCD-AB (No. of cycles = 41)  Subject SCD-GG (No. of cycles = 36) 

 Op. A  Op. B  Op. C  Op. A  Op. B  Op. C 

min  27.7  28.1  27.9  89.7  88.9  88.3 

max   32.4  31.9  31.7  114  113  113 

mean   29.9  29.9  29.7  104  104  105 

S.D.  1.08  0.79  0.92  5.71  5.11  5.29 

 

Table A.2 Consistency measures of manual estimation of VTI by three operator pairs: mean 

difference (  ), standard deviation of differences (  ), and correlation coefficient ( r ). Number of 

cardiac cycles = 77 (cycles from two subjects pooled together). 

Measure  Operator pair AB  Operator pair BC  Operator pair CA 

 (cm)  0.19  −0.34  0.15 

 (cm)  2.22  1.67  2.24 

r   0.998  0.999  0.998 

 



 

Appendix B 

ARTIFICIAL NEURAL NETWORK BASICS 

 

B.1 Introduction 

Artificial neural networks (ANN) are distributed processing systems having certain features 

of biological neural systems and may be trained with input-output data or may operate in a 

self-organizing mode. These systems have been used in many applications involving 

estimation or classification (Leahy et al 1991, Gajdar et al 1997, Tan and Saif 1997, Silipo 

and Marchesi 1998, Jain and Fanelli 2000, Bose 2001, Papaloukas et al 2002, Ceylan and 

Ozbay 2007, Haykin 2009, Ghorbanian et al 2010, Ramana and Raghu 2010). This appendix 

provides an overview of ANN basics (commonly used structures, activation functions, type of 

networks, and learning algorithms) and some of the estimation related applications.  

B.2 ANN Structure and Types of Networks  

An ANN comprises a network of basic processing units with each unit representing a neuron, 

which receives inputs xn , sums them with synaptic weights nw  along with bias b , and 

produces output y  using activation function f (usually a sigmoid function). The relation 

between the neuron inputs and its output is given as  
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Knowledge is acquired by the network through a learning process and is stored in the form of 

synaptic weights. The network structure consists of layers, each layer having one or more 

neurons. The first layer is the input layer with the number of neurons in it usually equal to the 

number of inputs. The last layer is the output layer. Between these two layers, there can be 

one or more hidden layers. The neurons in the input layer generally have linear activation 

function and those in the hidden layers have sigmoid activation function. The output layer 

neurons may have linear, sigmoid, or signum activation function (as described in the next 

section) depending on the application.  

 The network has to be configured by setting the weights such that the application of a 

set of inputs produces the desired set of outputs. The weights may be set using a prior 

knowledge. In most applications, they are set through a training process by feeding a specific 

set of inputs and in accordance with a learning rule. In supervised learning, the network is 
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trained by applying inputs and corresponding targets (desired output values). In unsupervised 

learning or self-organizing operation, no targets are provided and the network is trained to 

respond to clusters of the pattern by discovering statistically salient features in the inputs. 

 The networks can be classified as (i) feed-forward with signal flow only in the forward 

direction and (ii) feedback or recurrent with some of the neuron outputs applied as inputs to 

the neurons in an earlier layer. Applications involving estimation problems invariably use 

feed-forward networks with supervised learning. A three-layer feed-forward ANN, with 

training using error back-propagation algorithm and nonlinear activation function in the 

hidden-layer is shown earlier in Figure 4.1. 

B.3  Activation Functions 

The activation function transforms the weighted sum of the neuron inputs and bias to the 

output (Samarasinghe 2006, Haykin 2009, Beale et al 2011). The output has two saturation 

values, usually 0 and 1 for uniploar function and −1 and 1 for bipolar function. Some of the 

activation functions are shown in Figure B.1. The linear activation function is used in linear 

approximators and the signum function is used in binary classifiers. Sigmoid functions are S-

shaped differentiable functions, with logistic and hyperbolic tangent being the most 

commonly used ones. The logistic function is unipolar and is given as  
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where  is the slope parameter and t is the weighted sum of inputs and bias. The hyperbolic 

tangent function is bipolar and is given as 

 ( ) tanh( )f t t  (B.3) 

Both functions have highest slope at zero input and progressively decreasing slope for input 

increasing in either direction. These functions are extensively used in nonlinear 

approximation applications. 

