
Effective Techniques for Post-silicon
Validation and Debug

A THESIS SUBMITTED FOR THE DEGREE OF

Doctor of Philosophy

by

Binod Kumar

(Roll No. 143079023)

Under the guidance of

Prof. Virendra Singh

Department of Electrical Engineering

Indian Institute of Technology Bombay

Mumbai 400076, India

January 2020

2

Thesis Approval for Ph.D.

The thesis entitled Effective Techniques for Post-silicon Validation and De-

bug is approved for the degree of Doctor of Philosophy.

External Examiner Internal Examiner

Prof. Vineet Sahula Prof. Sachin Patkar

- -

Supervisor Chairman

Prof. Virendra Singh Prof. Vinish Kathuria

- -

Date:

Place:

3

Declaration

I declare that this written submission represents my ideas in my own words and where

others ideas or words have been included, I have adequately cited and referenced the orig-

inal sources. I also declare that I have adhered to all principles of academic honesty and

integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source

in my submission. I understand that any violation of the above will be cause for disci-

plinary action by the Institute and can also evoke penal action from the sources which

have thus not been properly cited or from whom proper permission has not been taken

when needed.

(Signature)

Binod Kumar

(Name of the Student)

143079023

(Roll No.)

Date:

Acknowledgements

I express my heartfelt indebtedness towards my supervisor, Prof. Virendra Singh. He

has provided ample freedom to me for exploring a wide range of topics. He has also been

generous enough to provide me with stipends and arrange my travel for one international

conference. Additionally, I wish to express my gratitude towards Prof. Masahiro Fujita

(University of Tokyo) for guiding me throughout these years and providing me valuable

suggestions. I am also grateful to Prof. Kanad Basu (University of Texas at Dallas) for

assisting me through few implementation tasks and assisting in improving the write-up

of some of the collaborative papers. This thesis would not have been possible without

active and sincere co-operation from many members of the CADS laboratory at IIT

Bombay. I am particularly grateful to Jay Adhaduk, Atul Bhosale, Ankit Jindal and

Prachi Sahu for collaborating with me. I am also indebted to Mr. Kentaro Iwata (former

Masters student at University of Tokyo) for assisting me in one of the implementation

tasks. I have also enjoyed collaborating with Vineesh V S (CADSL, IITB) on different

aspects of formal verification of designs. I must express my indebtedness to Prof. Ashwin

Gumaste (CSE, IITB) for funding me (for one-and-a-half years) through the collaborative

project between him and Prof. Singh. I am deeply grateful to professors at IIT Bombay

(particularly, Prof. M P Desai, Prof. D K Sharma, and Prof. S Patkar) for teaching me

many courses and serving on my research progress committee. I am thankful to Vaishali

madam (staff, CADSL) for assisting me in office-related tasks. Throughout these years,

my family members have been the strongest pillar of my strength. No matter how hard

I attempt, I can not express their contribution and sacrifice in words.

4

Publications

Included in Thesis

Journal publications

1. Binod Kumar, Jay Adhaduk, Kanad Basu, Masahiro Fujita, and Virendra Singh,“

A Methodology to Capture Fine-grained Internal Visibility during Multi-session

Silicon Debug”, IEEE Transaction on on Very Large Scale Integration Systems

(TVLSI), January 2020

2. Binod Kumar, Masahiro Fujita, and Virendra Singh, “SAT-based Silicon De-

bug of Electrical Errors under Restricted Observability Enhancement”, Journal on

Electronic Test Theory and Applications (JETTA), October 2019

3. Binod Kumar, Kanad Basu, Masahiro Fujita, and Virendra Singh, “Post-silicon

gate-level error localization with effective & combined trace signal selection”, IEEE

