Formal Equivalence Checking - II

Virendra Singh
Associate Professor
Computer Architecture and Dependable Systems Lab
Dept. of Electrical Engineering
Indian Institute of Technology Bombay, Mumbai
viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits
Lecture – 7 (Jan 18, 2012)
Formal Equivalence Checking

- BDD is canonical form of representation
- Shannon’s expansion theorem

\[f(x_1, x_2, \ldots, x_i, \ldots, x_n) = x_i \cdot f(x_1, x_2, \ldots, x_i=1, \ldots, x_n) + x'_i \cdot f(x_1, x_2, \ldots, x_i=0, \ldots, x_n) \]
Example OBDD

- Canonical representation of Boolean function
 - For given variable ordering
 - Two functions equivalent if and only if graphs isomorphic
 - Can be tested in linear time
 - Desirable property: *simplest form is canonical.*
Effect of Variable Ordering

Good Ordering

\[(a_1 \land b_1) \lor (a_2 \land b_2) \lor (a_3 \land b_3)\]

Bad Ordering

Linear Growth

Exponential Growth

Jan 18, 2012
EE-709@IITB
Sample Function Classes

<table>
<thead>
<tr>
<th>Function Class</th>
<th>Best</th>
<th>Worst</th>
<th>Ordering Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU (Add/Sub)</td>
<td>linear</td>
<td>exponential</td>
<td>High</td>
</tr>
<tr>
<td>Symmetric</td>
<td>linear</td>
<td>quadratic</td>
<td>None</td>
</tr>
<tr>
<td>Multiplication</td>
<td>exponential</td>
<td>exponential</td>
<td>Low</td>
</tr>
</tbody>
</table>

General Experience
- Many tasks have reasonable OBDD representations
- Algorithms remain practical for up to 500,000 node OBDDs
- Heuristic ordering methods generally satisfactory
ROBDD sizes & variable ordering

- **Bad News** 🔥
 - Finding optimal variable ordering NP-Hard
 - Some functions have exponential BDD size for all orders *e.g.* multiplier

- **Good News** 😊
 - Many functions/tasks have reasonable size ROBDDs
 - Algorithms remain practical up to 500,000 node OBDDs
 - Heuristic ordering methods generally satisfactory

- **What works in Practice** 🔄
 - Application-specific heuristics *e.g.* DFS-based ordering for combinational circuits
 - Dynamic ordering based on variable sifting (*R. Rudell*)
Operations with BDD (1/5)

- **Restriction**: A restriction to a function to \(x = d \), denoted \(f|_{x=d} \), where \(x \in \text{var}(f) \), and \(d \in \{0,1\} \), is equal to \(f \) after assigning \(x = d \).

- Given BDD of \(f \), deriving BDD of \(f|_{x=d} \) is simple.
Let v_1, v_2 denote root nodes of f_1, f_2 respectively, with $\text{var}(v_1) = x_1$ and $\text{var}(v_2) = x_2$.

If v_1 and v_2 are leafs, $f_1 \text{ OP } f_2$ is a leaf node with value $\text{val}(v_1) \text{ OP } \text{val}(v_2)$.
If $x_1 = x_2 = x$, apply Shannon’s expansion

$$f_1 \text{ OP } f_2 = x \cdot (f_1|_{x=0} \text{ OP } f_2|_{x=0}) + x' \cdot (f_1|_{x=1} \text{ OP } f_2|_{x=1})$$
Operations with BDD (4/5)

\[f_1 \mid_{x=0} \quad \text{BDD for} \quad f_2 \mid_{x=0} \]

\[f_1 \mid_{x=1} \quad \text{BDD for} \quad f_2 \mid_{x=1} \]

\[f_2 \mid_{x=0} \quad \text{BDD for} \quad f_2 \mid_{x=1} \]

\[f_1 \mid_{x=0} \quad \text{OP} \quad f_2 \mid_{x=0} \]

\[f_1 \mid_{x=1} \quad \text{OP} \quad f_2 \mid_{x=1} \]
Else suppose $x_1 < x_2 = x$, in variable order

$$f_1 \text{ OP } f_2 = x_1 (f_1|_{x_1=0} \text{ OP } f_2) + x_1' (f_1|_{x_1=1} \text{ OP } f_2)$$
Operations with BDD: Example

\[f_1 = X_1 \text{XOR} X_2 \]
\[f_2 = X_2 \]

BDD for \(f_2 \mid_{x_1=0} \) OP \(f_2 \)