B.4 Methods for Supervised Learning of Feed-Forward Networks 

In training with supervised learning, the network is fed with a sequence of input vectors and 

corresponding targets. Learning involves simultaneous and incremental adjustments of the 

weights in order to progressively decrease the error (difference between the network output 

value and the target) to a minimum value (Bianchini et al 1995, Singh and Kumar 2004, 

Samarasinghe 2006, Haykin 2009, Zakaria et al 2010). The network processes each input 

vector and the output is compared with the target and a measure of the error over the input 

vectors is calculated, with the mean-square error (MSE) being the most commonly used 
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measure. In the error back-propagation method, the partial derivatives of the error with 

respect to each of the weights are calculated using mathematical model of the neurons in the 

network and chain rule. A number of learning algorithms for adjusting the weights in 

accordance with these derivatives are used. The weights are initially set to random values and 

adjustments can be done in two ways. In online or sequential learning, the weights are 
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Figure B.1 Activation functions: (a) linear unipolar, (b) linear bipolar, (c) unipolar signum, 

(d) bipolar signum, (e) unipolar logistic, and (f) bipolar hyperbolic tangent. 
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adjusted after application of each input vector and corresponding target. In offline or batch 

learning, the weights are adjusted after all the input vectors have been presented once, known 

as an epoch. For improving the accuracy of the estimated output values with reference to the 

corresponding targets, the weight adjustments are carried out on an epoch-by-epoch basis by 

repeatedly applying the input vectors. 

 In gradient descent algorithm (Haykin 2009), the error gradient is used to reach the 

lowest point on the error surface, by applying corrections to the synaptic weights in 

proportion to corresponding partial derivatives. This algorithm applies the same learning rate 

to all weights. For higher convergence, other algorithms use correction factors with the factor 

for each weight calculated as a function of its distance from its optimal value. In the steepest 

descent algorithm (Samarasinghe 2006, Haykin 2009, Sahu et al 2011), the error is reduced 

along the negative gradient of the error surface. However, the learning rate, which is the same 

for all of the weights, is adapted internally during training. 

 Levenberg-Marquardt (LM) algorithm (Levenberg 1944, Marquardt 1963, 

Samarasinghe 2006, Haykin 2009) is a second-order error minimizing algorithm in which the 

gradient descent concept is extended to include the curvature of the error surface for speeding 

up the leaning process. The learning rate is set to unity and a new logarithmic term is added to 

the second derivative error term, which is used along with the first derivative term in 

computing the new weights. The second-order algorithms converge faster to reach the 

threshold MSE value and take less training time. 

 Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm (Fletcher 1987, Haykin 

2009) constructs an approximation for the second derivative of error information represented 

as a square matrix called Hessian, from an arbitrary function using the cost function evaluated 

at the current and previous points. It is updated using the error gradient evaluated at each 

epoch and is used as a correction factor to the synaptic weights to reach the lowest point on 

the error surface. Conjugate gradient algorithm (Fletcher 1987, Shewchuk 1994, Haykin 

2009) is a second-order learning algorithm with faster learning rate and less computational 

requirements. In this algorithm, the error is reduced along the conjugate gradient direction. 

Minimization of the error gradient is achieved by assigning a value proportional to the 

conjugate vector scaled with a learning rate to the synaptic weights. This algorithm has 

several forms on the basis of the procedure adapted for calculating the conjugate direction 

vectors or a scaling factor which is a function of these vectors. In the case of scaled conjugate 

descent algorithm, successive vectors of the quadratic cost function (error surface) are 

generated at each epoch as successive conjugate gradient vectors. Fletcher-Powell, Powell-
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Beale, and Polak-Ribiére proposed different formulas to calculate the scaling factor without 

explicit knowledge of conjugate direction vectors. 

 One-step secant algorithm (Battiti 1992) uses the Hessian to reach the lowest point on 

the error surface by applying it as the correction to the synaptic weights. The storage and 

computation requirements are reduced by storing the partial Hessian and assuming the 

previous Hessian at each epoch as an identity matrix. It permits calculation of the new search 

direction without having to compute the Hessian inverse. 

