Department of Electrical Engineering, IIT Bombay
EE309 Computer Organization, Architecture and Microprocessors: Tutorial Sheet VII
Performance Evaluation and Stochastic Modeling of Computer Systems

Consider a $\mathrm{M} / \mathrm{M} / 1$ modeling of a Computer System - Poisson Zeroth Order Markovian Arrival Process, Exponential Service Time Distribution, and a Uniprocessor System. The processor handles jobs in a First-In-First-Out (FIFO) manner. Assume the arrival rate and processor service rate to be λ and μ jobs per unit time, respectively.

- The Arrival Process follows a Poisson Distribution, with the Zeroth-Order Markovian Assumption
$P_{n}(t)$ denotes the probability of n jobs arriving during time t. This follows a Poisson Distribution:

$$
\begin{equation*}
P_{n}(t) \triangleq \frac{(\lambda t)^{n} e^{-\lambda t}}{n!} \tag{1}
\end{equation*}
$$

The Zeroth-Order Markovian assumption implies that there is no dependence of a job arrival on the arrival of any other job, and that at most one job can arrival in an infinitesimal interval of time δt.

- The Service Time follows an Exponential Distribution
$S(t)$ denotes the probability that a job is not serviced in time t :

$$
\begin{equation*}
S(t) \triangleq e^{-\mu t} \tag{2}
\end{equation*}
$$

- Traffic Intensity

We define the Traffic Intensity ρ as: $\rho \triangleq \lambda / \mu$. We assume that $0 \leq$ $\rho \leq 1$. In other words, jobs do not arrive at a rate faster than they can be serviced. Incidentally, a steady-state solution cannot exist for $\rho \geq 1$, since the arrival process would have saturated the processor and the queue would be growing without bounds.

- Use the term $p_{n}(t)$ to denote the probability that the system has n jobs in the queue at time t.

Problems:

1. Compute the steady state probability of the system having n jobs in the queue $\left(p_{n}\right)$, as a function of ρ.
Hint: Consider an infinitesimally small interval of δt. Find out $p_{n}(t+\delta t)$. Now, compute $\frac{d}{d t}\left\{p_{n}(t)\right\}$ from the above expression, as a recurrence relation involving $p_{n-1}(t), p_{n}(t)$ and $p_{n+1}(t)$. Under steady state conditions, the above derivative is zero.
2. Find out the steady state probability that the processor is free (i.e., has no job to process). This is also the fraction of the time the process is free to handle low priority I/O devices, or run maintenance programs.
Hint: The answer is p_{0}.
3. Calculate the probability that more than k buffers will be required, as a function of the traffic intensity. This is a measure of the length of the queue to ensure that it does not overflow frequently.
4. Compute the average queue length \bar{Q}.
5. What is the average waiting time (i.e., the Average response time) ? You may use Little's Formula relating the average queue length (\bar{Q}) to the average waiting time $(\bar{W}): \bar{Q}=\lambda \bar{W}$.
