Big Picture

• Memory
 – Just an “ocean of bits”
 – Many technologies are available

• Key issues
 – Technology (how bits are stored)
 – Placement (where bits are stored)
 – Identification (finding the right bits)
 – Replacement (finding space for new bits)
 – Write policy (propagating changes to bits)

• Must answer these regardless of memory type
Memory Performance Gap

![Graph showing the performance gap between processor and memory over the years from 1980 to 2010. The graph illustrates a significant increase in processor performance compared to memory performance.]
Types of Memory

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Speed</th>
<th>Cost/bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>< 1KB</td>
<td>< 1ns</td>
<td>$$$$$</td>
</tr>
<tr>
<td>On-chip SRAM</td>
<td>8KB-6MB</td>
<td>< 10ns</td>
<td>$$</td>
</tr>
<tr>
<td>Off-chip SRAM</td>
<td>1Mb – 16Mb</td>
<td>< 20ns</td>
<td>$$</td>
</tr>
<tr>
<td>DRAM</td>
<td>64MB – 1TB</td>
<td>< 100ns</td>
<td>$</td>
</tr>
<tr>
<td>Disk</td>
<td>40GB – 1PB</td>
<td>< 20ms</td>
<td>~0</td>
</tr>
</tbody>
</table>
Technology - Registers

Diagram showing the connections and functionality of registers in a digital circuit, including decoders and data paths.

Legend:
- C_Adx
- A_Adx
- B_Adx
- C = Write Port
- A.B = Read Ports
Technology – SRAM

“Word” Lines
-select a row

“Bit” Lines
-carry data in/out

Data_C(i)

A_A dx
select

B_A dx
select

C_A dx
select

Register Bit Slice

Data_A(i)

Data_B(i)

C = Write Port
A,B = Read Ports

13 May 2013
Computer Architecture@IIT Mandi

CADSL
Technology – DRAM

• Logically similar to SRAM
• Commodity DRAM chips
 – E.g. 1Gb
 – Standardized address/data/control interfaces
• Very dense
 – 1T per cell (bit)
 – Data stored in capacitor – decays over time
 • Must rewrite on read, refresh
• Density improving vastly over time
• Latency barely improving
Memory Timing – Read

- Latch-based SRAM or asynchronous DRAM (FPM/EDO)
 - Multiple chips/banks share address bus and tristate data bus
 - Enables are decoded from address to select bank
 - E.g. bbbbbbb0 is bank 0, bbbbbbb1 is bank 1
- Timing constraints: straightforward
 - t_{EN} setup time from Addr stable to EN active (often zero)
 - t_D delay from EN to valid data (10ns typical for SRAM)
 - t_O delay from EN disable to data tristate off (nonzero)
Memory Timing - Write

- WR & EN triggers write of Data to ADDR
- Timing constraints: not so easy
 - t_S setup time from Data & Addr stable to WR pulse
 - t_P minimum write pulse duration
 - t_H hold time for data/addr beyond write pulse end
- Challenge: WR pulse must start late, end early
 - $>t_S$ after Addr/Data, $>t_H$ before end of cycle
 - Requires multicycle control or glitch-free clock divider
Technology – Disk

• Bits stored as magnetic charge
• Still mechanical!
 – Disk rotates (3600-15000 RPM)
 – Head seeks to track, waits for sector to rotate to it
 – Solid-state replacements are becoming popular

• Glacially slow compared to DRAM (10-20ms)
• Density improvements astounding (100%/year)
Memory System

- Programmers want unlimited amounts of memory with low latency
- Fast memory technology is more expensive per bit than slower memory
- **Solution:** organize memory system into a hierarchy
 - Entire addressable memory space available in largest, slowest memory
 - Incrementally smaller and faster memories, each containing a subset of the memory below it, proceed in steps up toward the processor
- **Temporal and spatial locality** insures that nearly all references can be found in smaller memories
 - Gives the allusion of a large, fast memory being presented to the processor
Memory Hierarchy

- Registers
- On-Chip SRAM
- Off-Chip SRAM
- DRAM
- Disk

CAPACITY: Downward
SPEED and COST: Upward
Memory Hierarchy

(a) Memory hierarchy for server

- CPU
 - Registers
 - L1 Cache
 - Register reference
 - Size: 1000 bytes
 - Speed: 300 ps
 - Level 1 Cache
 - Cache reference
 - Size: 64 KB
 - Speed: 1 ns
 - Level 2 Cache Reference
 - Size: 256 KB
 - Speed: 3-10 ns
 - Level 3 Cache Reference
 - Size: 2-4 MB
 - Speed: 10-20 ns
 - Memory reference
 - Size: 4-16 GB
 - Speed: 50-100 ns
 - Memory bus
 - I/O bus
 - Disk storage
 - Size: 4-16 TB
 - Speed: 5-10 ms

(b) Memory hierarchy for a personal mobile device

- CPU
 - Registers
 - L1 Cache
 - Register reference
 - Size: 500 bytes
 - Speed: 500 ps
 - Level 1 Cache
 - Cache reference
 - Size: 64 KB
 - Speed: 2 ns
 - Level 2 Cache Reference
 - Size: 256 KB
 - Speed: 10-20 ns
 - Level 3 Cache Reference
 - Size: 256-512 MB
 - Speed: 50-100 ns
 - Memory reference
 - Memory bus
 - Storage
 - Size: 4-8 GB
 - Speed: 25-50 us
 - FLASH memory reference
Thank You