 In the resilient back-propagation algorithm (Riedmiller and Braun 1993), the lowest 

point on the error surface is reached by using the sign of the error gradient to determine the 

direction of the search for weight update and correction to the synaptic weights applied by a 

separate weight correction value. The weight correction is increased by a predefined value for 

no sign change in two successive epochs, it is decreased by a predefined value for a sign 

change in the gradient, and it is not changed for zero gradient. Use of sigmoid activation 

functions in the hidden layers eliminates the effect of small-magnitude gradients. Magnitude 

of weight correction is reduced in case the weights oscillate and it is increased if the weights 

continue to change in the same direction for several epochs. 

 In the variable learning rate back-propagation algorithm (Hagan et al 1996), the 

learning rate is changed during the training process adaptively based on the error surface. 

Initial network weights and bias are calculated using the current learning rate and then the 

new errors are calculated. If the new errors are larger than the old by a predefined ratio, the 

new weights and bias are discarded and the learning rate is decreased by a predefined 

percentage. Otherwise, the new weights are kept unchanged and the learning rate is increased 

by a predefined percentage. 

B.5 ANN Applications for Estimation 

Leahy et al (1991) used multilayer perceptron structure with two hidden layers for estimation 

in robot control to enhance the high-speed tracking accuracy of the robot manipulator. In this 

network, error back-propagation algorithm was used for training the network, with 

maximization of the estimation accuracy and minimization of the mean-square error as the 

training criteria. Wang and Feng (1992) proposed a linear recurrent neural network for real-

time parameter estimation, as it converges faster and is easier to realize than Hopfield 

network or quasi-linear ANNs. Several ANN applications in power electronics have been 

reported by Bose (2001) using both feed-forward and feedback networks. 

 Gajdar et al (1997) designed feed-forward ANN to estimate the friction coefficient in 

wheel train system. The network had two hidden layers, with the first hidden layer having 14 
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hyperbolic tangent neurons and the second layer having 7 linear neurons, and it was trained 

using error back-propagation and 201-sample dataset. The friction coefficient calculated using 

formula was also considered as one of the inputs. They reported that their approach reduced 

the training time compared to pure ANN-based approaches.  

 Blackwell et al (2008) used multilayer feed-forward network to estimate atmospheric 

profiles, with the networks having one or two hidden layers with hyperbolic tangent 

activation function and the output layer with linear activation functions. The network weights 

were initialized using Nguyen-Widrow method (Nguyen and Widrow 1990), which selects 

the weights for evenly distributing the active region of the activation function across the 

layer’s input space. They used Levenberg-Marquardt learning method and separate datasets 

for training, validation, and testing. DeLuccia and Werner (2007) used ANN combined with 

global optimizer such as genetic algorithm for estimating the suitable element spacing in 

broadband non-uniformly spaced phased-array antennas.  

 The review of ANN applications for estimation show that different applications need a 

careful selection of ANN structure, learning method, the number of layers in the structure, 

and the number of linear and nonlinear neurons in each layer. Pre-processing or the methods 

used for data preparation and the network parameters also need to be carefully selected. 

 As described in the fourth chapter, our investigations for ANN-based SV estimation 

using impedance cardiography with Doppler echocardiography as the reference technique 

were carried out using the three-layer feed-forward network. The input parameter set 

consisted of up to eight parameters. The optimal network was selected by examining the 

effects of the following: 

(i) The number of neurons in the hidden-layer: 3, 5, 8, 10, 13, 15, and 20; 

(ii) Activation functions: radial basis, logistic, and hyperbolic tangent; and 

(iii) Training algorithm for updating the weights: BFGS quasi-Newton, Polak-Ribiére 

conjugate gradient, scaled conjugate gradient, one-step secant, resilient back-propagation, 

conjugate gradient with Powell-Beale restarts, variable learning rate back-propagation, 

Fletcher-Powell conjugate gradient, and Levenberg-Marquardt. 