Transaction on Computer Aided Design of Integrated Circuits and Systems (TCAD),

November 2018

Peer reviewed conferences

1. Binod Kumar, Atul Kumar Bhosale, Masahiro Fujita and Virendra Singh, “Val-

idating Multi-processor Cache Coherence Mechanisms Under Diminished Observ-

ability,” IEEE 28th Asian Test Symposium (ATS), Kolkata, India, Dec 2019

2. Binod Kumar, Masahiro Fujita and Virendra Singh, “A Methodology for SAT-

based Electrical Error Debugging during Post-silicon Validation,” 32nd Interna-

tional Conference on VLSI Design (VLSID) 2019, New Delhi, Jan 2019

5

6

3. Ankit Jindal, Binod Kumar, Kanad Basu, and Masahiro Fujita, “ELURA: a

methodology for post-silicon gate-level Error Localization Using Regression Analy-

sis,” 31st International conference on VLSI Design (VLSID) 2018, Pune, Jan 2018

4. Ankit Jindal, Binod Kumar, Masahiro Fujita and Virendra Singh “ Silicon de-

bug with maximally expanded internal observability using nearest neighbour al-

gorithm,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 2018,

Hongkong, SAR, China, July 2018

5. Binod Kumar, Ankit Jindal, Masahiro Fujita, and Virendra Singh, “Combining

Restorability and Error Detection Ability for Effective Trace Signal Selection,”

27th ACM Great Lakes Symposium on VLSI (GLSVLSI) 2017, Alberta, Canada,

May 2017

6. Binod Kumar, Ankit Jindal, Masahiro Fujita and Virendra Singh, “Post-silicon

Observability Enhancement with Topology Based Trace Signal Selection,” 18th

IEEE Latin American Test Symposium (LATS) 2017, Bogota, Colombia, March

2017

7. Binod Kumar, Kanad Basu, Ankit Jindal, Masahiro Fujita, and Virendra Singh,

“Improving post-silicon error detection with topological selection of trace signals,”

25th IEEE/IFIP International Conference on on Very Large Scale Integratiion

(VLSI-SoC), Abu Dhabi, UAE, Oct 2017

8. Binod Kumar, Ankit Jindal, Jaynarayan Tudu, Brajesh Pandey and Virendra

Singh, “Revisiting Random Access Scan for Effective Enhancement of Post-silicon

Observability,” 23rd IEEE International Symposium on On-Line Testing and Ro-

bust System Design (IOLTS) 2017, Thessaloniki, Greece, July 2017

9. Binod Kumar, Ankit Jindal, Jaynarayan Tudu, and Virendra Singh, “A method-

ology for post silicon debug utilizing progressive random access scan architecture,”

17th IEEE Workshop on RTL and High Level Testing (WRTLT) 2016, Hiroshima,

Japan, Nov 2016

7

10. Binod Kumar, Ankit Jindal, Virendra Singh, and Masahiro Fujita, “A methodol-

ogy for trace signal selection to improve error detection in post silicon validation,”

