VLSI testing

Introduction

Virendra Singh
Associate Professor
Computer Architecture and Dependable Systems Lab
Dept. of Electrical Engineering
Indian Institute of Technology Bombay, Mumbai
viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits

Lecture – 3 (Jan 05, 2011)
VLSI Realization Process

Customer’s need

Determine requirements

Write specifications

Design synthesis and Verification

Test development

Fabrication

Manufacturing test

Chips to customer
Verification vs. Test

Verification
- Verifies correctness of design.
- Performed by simulation, hardware emulation, or formal methods.
- Performed once prior to manufacturing.
- Responsible for quality of design.

Test
- Verifies correctness of manufactured hardware.
- Two-part process:
 1. Test generation: software process executed once during design
 2. Test application: electrical tests applied to hardware
- Test application performed on every manufactured device.
- Responsible for quality of devices.

05 Jan 2012
Problems of Ideal Tests

- Ideal tests detect all defects produced in the manufacturing process.
- Ideal tests pass all functionally good devices.
- Very large numbers and varieties of possible defects need to be tested.
- Difficult to generate tests for some real defects. *Defect-oriented testing is an open problem.*
Real Tests

- Based on analyzable fault models, which may not map on real defects.
- Incomplete coverage of modeled faults due to high complexity.
- Some good chips are rejected. The fraction (or percentage) of such chips is called the yield loss.
- Some bad chips pass tests. The fraction (or percentage) of bad chips among all passing chips is called the defect level.
Testing as Filter Process

Good chips
\[\text{Prob}(\text{good}) = y \]

Fabricated chips

Defective chips
\[\text{Prob}(\text{bad}) = 1 - y \]

Mostly good chips

Mostly bad chips

Tested chips

\[\text{Prob}(\text{pass test}) = \text{high} \]

\[\text{Prob}(\text{fail test}) = \text{low} \]
Students Examination

Pass quality
\[\text{Prob}(PQ) = 0.75 \]

All Students

Fail quality
\[\text{Prob}(FQ) = 0.25 \]

\[\text{Prob}(P/PQ) = 0.95 \]

\[\text{Prob}(F/FQ) = 0.95 \]

\[\text{Prob}(P) = 0.72 \]

\[\text{Prob}(F) = 0.27 \]

05 Jan 2012
Roles of Testing

- Detection: Determination whether or not the *device under test* (DUT) has some fault.
- Diagnosis: Identification of a specific fault that is present on DUT.
- Device characterization: Determination and correction of errors in design and/or test procedure.
- *Failure mode analysis* (FMA): Determination of manufacturing process errors that may have caused defects on the DUT.
Costs of Testing

• Design for testability (DFT)
 – Chip area overhead and yield reduction
 – Performance overhead

• Software processes of test
 – Test generation and fault simulation
 – Test programming and debugging

• Manufacturing test
 – Automatic test equipment (ATE) capital cost
 – Test center operational cost
Design for Testability (DFT)

DFT refers to hardware design styles or added hardware that reduces test generation complexity.

Motivation: Test generation complexity increases exponentially with the size of the circuit.

Example: Test hardware applies tests to blocks A and B and to internal bus; avoids test generation for combined A and B blocks.
Testing Principle

INPUT PATTERNS
---11
---00

---01

DIGITAL CIRCUIT

OUTPUT RESPONSES
10---
00---

---01

STORED CORRECT RESPONSE

COMPARATOR

TEST RESULT

05 Jan 2012 EE709@IITB
ADVANTEST Model T6682 ATE
Cost of Manufacturing Testing

• 0.5-1.0GHz; analog instruments; 1,024 digital pins: ATE purchase price
 – = $1.2M + 1,024 x $3,000 = $4.272M

• Running cost (five-year linear depreciation)
 – = Depreciation + Maintenance + Operation
 – = $0.854M + $0.085M + $0.5M
 – = $1.439M/year

• Test cost (24 hour ATE operation)
 – = $1.439M/(365 x 24 x 3,600)
 – = 4.5 cents/second
Cost Analysis Graph

Fixed, Total and Variable Costs ($)

Miles Driven

Average Cost (cents)
A Modern VLSI Device System-on-a-chip (SOC)

- DSP core
- RAM ROM
- Interface logic
- Mixed-signal Codec

Data terminal

Transmission medium
VLSI Chip Yield

- A manufacturing defect is a finite chip area with electrically malfunctioning circuitry caused by errors in the fabrication process.
- A chip with no manufacturing defect is called a good chip.
- Fraction (or percentage) of good chips produced in a manufacturing process is called the *yield*. Yield is denoted by symbol \(Y \).
- Cost of a chip:

\[
\text{Cost of fabricating and testing a wafer} = \frac{\text{Cost of fabricating and testing a wafer}}{\text{Yield} \times \text{Number of chip sites on the wafer}}
\]
Thank You