 

Appendix C 

CLINICAL RECORDING DATABASE 

 

The ICG and Doppler echocardiogram signals were simultaneously recorded in a clinical 

setting at Hardas Heart Care (Pune, Maharashtra, India), after approval of the protocol by the 

Ethics Committee of the hospital. The subjects for participating in the study were recruited 

from among the persons visiting the hospital for health check-up, diagnosis, or post-operative 

treatment. They were informed about the study and they read and signed the consent if willing 

to participate in it. There was no monetary cost or benefit for participation.  

 The subjects with normal health had no known history of cardiovascular disorders and 

were screened by a cardiologist on the basis of physical examination and ECG report. The 

subjects with cardiovascular disorders were the patients undergoing post-operative treatment 

or with past history of cardiovascular disorders. They were screened for suitability to 

participate in the study by the concerned cardiologist. The gender, age, height, and weight of 

the subjects were noted. The group of subjects with normal health comprised seventeen males 

and one female with age of 26 – 65 years (mean = 46.3 years, S.D. = 10.7 years), height of 

1.54 – 1.80 m (mean = 1.69 m, S.D. = 0.06 m), and weight of 61 – 100 kg (mean = 76.2 kg, 

S.D. = 10.0 kg). The group of subjects with cardiovascular disorders had nineteen males and 

three females with age of 24 – 78 years (mean = 51.5 years, S.D. = 15.8 years), height of 1.43 

– 1.76 m (mean = 1.66 m, S.D. = 0.08 m), and weight of 52 – 97 kg (mean = 71.6 kg, S.D. = 

11.7 kg). The recordings were carried out during the period extending from June 2014 to June 

2015.  

 The ICG related signals were recorded using ‘HIC-2000 Impedance Cardiograph’ from 

Bio-Impedance Technology (Chapel Hill, NC, USA). The impedance sensing was carried out 

using four-electrode configuration with Ag-AgCl disposable ECG spot electrodes. The outer 

two electrodes were used for injecting the excitation current and the resulting voltage was 

picked-up across the inner two electrodes. The upper current electrode was placed above the 

suprasternal notch on the front of the neck, with the lower one placed below the xiphoid 

process on the left lateral side of the thorax. The upper voltage electrode was placed at the 

base of the neck below the upper current electrode and the lower voltage electrode was placed 

at the level of xiphoid process on the left lateral side of the thorax above the lower current 

electrode. The placement of ICG electrodes is shown earlier in Figure 3.3. The instrument 

used 1 mA excitation current of 100 kHz and provided analog output signals corresponding to 

basal impedance ( 0
Z ), deviation from basal impedance ( ( )z t ), and ICG ( dz dt ) with the 
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sensitivities of 40 mV/ , 0.5 V/ , and 400 mV/
-1( s ) , respectively. It also provided 

analog ECG signal as sensed using the voltage electrodes. The output signals from the ICG 

instrument were acquired using the 8-channel, 12-bit signal acquisition module ‘KUSB-3102’ 

from Keithley Instruments (Cleveland, Ohio, USA) and connected through USB to a battery-

powered Notebook PC. The sampling frequency was set at 500 Hz. The distance between the 

voltage sensing electrodes was noted.  

 The echocardiography recordings were carried out using ‘iE33 echocardiography 

system’ from Philips Ultrasound (Bothell, Wash., USA) with a 5 MHz phased-array probe 

placed on the chest after applying an ultrasound gel for good contact with the skin. The aortic 

blood flow velocity profile was recorded using apical five-chamber view of the ascending 

aorta. The aortic diameter was measured using parasternal long-axis view at the level of aortic 

annulus during mid-systole. The VTI was estimated as the area between the envelope of the 

Doppler spectrum and its baseline with the help of the built-in software of the 

echocardiography machine by tracing the spectral envelope with its track ball. The machine 

has a facility for three-electrode ECG recording and this facility was used, with electrode 

placement as shown earlier in Figure 3.3, for time-aligned display of ECG and Doppler 

echocardiogram waveforms. As the recordings of ICG and Doppler echocardiogram 

waveforms employed independent time bases, the cardiac cycles of the two recordings were 

synchronized by alignment of the corresponding ECG-R peaks. 