30th International conference on VLSI Design (VLSID) 2017, Hyderabad, Jan 2017

11. Binod Kumar, Ankit Jindal and Virendra Singh, “A trace signal selection al-

gorithm for improved post silicon debug,” 14th IEEE East-West Design and Test

Symposium (EWDTS) 2016, Yerevan, Armenia, Oct 2016

Other Contributions

1. Binod Kumar, Swapniel Thakur, Kanad Basu, Masahiro Fujita and Virendra

Singh, “A Low Overhead Methodology for Validating Memory Consistency Models

in Chip Multiprocessors,” VLSID 2020, India

2. Binod Kumar, Akshay Kumar Jaiswal, Vineesh V S and Rushikesh Shinde, “An-

alyzing Hardware Security Properties of Processors through Model Checking,” VL-

SID 2020, India

3. Vineesh V S, Binod Kumar, Rushikesh Shinde, Akshay Kumar Jaiswal, Harsh

Bhargava and Virendra Singh, “Orion: A Technique to Prune State Space Search

Directions for Guidance-Based Formal Verification,” IEEE 28th Asian Test Sym-

posium (ATS), Kolkata, India, Dec 2019

4. Vineesh VS, Binod Kumar and Jay Adhaduk, “Identification of Effective Guid-

ance Hints for Better Design Debugging by Formal methods,” 23rd International

Symposium on VLSI Design and Test (VDAT) 2019, Indore, India, July 2019

5. Saurabh Gangurde and Binod Kumar, “A Unified Methodology For Hardware

Obfuscation and IP Watermarking,” 23rd International Symposium on VLSI De-

sign and Test (VDAT) 2019, Indore, India, July 2019

6. Binod Kumar, Kanad Basu, and Virendra Singh, “A Technique for Electrical

Error Localization with Learning Methods During Post-silicon Debugging,” 10th

8

International Green and Sustainable Computing Conference (IGSC) 2018, Pitts-

burgh, USA, Oct 2018

7. Binod Kumar, Kanad Basu, Virendra Singh and Masahiro Fujita, “RTL level

trace signal selection and coverage estimation during post-silicon validation,” 19th

IEEE International High-Level Design Validation and Test Workshop, Santa Cruz,

California, U.S.A.,Oct. 5th-6th, 2017

8. Binod Kumar, Kanad Basu, Ankit Jindal, Brajesh Pandey and Masahiro Fujita,

“A Formal Perspective on Effective Post-silicon Debug and Trace Signal Selection,”

21st International Symposium on VLSI Design and Test (VDAT) 2017, Roorkee,

India, July 2017

9. Toral Shah, Anzhela Matrosova, Binod Kumar, Masahiro Fujita and Virendra

Singh, “Testing Multiple Stuck-at Faults of ROBDD Based Combinational Cir-

cuit Design,” 18th IEEE Latin American Test Symposium (LATS) 2017, Bogota,

Colombia, March 2017

10. Binod Kumar, Boda Nehru, Brajesh Pandey, Jaynarayan T Tudu, and Virendra

Singh, “A technique for low power, stuck-at fault diagnosable and reconfigurable

scan architecture,” 14th IEEE East-West Design and Test Symposium (EWDTS)

2016, Yerevan, Armenia, Oct 2016

11. Binod Kumar, Boda Nehru, Brajesh Pandey and Jaynarayan Tudu, “Skip-Scan:

A Methodology for Test Time Reduction,” 20th International Symposium on VLSI

Design and Test (VDAT) 2016, Guwahati, India, May 2016

Abstract

Due to tremendous growth in the complexity of modern designs, bugs inevitably escape

the pre-silicon verification stage because of incomplete functional verification. Further-

more, given the menace of process variations and the inaccuracy in simulation models, a

sufficiently verified design still stands probable of failing in first silicon. This necessitates

verification of the design functionalities at the first silicon stage and is commonly referred

to as post-silicon validation. Various industrial case studies have reported that this step

requires 30-40% of the total time spent in the design development cycle. Analysis of the

bug behaviors and localizing them to smaller portions of the design can assist in reducing

this time. The step of post-silicon validation and debugging is challenging because of a

variety of reasons such as lack of golden responses, highly restricted internal visibility,

irreproducible nature of bugs and large error detection latencies. In this thesis, some

of these problems are addressed and effective solutions to them are presented. Some of

the major processor errata documents reveal the cause of many failures as linked to the

operation of the cache coherence protocol (CCP) mechanism in multi-processors. We

propose an on-chip signal logging method which helps in bug detection in the case of

design errors and bit-flips (which are manifestations of various electrical failures) without

requiring golden responses. The proposed methodology utilizes cache coherence protocol

specifications to obtain the expected coherence transactions and the detector module

flags an error once a mismatch is found between observed signal states and the expected

signal states. The proposed logging mechanism decreases the error detection latency at

minimal (less than 1%) area and power overheads.

With the availability of an electrical error trace, the localization of bit-flips is still

9

10

challenging because of the diminished observability of the internal signals. To solve this

issue, the limited number of on-chip trace buffers are employed to store internal signals

which can be used for analyzing and debugging. We propose a grouping-based signal

tracing methodology for collecting useful internal signal values from chip execution. The

proposed methodology analyzes logical connectivity in the design netlist for deriving

different signal groups from which a limited number of signals are traced. With the

traced data, different formulations as per satisfiability (SAT) are attempted. Since the

structure of the netlist is correct, applying error trace as constraints assists in discovering

the logical inconsistencies. During solving of SAT instances, the solver can provide

clauses which are reasons behind the UNSAT behavior.

