Sequential Equivalence Checking - III

Virendra Singh
Associate Professor
Computer Architecture and Dependable Systems Lab.
Dept. of Electrical Engineering
Indian Institute of Technology Bombay
viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits
Lecture – 18 (Feb 09, 2012)
How to Represent States?

- Not practical to represent individual states
- Represent a set of states symbolically
- OBDD encodes boolean functions
 - Code elements S
 - Represent a subset T as boolean function f_T
- $f_T = \{0, 1\}^n \rightarrow \{0.1\}$
How to Represent States?

- Computation uses symbolic BFS approach to all reachable states by shortest path.
- Key step is image computation.
 - $\text{Img}(\delta(s,x), C(s))$
- BFS allows to deal multiple states simultaneously.
- BDD is used to represent TF.
- Let $t_i = \delta_i(s,x)$, $i = 1, 2, \ldots, n$.
- $C(s)$ is a symbolic state set.
How to Represent TF?

- Given a deterministic transition function \((s,x)\) the corresponding transition relation is defined by
 \[
 T(s,x,t) = \prod (t_i = \delta_i(s,x))
 \]

- \(T(s,x,t) = 1\) denotes a set of encoded triples \((s,x,t)\), each representing a transition in the FST of a given FSM

- Straight forward to compute image

- Need new boolean operation
 - Existential Abstraction
 \[
 \exists x_i. f = f_{x_i} + f_{x'_i}
 \]
 - \(f_{x_i}\): smallest (fewest minterm) function that contains all minterms of \(f\) and independent of \(x_i\)
How to Represent TF?

- Given \(f(s,x) = f(s, .. s_n, x_1, ... x_m) \) the existential abstraction w.r.t a set of variables is defined as
 \[
 \exists_x . f(s, x, .) = \exists_{x_1}(\exists_{x_2}(.. \exists_{x_m}(f(s,x)))
 \]

Procedure

- Compute TF, \(T(s,x,t) \)
- Compute conjunction of \(T \) and \(C \)
- Existentially abstract all \(s \) variable and all \(x \) variable - provides \(I(t) \)
- \(I(t) \) is the smallest function independent of \(s \) and \(x \) which contains all the tripples in \(f(s,x,t) \)
State Reachability in Product FSM

- $t_1 = \delta_1^1 = s_1' x_1 x_2' + s_1 (x_1' + x_2')$
- $\lambda^1 = \delta_1^1$

- $0 = 00, 1 = 01, 2 = 10$
- $t_2 = \delta_2^2 = s_3 x_1 x_2 + s_2 (x_1' + x_2')$
- $t_3 = \delta_3^2 = s_2' x_1 x_2' + s_3 (x_1' + x_2')$
- $\lambda^2 = s_3 x_1' + x_1 x_2'$
Symbolic FSM Traversal

Transition relation of the product machine

- $T(s, x, t) = (t_1 \equiv \delta^1_1). (t_2 \equiv \delta^2_2). (t_3 \equiv \delta^2_3)$

- Initial State is $s'_1 s'_2 s'_3$

- $T(s, x, t).C(s) = T(s, x, t).s'_1 s'_2 s'_3$
 $= (t_1 \equiv s'_1 x_1 x_2). (t_2 \equiv 0). (t_3 \equiv s'_2 x_1 x'_2). s'_1 s'_2 s'_3$

- Since this conjunction evaluate to 1 for just one s-minterm $(s'_1 s'_2 s'_3)$
Symbolic FSM Traversal

\[G(x,t) = \exists_s (T(s,x,t).C(s)) \]

\[= (t_1 \equiv x_1x'_2).(t_2 \equiv 0).(t_3 \equiv x_1x'_2) \]

• Since this conjunction evaluate to 1 for just one s-minterm \((s'_1s'_2s'_3)\)

• \(g_{x_1x'_2} = (t_1 \equiv 1).(t_2 \equiv 0).(t_3 \equiv 1)\)

• \(g_{x'_1x_2} = g_{x'_1x'_2} = g_{x_1x_2} = (t_1 \equiv 0).(t_2 \equiv 0).(t_3 \equiv 0)\)

• \(\text{Img} \ (T,C) = g \ (x,t) = t'_1t'_2t'_3 + t_1t'_2t_3\)

Diagram:

```
0.0 → 1.1
```
Symbolic FSM Traversal

- Implicit representation
- Graphs and their traversal are converted to Boolean functions and Boolean operations
- BDD can be used for symbolic computation
Symbolic FSM Representation

- $M (Q, \Sigma, \delta, q_0, F)$

- Characteristic Function

 \[
 Q(r) = \begin{cases}
 1, & r \in S \\
 0, & r \notin S
 \end{cases}
 \]

- Transition Function

 \[
 T(p, n, a) = \begin{cases}
 1, & n = \delta(p, a) \\
 0, & otherwise
 \end{cases}
 \]

 \[
 N(s) = \begin{cases}
 1, & \exists(p, a)(T(p, s, a) \cdot P(p) = 1) \\
 0, & otherwise
 \end{cases}
 \]
Symbolic FSM Traversal

Relational representation of transition function

\[s_1 = s'_2 + a'_1 a_2 (p_1 p_2)' \]

\[s_2 = p_1 + a_2 \]
Symbolic FSM Traversal

Transition relation

\[T(p_1, p_2, s_1, s_2, a_1, a_2) = (s_1 \oplus (s_2 + \overline{a_1} \overline{a_2}(p_1 p_2))))(s_2 \oplus (p_1 + a_2)) \]

Next state

Present state: 00, Input: 10

\[T(0,0,s_1,s_2,0,1) = S_1 \cdot S_2 \]

11

Set of all next state for all possible inputs

\[N(s_1, s_2) = \exists(a_1, a_2, p_1, p_2) T(p_1, p_2, s_1, s_2, a_1, a_2)P(p_1, p_2) \]
Symbolic FSM Traversal

- set of all next states if the present state is either 00 or 11

characteristic function

\[P(p_1, p_2) = \overline{p_1} \overline{p_2} + p_1 p_2 \]

Next state

\[N(s_1, s_2) = \exists(a_1, a_2, p_1, p_2) T(p_1, p_2, s_1, s_2, a_1, a_2) P(p_1, p_2) \]

\[\exists(a_1, a_2, p_1, p_2) T(p_1, p_2, s_1, s_2, 0, 0) + T(p_1, p_2, s_1, s_2, 0, 1) \]

\[+ T(p_1, p_2, s_1, s_2, 1, 0) + T(p_1, p_2, s_1, s_2, 1, 1)) P(p_1, p_2) \]
Symbolic FSM Traversal

\[N(S_1, S_2) = S_1 + S_2 \]

Next States: 01, 10, 11
Forward Reachability

Forward Reachable States by Symbolic Computation

Input: transition relation $T(p, s, a)$ and initial state $I(s)$

Output: a characteristic function $R(s)$ of all reachable states

ReachableState(T, I):

1. Set $S = I$

2. Compute $N(s) = \exists (p,a)(T(p,s,a) \cdot S(p))$

3. $R = S + N$

4. If $R \neq S$, set $S = R$ and repeat steps 2 and 3; otherwise, return R.
Forward Reachability

• BDD is used
Thank you