 For a subject with normal health, two recordings were carried out. The first recording 

was carried out with the subject having relaxed and rested. The ICG electrodes and 

echocardiography probe were placed as described earlier and simultaneous recording of the 

ICG and Doppler echocardiogram signals was carried out, with the subject lying in the left-

lateral position with slight folding of the right leg. The second recording was carried out after 

the subject had undergone an exercise to significantly increase the heart rate. The exercise 

was carried out, following the first four stages of the Bruce exercise protocol (Bruce et al 

1949), for about ten minutes on the ‘GE T-2100’ treadmill from GE Healthcare (Wauwatosa, 

Wis., USA) attached with ‘Smart Biphasic’ defibrillator from Philips Healthcare (Andover, 

Mass., USA). The recording was carried out soon after cessation of the exercise and in the 

same way as the first recording. The subject was advised to avoid any movements during both 

the recordings in order to minimize the motion artifacts, but no restrictions were placed on 

breathing. The first and second sets of recordings are referred to as ‘under-rest’ and ‘post-

exercise’ recordings. For a subject with cardiovascular disorder, only the under-rest recording 

was carried out. A summary of information on subjects with normal health and subjects with 
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cardiovascular disorders along with the corresponding values of aortic annulus diameter, R-R 

interval of ECG, and stroke volume estimated using Doppler echocardiography are given 

earlier in Table 3.1 and Table 3.2, respectively. The under-rest (UR) and post-exercise (PE) 

recordings from the 18 subjects with normal health (SNH) have 630 and 625 cardiac cycles, 

respectively and these are referred to as SNH-UR and SNH-PE. The under-rest recordings 

from the 22 subjects with cardiovascular disorders (SCD) have 842 cardiac cycles and these 

are referred to as SCD-UR. 

 The recordings were organized as a database to be used for ICG-related research. The 

database has information on individual subjects and the simultaneously recorded ICG and 

Doppler echocardiograms. The database folder is named as 'icg_database' and its organization 

is given in Table C.1. Information on the subjects with normal health and those with 

cardiovascular disorders are tabulated in the files named as 'icg_database_

healthy_hhc2nov16' and 'icg_database_patients_hhc2nov16', using the format as given in 

Table C.2. Each row in the table has subject code, name, gender, address, age, height, weight, 

medical history, voltage sensing electrodes distance, and hyperlink to the respective data 

folder of subject. The Doppler echocardiogram, ICG signal recording, and medical report of 

each subject are saved in a folder named with the respective subject code. Consent forms and 

reports (with masked subject identity) of all the subjects are saved in the folders named as 

'consent' and 'reports', respectively. The columns with personal information are masked in the 

sharable database. 

 Organization of the folders 'icg_consent_n_report_healhty' and 'icg_consent_n_report_

patients' with consent forms and medical reports of 'SNH' subjects and 'SCD' subjects is 

tabulated in Table C.3. Organization of the folders 'icg_data_healthy' and 'icg_data_patients' 

with data from 'SNH' subjects and 'SCD' subjects is given in Table C.4. Organization of the 

folders 'SS_data' from 'SNH' subjects and 'SCD' subjects is given in Table C.5. 

 The ICG data files may be input for processing using the following code: 

 

%Matlab code for loading the icg data file 

clc; close all; clear all; 

load SS_icg_pre_ex.mat % loading data file 

ch1 = data(:,1);  % Zo 

ch2 = data(:,2);  % −z(t) 

ch3 = data(:,3);  % −dz/dt 

ch4 = data(:,4);  % ECG 

ch5 = data(:,5);  % synchronous pulse 

figure; 

subplot(511); plot(ch1);  

subplot(512); plot(ch2); 

subplot(513); plot(ch3); 
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subplot(514); plot(ch4); 

subplot(515); plot(ch5);  

title('Acquired 5ch: Zo, z(t), dz/dt, ECG, and synch 

pulse') 

 

Table C.1 Organization of the main folder 'icg_database' of the clinical recording database, 

SNH: Subjects with normal health, SCD: Subjects with cardiovascular disorders). 

Folders and files  Description 

icg_database_healthy_hhc2nov16  File with information on 'SNH' subjects (format 

as in Table C.1) 

icg_database_patients_hhc2nov16  File with information on 'SCD' subjects (format 

as in Table C.1) 

icg_consent_n_report_healhty  Folder with consent forms and medical reports of 

'SNH' subjects (pdf files) 

icg_consent_n_report_patients  Folder with consent forms and medical reports of 

'SCD' subjects (pdf files) 

icg_data_healthy  Folder with data from SNH 

icg_data_patients  Folder with data from SCD 

 

Table C.2 Format of the tables used for recording information from subjects with normal health 

(SNH) and subjects with cardiovascular disorders (SCD). 'SS': Subject code. 