The success of post-silicon error localization with the help of trace buffer-based tech-

niques largely relies on an appropriate selection of trace signals. The thesis proposes

several heuristics-based selection methodologies to target error localization with traced

and restored signal states. A selection methodology is also proposed which aims quick

error detection by selecting from a topologically ordered signal. The selection is directed

by a scoring mechanism that calculates the number of error propagation paths between

different flip-flops. In order to further enhance the profitability of signal tracing, a com-

bined signal selection methodology is proposed which enhances both properties of state

restoration and error localization along with consideration of physical design choices

of routing congestion and wire length. Although the application of state restoration

technique enhances the limited debug data available through on-chip trace buffers, yet

the number of restored signal states is not significant. A k-nearest neighbor (kNN)

algorithm-based visibility expansion is proposed to maximally expand internal visibility.

Based on the analysis of pre-silicon buggy signatures (states of flip-flops of the circuit),

a set of neighbors is identified for every flip-flop of the design. By applying majority

voting of the signals states of identified neighbors, the states of untraced signals can be

predicted with an accuracy ranging from 70-99% on a wide variety of benchmark circuits.

The expanded internal visibility is utilized for design error localization. To minimize the

number of false positives during the error localization, a model-building methodology is

11

also proposed in the thesis. The model is built through error injection into very small

portions of the design (netlist) for training. The model provides a ranking of suspect

regions of the netlist given a particular circuit response for debugging.

The last portion of the thesis deals with compression issues during post-silicon debug.

Typically, the debug exercise is carried out in multiple sessions which are characterized

by run-and-halt steps. One of the important criteria for the success of this method is that

the debug infrastructure captures only the erroneous data which adds important insights

to the debug process. We propose a debug architecture for enhancing the multi-session

procedure using the technique of debug data compression with on-chip MISR and XOR

gates. The first session assists in identifying those erroneous clock cycles and the useful

debug data are collected in the second session. This assists in better utilization of the on-

chip storage. For achieving reconfigurable internal visibility, we present a methodology

for post-silicon debug utilizing the special features of progressive random access scan

(PRAS). The PRAS architecture offers a read-out of non-destructive scan values which

is the bottleneck in the process of debugging. The proposed methodology avoids the

large overhead of additional resources for debugging as the DfT architecture is reused.

This debug scheme offers reconfigurability which enables selective visibility of internal

states of a certain portion of the design.

The thesis encompasses effective techniques for solving multiple problems in the

broader realm of post-silicon validation and debug. Methodologies are presented that

achieve significant improvement in the areas ranging from trace signal selection to self-

checking error detection and automatic error localization over the other methods pro-

posed in the literature. The thesis also presents several important directions for mean-

ingful extensions of the proposed techniques.

Keywords

Post-silicon validation, Design bugs, Post-silicon error localiza-

tion, State restoration, Trace signal selection, On-chip compres-

sion, Randm access scan, Machine learning, Topology-based se-

lection, Satisfiability-based localization, Cache coherence errors,

Electrical errors, Model-building, Processor bugs, Gate-level er-

ror localization

12

Notations and Abbreviations

Nclu : number of clusters

T : length of error trace

B : Boolean formula(for SAT solving)

Fi : flip-flop (where bit-flip is injected)

Ci : clock cycle (where bit-flip is injected)

neti : net (where stuck-at is injected)

TBw : trace buffer width

STr : set of trace signals

k : number of partitions

Sufc : suspect flip candidates (flip-flops)

Succ : suspect flip candidates (clock cycles)

Susa : suspect stuck-at candidates (nets)