BDD for \(f_1 \mid_{x_1=1} \) OP \(f_2 \)
Operations with BDD: Example

\[f_1 = X_1 \text{XOR} X_2 \]

\[f_2 = X_2 \]

\[f_2 \mid_{x_1=0} \text{OP} \ f_2 = X_1 \text{XOR} X_2 \]

\[f_2 \mid_{x_1=1} \text{OP} \ f_2 = X_1 \text{XOR} X_2 \]
Operations with BDD: Example

\[f = x_1 \cdot x_2 \]

\[g = x_1' \cdot x_2' \]

\[f + g \]
From circuits to BDD
Variants of decision diagrams

- **Multiterminal BDDs (MTBDD)** – Pseudo Boolean functions $\mathbb{B}^n \rightarrow \mathbb{N}$, terminal nodes are integers
- **Ordered Kronecker Functional Decision Diagrams (OKFDD)** – uses XOR in OBDDs
- **Binary Moment Diagrams (BMD)** – good for arithmetic operations and word-level representation
- **Zero-suppressed BDD (ZDD)** – good for representing sparse sets
- **Partitioned OBDDs (POBDD)** – highly compact representation which retains most of the features of ROBDDs
- **BDD packages** –
 - CUDD from Univ. of Colorado, Boulder,
 - CMU BDD package from Carnegie Mellon Univ.
 - In addition, companies like Intel, Fujitsu, Motorola etc. have their own internal BDD packages
Formal Equivalence Checking

- **Satisfiability Formulation**
 - Search for input assignment giving different outputs

- **Branch & Bound**
 - Assign input(s)
 - Propagate forced values
 - Backtrack when cannot succeed

- **Challenge**
 - Must prove all assignments fail
 - Co-NP complete problem
 - Typically explore significant fraction of inputs
 - Exponential time complexity
SAT Problem definition

Given a CNF formula, f :

- A set of variables, \(V \)
- Conjunction of clauses \((a,b,c) \)
- Each clause: disjunction of literals over \(V \)

Does there exist an assignment of Boolean values to the variables, \(V \) which sets at least one literal in each clause to ‘1’?

Example :

\[
(a + b + c)(\overline{a} + c)(a + \overline{b} + c)
\]

\(a = b = c = 1 \)
DPLL algorithm for SAT

Given: CNF formula $f(v_1, v_2, \ldots, v_k)$, and an ordering function Next Variable

Example:

$$(a + b)(a + c)(a + b)$$

C_1, C_2, C_3

CONFLICT!

SAT!
DPLL algorithm: Unit clause rule

Rule: Assign to **true** any single literal clauses.

\[(a + b + c) \quad \text{||} \quad 0 \quad \text{||} \quad 0\]

Apply Iteratively: **Boolean Constraint Propagation (BCP)**

\[a(\overline{a} + c)(\overline{b} + c)(a + b + \overline{c})(\overline{c} + e)(\overline{d} + e)(c + d + \overline{e})\]

\[c(\overline{b} + c)(\overline{c} + e)(\overline{d} + e)(c + d + \overline{e})\]

\[e(\overline{d} + e)\]

\[c = 1\]
Anatomy of a modern SAT solver

SAT Solver

- **DPLL Algorithm**
- **Efficient BCP**
- **Clause database management**
 - Discard *useless* clauses (e.g. inactive or large clauses)
 - Efficient garbage collection
- **Search Restarts**
 - To correct for bad choices in variable ordering
 - Restart algorithm “periodically”
 - Retain some/all recorded clauses

Conflict-driven learning
Conflict driven search pruning *(GRASP)*

1. Non-chronological backtracking
2. Conflict-clause recording

Silva & Sakallah ‘95
Variable ordering

• Significantly impacts size of search tree
• Ordering schemes can be static or dynamic
• Conventional wisdom (pre-chaff):
 – Satisfy most number of clauses OR
 – Maximize BCP
 – *e.g.* DLIS, MOMs, BOHM etc.
Variable ordering: New ideas

- **New wisdom:** Recorded clauses key in guiding search

- **Conflict-driven variable ordering:**
 - Chaff (DAC’01): Pick var. appearing in *most* number of *recent* conflict clauses
 - BerkMin (DATE’02): Pick var. *involved* in most number of *recent* conflicts

- **Semi-static in nature, for efficiency**
 - Statistics updated on each conflict

- **Side-effect:** Better cache behavior
Efficient Boolean Constraint Propagation

- **Observation**: BCP almost 80% of compute time, under clause recording
- **Traditional implementation**:
 - Each clause: Counter for #literals set to false
 - Assign. to variable ‘x’: Update all clauses having x, \overline{x}
- **New Idea**: Only need to monitor event when # free literals in a clause goes from 2 to 1
 - Need to *watch* only 2 literals per clause: SATO (Zhang’97), Chaff (DAC’01)
SAT solvers today

- **Capacity:**
 - Formulas up to a *million variables* and *3-4 million clauses* can be solved in *few hours*
 - Only for *structured instances e.g.* derived from real-world circuits & systems

- **Tool offerings:**
 - **Public domain**
 - GRASP: Univ. of Michigan
 - SATO: Univ. of Iowa
 - zChaff: Princeton University
 - BerkMin: Cadence Berkeley Labs.
 - **Commercial**
 - PROVER: Prover Technologies
Thank you