 

Sr. 

no. 

 Sub. code  Name, Gender, 

Age, Address, 

Consent, 

Clinical report 

 Gender, 

Age,  Ht. 

(cm), Wt. 

(kg) 

 Medical 

history 

 L 

(condition, 

cm) 

 Data 

(ICG & 

Doppler 

Echo.) 

             

1  SS  --  --  --  --  -- 

--  --  --  --  --  --  -- 

--  --  --  --  --  --  -- 

 

Table C.3 Organization of the folders 'icg_consent_n_report_healhty' and 

'icg_consent_n_report_patients' with consent forms and medical reports of 'SNH' subjects 

and 'SCD' subjects. 'SS': subjects code. 

Files  Description 

SS_consent  Scanned copy of signed consent forms of 'SNH' subjects and 

'SCD' subjects (format as given in Appendix D) 

--  -- 

--  -- 

SS_report  Scanned copy of medical reports of 'SNH' subjects and 'SCD' 

subjects 

--  -- 

--  -- 
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Table C.4 Organization of the sub-folders 'icg_data_healthy' and 'icg_data_patients' with 

data from 'SNH' subjects and 'SCD' subjects. 'SS': subjects code. 

Sub-folders  Description 

icg_data_healthy\SS_data  Sub-folders each with Doppler echocardiograms, ICG 

data files, and medical report of 'SNH' subjects 

--  -- 

--  -- 

icg_data_patients\SS_data  Sub-folders each with Doppler echocardiograms, ICG 

data files, and medical report of 'SNH' subjects 

--  -- 

--  -- 

 

Table C.5 Organization of the sub-folders 'SS_data' from 'SNH' subjects and 'SCD' subjects. 

Files  Description 

SS_de_pre_ex_IM_NNNN.jpg  Doppler echocardiogram frame recorded from 

subject 'SS' under pre-exercise condition, as 'jpg' 

image file. 

--  -- 

--  -- 

SS_de_post_ex_IM_NNNN

.jpg 

 Doppler echocardiogram frame recorded from 

subject 'SS' under post-exercise condition, as '.jpg' 

image file. 

--  -- 

--  -- 

SS_icg_pre_ex.mat  ICG recorded from subject 'SS' under rest condition 

(corresponding to several Doppler echocardiogram 

files), waveform samples as '.mat' file. 

SS_icg_post_ex.mat  ICG recorded from subject 'SS' under post-exercise 

condition (corresponding to several Doppler 

echocardiogram files), waveform samples as '.mat' 

file. 

SS_icg_pre_ex.fig  Plots of ICG waveform samples 'SS_icg_pre_ex.mat'  

as '.fig' file. 

SS_icg_post_ex.fig  Plots of ICG waveform samples 

'SS_icg_post_ex.mat'  as '.fig' file. 

 



 

Appendix D 

SUBJECT CONSENT FORM 

 

Informed Consent for Participation in a Research Study 

I Project Title 

Monitoring of cardiovascular indices using impedance cardiography (Investigators: 

Dr. Suhas P. Hardas, Hardas Heart Care, Shivajinagar, Pune, India; Prof. P. C. 

Pandey, S. M. M. Naidu, and Uttam R. Bagal, IIT Bombay). 

II Introduction 

You are invited to participate in a research study. It is important that you read this 

description of the study and understand the nature and risk of participation. Please 

give your consent to participate in this clinical study only if you have completely 

understood the nature and course of this study and if you are aware of your rights as a 

participant. 

III Purpose of the Study 

Echocardiography is one of the established non-invasive techniques for the diagnosis 

of cardiovascular disorders. Some of the cardiovascular indices can also be obtained 

using Impedance Cardiography, which is a relatively inexpensive technique and can 

be used for monitoring these indices during critical care or during stress test as needed 

by the physician. The purpose of the study is to carry out recordings using 

echocardiography and impedance cardiography simultaneously for a comparison of 

the test results with the objective of evaluating the effectiveness of impedance 

cardiography and further improving it. 