Lsc : length of smaller scan chains

NE : no. of error injection experiments

Ftot : total flip-flops in the netlist

UDi : unrolled design (netlist) in ith cycle

STBi : state of traced signals in ith cycle

PIi : state of primary inputs in ith cycle

POi : state of primary outputs in ith cycle

CUD : circuit (or, core)-under-debug

L : number of clock cycles of CUD execution

W : data-word (signature) width

Dtb : depth of trace buffer

Si : ith debug session

Bits : CUD data to be stored in TB

G : S-graph

Gr : grid for layout of design

Glc : logic cone connectivity graph

TBits : tag bits (for clock cycles) to be stored

Cy : set of debug data cycles to be stored in TB

|Cy| : number of debug data cycles to be stored in TB

ER : error rate in CUD execution

M : training design response model

ffZk : any flip-flop zone of the circuit

K : no. of iterations of training

Slei : signature used for training

Cyiter : no. of cycles in each iteration of training

FFj : error signature of jth flip-flop for training

Ste : signature used for testing

rankj : rank of jth flip-flop

ffj : error signature of jth flip-flop for testing

Mnbr : k-NN learning model

Li : ith Nearest Neighbor technique

φj : numbers of nearest neighbors in Mnbr

FFe : error signature of design

ξi : features of the design(netlist)

FFt : flip-flop(s) signature used for testing

GFFt : reference/golden flip-flop signature(s)

13

Contents

Acknowledgements 4

Publications 5

Abstract 9

Keywords 12

Notations and Abbreviations 13

1 Introduction 24
1.1 Post-silicon Validation and Debug . 24

1.1.1 Examples from Errata Documents of Processors 27
1.1.2 Observability Enhancement Issues 29
1.1.3 Validation in a Self-checking Manner 30

1.2 Thesis Contributions and Organization 31

2 Previous Work 33
2.1 Architecture-level Validation Methods . 34
2.2 Gate-level Post-silicon Error Localization 37
2.3 Effective Trace Signal Selection . 39

2.3.1 Motivation behind Alternative Signal Selection 42
2.3.2 Relevance of Restoration Ratio as Signal Selection Metric 43
2.3.3 Different Types of Post-silicon Observability Enhancement Tech-

niques . 44
2.4 Debug Data Compression Techniques . 46

3 Validating Multi-processor Cache Coherence Mechanisms 48
3.1 Introduction . 48
3.2 Cache Coherence Protocol (CCP) Preliminaries 50
3.3 Proposed Methodology of CCP Validation 54

3.3.1 Basic Premise . 55
3.3.2 Description of Logging Structure & Detection Mechanism 57
3.3.3 Deriving Validity Conditions Inside Detector Module 61
3.3.4 Coverage Issues Under Proposed Methodology 63

14

CONTENTS 15

3.3.5 Test Programs for RTL Simulation 64
3.4 Experimental Setup, Observation & Results 66

3.4.1 Experimental Setup Details . 66
3.4.2 Overview of Multi-core Design Framework 66
3.4.3 RTL Implementation Analysis of Proposed Technique 68
3.4.4 Comparative Evaluation with Literature 69

3.5 Discussion on Previous Methods . 73
3.6 Applicability to Other System Configurations 75

3.6.1 Variation with Number of Cores 75
3.6.2 Variation with Cache/Memory Organization 75
3.6.3 Implications on Performance Overhead 75

3.7 Conclusion . 76

4 SAT-based Silicon Debug of Electrical Errors 77
4.1 Introduction . 77
4.2 Satisfiability-based Post-silicon Error Localization 79
4.3 Proposed Signal Clustering Methodology 80

4.3.1 Description of Clustering Methodology 83
4.3.2 Illustration of Clustering Methodology 86
4.3.3 Ranking within Individual Clusters 87
4.3.4 Algorithmic Complexity of Clustering Algorithm 88

4.4 SAT-based Post-silicon Error Localization 88
4.4.1 Methodology for Debugging Large Error traces 90
4.4.2 Description of Evaluation Metrics 91

4.5 Experimental Results and Observations 94
4.5.1 Chosen Benchmark Circuits . 94
4.5.2 Comparison with Other Signal Selection Methods 96
4.5.3 Error Localization Results with Fixed Tracing 99
4.5.4 Impact of Increasing Trace Buffer Width on Bit-flip Error Local-

ization . 103
4.5.5 Impact of Different Selection from Clustering Choices and Ranking