IV Expected Duration of the Study and Number of Subjects 

You will be one of approximately fifty persons who will participate in this study. You 

will be in the study for about an hour during your visit to the hospital.  

V Study Procedures to be Followed 

If you agree to participate in this study, (a) you will be asked about previous medical 

problems, your current health, and your medications; (b) you will have a brief 

physical examination, and (c) you need to undergo ECG and Echocardiography tests. 

The test results will be reviewed by a doctor and you will be informed if you are 

eligible to participate in the study.  

 This study involves non-invasive recordings related to cardiovascular 

functioning with an impedance cardiograph and Doppler Echocardiograph. 

Recordings will be taken by using surface electrodes connected to an impedance 

cardiograph. Four ECG disposable pre-gelled electrodes will be placed for 

approximately 30 min duration. During these recordings, Doppler Echocardiogram 

will also be acquired, in left lateral position. At the end of the recordings, the 

electrodes will be removed. The study may involve several recordings before and 
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after mild levels of exercise. In case you are undergoing a treatment, you may be 

invited to participate in the study again during your follow-up visit to the hospital.  

VI Risks and Discomforts of Participating 

No risks related to use of Echocardiography and Impedance Cardiography have been 

reported. The tests will be conducted under the supervision of a doctor. It may involve 

a mild level of exercise, resulting in an increase in the heart rate and the breathing 

rate. The level of exercise will be similar to that in a stress test. You can stop the 

exercise in case you feel any discomfort. 

VII Possible Benefits of the Study 

The study is being carried out to gain knowledge to develop better and low-cost 

instruments and techniques for diagnosis of cardiovascular disorders in the future. 

There are no direct benefits to you of participating in this study. No diagnostic 

information or clinical inference based on the recordings taken from you will be made 

available to you.  

VIII Compensation for Participation 

Participation in this study will be at no cost to you. The tests and the clinical 

recordings to be used in the study will be free of charge. No compensation will be 

provided for your participation.  

IX Compensation for Study Related Injury 

In the rare event of a physical injury or illness that may occur as a direct result of your 

participation in this study, you will be provided medical care at no cost to you. You 

will not give up any of your legal rights by signing this form. 

X Right to Withdraw from the Study 

Your participation in this study is entirely voluntary. You may choose not to take part 

or you may leave the study at any time. Your decision will not affect your further 

treatment at this institute.  

XI Confidentiality 

All study records will be kept confidential at all times. Your identity will not be 

revealed except as required by law. Records related to your tests and treatment may 

be published for scientific reasons. Your identity will not be revealed in these 

publications. 

XII Contact for Further Information 

Thank you for taking the time to read the information about this study, or have had it 

read to you. Before signing this document, you should ask questions about anything 

that you do not understand. The study staff will be happy to answer your questions 

before, during, and after the study. If you have any questions about your rights as a 

research participant or complaints regarding the research study, you may contact Dr. 

Suhas P. Hardas, on telephone number 020 4102 8999. 
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XIII  Consent  

1) I have read (or have had it read to me) the information given in the informed 

Consent Document for this study entitled “Monitoring of cardiovascular indices 

using impedance cardiography”. 

2) I have received an explanation of the nature, purpose, duration and foreseeable 

effects and risks of participation and what I will be expected to do. My questions 

have been answered satisfactorily. 

3) I understand that my participation is voluntary and that I may refuse to participate 

or may withdraw from the study at any time, without penalty or loss of benefits to 

which I may otherwise be entitled. 

4) I further understand that any information that becomes available during the course 

of the study that may affect my willingness to take part will be informed to me. 

5) Institutional review board authorities may wish to examine my medical records to 

verify the information collected. By signing this document, I give permission for 

this review of my records. 

6) I understand that my identity will not be revealed in any report or publication. 

7) I agree to take part in the above study. 

 

 

Signature/thumb impression 

of Subject: 

 
 

----------------------------------------------------------- 

Name of Subject: 
 

----------------------------------------------------------- 

Date: 
 

----------------------------------------------------------- 

Place: 
 

----------------------------------------------------------- 
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