Inside Clusters . 104
4.5.6 Localization of Stuck-at Errors 105
4.5.7 Error Localization with Temporally Variable Visibility Enhancement106
4.5.8 Summary of Variation in Localization Results with Different SAT

Formulations . 108
4.6 Addressing Different Scalability Issues in SAT-based Error Localization . 109

4.6.1 Scalability of Design Unrolling Step 109
4.6.2 Scalability of SAT Solving Step 111
4.6.3 Analysis of Localization in Large Error Traces 113

4.7 Comparative Evaluation with Previous Silicon Debug Methods 113
4.7.1 Post-silicon Debug Methods at Architecture-level 113
4.7.2 SAT-related Post-silicon Error Localization Methods 114

4.8 Conclusion . 115

CONTENTS 16

5 Effective & Combined Trace Signal Selection 116
5.1 Introduction . 116
5.2 Proposed Methodology of Topology-based Trace Signal Selection 119

5.2.1 S-graph Creation and Score Calculation 120
5.2.2 Arranging Flip-flops and Trace Signal Selection 122
5.2.3 Topological Selection Methodology Illustration 125

5.3 Experimental Formulation and Results for Topology-based Selection . . . 126
5.3.1 Description of Evaluation Metrics 126
5.3.2 Evaluation Results . 127

5.4 Signal Selection with Combination of Preferences 129
5.4.1 Error Detection-aware Trace Signal Selection 131
5.4.2 Layout-aware Trace Signal Selection 133
5.4.3 Heuristics for Accounting Error Propagation 134

5.5 Proposed 2-Parameter Combined Selection Methodology 140
5.5.1 Combining Error Detection and Restoration for Signal Selection . 141
5.5.2 Illustration of Combined Trace Signal Selection 142

5.6 Proposed Congestion-aware Routing Algorithm and Wire Length Mea-
surement Technique . 144
5.6.1 Basic Ideas . 144
5.6.2 Description of the Routing Algorithm 146

5.7 Proposed 3-Parameter Trace Signal Selection 146
5.8 Proposed Error Localization Methodology 151
5.9 Experimental Results and Discussions . 153

5.9.1 Experimental Setup . 153
5.9.2 Comparative Evaluation of Signal State Restoration 154
5.9.3 Design Error Localization . 155
5.9.4 Routing and Wire Length Measurement Results 160
5.9.5 Combined Trace Signal Selection Results and Analysis 163
5.9.6 Different Perspectives on Trace Signal Selection 166

5.10 Conclusion . 167

6 Learning-assisted Gate-level Error Localization Techniques 168
6.1 Introduction . 168
6.2 Post-silicon Observability and Error Localization with Learning Techniques170

6.2.1 Maximal Post-silicon Observability Expansion 170
6.2.2 Relevance of Learning Techniques in Post-silicon Error Localization 170

6.3 Proposed Methodology of Visibility Expansion 172
6.3.1 Methodology Illustration . 172
6.3.2 Algorithmic Description of Visibility Expansion 176

6.4 Coarse-grained Error Localization Methodology 180
6.5 Observability Expansion Formulation & Results 181

6.5.1 Experimental Setup . 181
6.5.2 Internal Observability Expansion Results 182
6.5.3 Defining Error Localization Metric 185

CONTENTS 17

6.5.4 Error Localization Results with Complete Visibility 186
6.6 Error localization with Design Response Model Building Approach 188

6.6.1 Finding Smaller Zones in Circuit 190
6.6.2 Error Injection in Smaller Zones 191
6.6.3 Building the Classification Model 192
6.6.4 Evaluating the Classification Model 193

6.7 Experimental Formulation and Results of Localization with Model-based
Classification . 196
6.7.1 Experimental Setup . 196
6.7.2 Formulation for Identifying False Positives 196
6.7.3 Results on Error Localization with Classification Model 197

6.8 Conclusion . 199

7 Debug Architectures with On-chip Compression 200
7.1 Introduction . 200
7.2 Background behind Session-based Silicon Debug 202
7.3 Proposed Multi-session Debug Architecture 205

7.3.1 Brief Overview . 205
7.3.2 Debug Architecture Operation . 205
7.3.3 Design Choices in Proposed Architecture 209

7.4 Details of Two Session-based Debug . 210
7.4.1 Suspect Clock Cycle Determination in 1st Session 210
7.4.2 Tag Bits (TBits) Generation for 2nd Session 212
7.4.3 Fine-grained Spatial Visibility in 2nd Session 214

7.5 Experimental Setup, Results and Analysis 219
7.5.1 Experimental Setup . 219
7.5.2 Metrics for Comparative Evaluation 221
7.5.3 Comparative Evaluation Results 222
7.5.4 Experiments with Burst Errors 224
7.5.5 Variation of |Cy| and TBits with ER and Tag Sizes 226
7.5.6 Overhead analysis . 229

7.6 Proposed Progressive Random Access Scan (PRAS)-based Debug Archi-
tecture . 230
7.6.1 Observability Enhancement Based on PRAS 231
7.6.2 Scan FF Operation in Proposed Scheme 234
7.6.3 Methodology for Observing Internal States 235
7.6.4 Arrangement of Flip-flops in Debug Architecture 236

7.7 Experimental Result on PRAS-based Debug 237
7.7.1 Experimental Formulation . 237
7.7.2 Experimental Metrics and Results 238

7.8 Discussions on Multi-session Silicon Debug 241
7.8.1 Reproducibility of Failures in Post-silicon Environment 241
7.8.2 Availability of Golden Responses of Designs 241
7.8.3 Relevance with Respect to Similar Work reported in Literature . . 241

CONTENTS 18

7.9 Conclusion . 243

8 Conclusion and Future Scope 244
8.1 Thesis Summary and Conclusions . 245
8.2 Future Scope . 247

8.2.1 Unified Validation of Memory Consistency and Coherence in Com-
plex Processor Designs . 247

8.2.2 Enhancements of SAT-based Error Localization 248
8.2.3 Targeted Trace Signal Selection 248
8.2.4 Automatic Error Localization for Wide Range of Error Models . . 250
8.2.5 Improving Debug Architectures with Compression 251
8.2.6 Validating Diversified Processor Components 251
8.2.7 Interplay of Hardware Security and Debug Requirements 252

A Details of Experimental Setup 253

List of Tables

2.1 Restored and traced signal states [1] . 41
2.2 Latency for observing B1 type bugs . 42
2.3 Latency for observing B2 type bugs . 43
2.4 Illustration of signals for tracing . 45
2.5 Combination of signals for temporal variability 46

3.1 Directory entry for a cache line in system with N cores [2] 51
3.2 Signals to be observed . 58
3.3 DetectionModule Conditions-1 . 64
3.4 DetectionModule Conditions-2 . 65
3.5 Overhead Analysis . 68
3.6 Previous approach for checking multi-processor coherence [3] 69
3.7 Comparative evaluation of error detection cycles for design bugs 71
3.8 Comparative evaluation of error detection cycles for soft errors 72
3.9 Comparative evaluation with other runtime/post-silicon CCP validation methods 74

4.1 Symbols and their meaning . 81
4.2 Different SAT formulations . 89
4.3 Detailed Evaluation metrics . 93
4.4 Characteristics of benchmark circuits . 95
4.5 Comparison with other SAT-based localization methods 114

5.1 Illustration of proposed methodology . 126
5.2 Evaluation of parameters on different circuits 127
5.3 Illustration of possible TSC (with Heuristic-2) 144
5.4 Restored fraction, Rf(%) for different signal selections 155
5.5 Gate-level design bug/error models . 156
5.6 Localization metric definition . 157
5.7 Localization results (Zloc values out of 100) 158
5.8 Grid co-ordinates after placement . 161
5.9 Total wire length (of original trace signal list) 162
5.10 Total wire length (proposed routing & selection technique) 163
5.11 Results for combination, Sfinal(S) with a = 0.3, b = 0.5, c = 0.2 165

6.1 Euclidean distance between different signals for circuit in Figure 6.1 . . . 174

19

LIST OF TABLES 20

6.2 Obtained nearest neighbors for example circuit 174
6.3 Restored and traced states for illustration 175
6.4 Completely expanded internal signal states 175
6.5 Notations and their meaning . 176
6.6 Features and their meaning . 178
6.7 I

U
(in %) with increased neighbors (nbrs > 600) 183

6.8 Comparative results (I
U

in %) with random filling 185
6.9 Localization metric definition . 186
6.10 Notations and their meaning . 190

7.1 Terms and their meaning . 203
7.2 Tag bit size & on-chip storage calculation 217
7.3 Different conditions of fine-grained storage 218
7.4 s38417 results for L=512, W=32 . 224
7.5 p16c5x results for L=960, W=32 . 225
7.6 msp430 results for L=1000, W=40 . 225
7.7 s38584 results for L=960, W=64 . 226
7.8 or1200 results for L=1000, W=40 . 226
7.9 Operation of PRAS FF for observability enhancement scheme 235

List of Figures

1.1 Design respins required, Mentor Graphics Study [4] 25
1.2 Causes behind design respins, Mentor Graphics Study [4] 25
1.3 Sources of electrical errors [5, 6] . 26
1.4 Bugs related to memory sub-systems in processor designs [7] 28
1.5 Design bug illustration at RTL [8] . 28
1.6 Overview of Thesis . 31

2.1 Unrolling a design into time-frames . 38
2.2 Restoration Illustration [9] . 40
2.3 Example Circuit for illustrating illustration [1] 41

3.1 Simple Directory Structure [10],[11] . 51
3.2 High-level FSM of MESI CCP[2, 12] . 53
3.3 Deriving on-chip logging scheme . 56
3.4 High-level overview of proposed error detector module incorporation into

multi-core design . 60
3.5 Steps involved in Hex file generation (for multi-core RTL simulation) . . 66
3.6 Memory sub-system architecture [13] utilized in experiments 67
3.7 Detailed view of memory sub-system architecture [13] 67

4.1 Overview of SAT-based error localization 79
4.2 Circuit graph(G) illustration . 83
4.3 Illustration of grouping of nodes . 84
4.4 G illustration . 88
4.5 Breaking large error trace into smaller ones 91
4.6 Time(minutes) spent in clustering . 96
4.7 Successful bit-flip localization results (φ2) for s38417 97
4.8 Successful bit-flip localization results (φ2) for s38584 97
4.9 Avg. number of bit-flip suspects (φ4) for s38417, s38584 98
4.10 Avg. flip-cycle distance (φ3) for s38417, s38584 99
4.11 Number of UNSAT attempts(φ1) with different SAT formulations 100
4.12 Successful bit-flip localization (φ2) with B2 and B3 formulations 100
4.13 Avg. flip-cycle distance (φ3) with different SAT formulations 101

21

LIST OF FIGURES 22

4.14 Avg. number of bit-flip suspects with different formulations for different
circuits . 102

4.15 Avg. topological distance (from culprit flip-flop) with different SAT for-
mulations . 102

4.16 Successful bit-flip localization for s9234 103
4.17 Successful bit-flip localization for different clustering configurations . . . 104
4.18 Successful stuck-at localization . 105
4.19 Avg. suspect stuck-at nets with different formulations for different circuits 106
4.20 Successful bit-flip localization variation for different scan configurations

in temporal tracing . 107
4.21 Avg. suspect stuck-at nets variation for different scan configurations in

temporal tracing . 108
4.22 Time spent in design/netlist unrolling . 110
4.23 Memory usage in design/netlist unrolling 111
4.24 Average time usage(in SAT solving) . 111
4.25 Average memory usage(in SAT solving) 112

5.1 Variation of Normalized Score with Window Size 124
5.2 S-graph for illustrating proposed methodology 125
5.3 Avg. cycle of error detection for different circuits 129
5.4 Overview of the proposed methodology of trace signal selection and de-

bugging during post-silicon validation . 130
5.5 Trace signal routing conditions illustration 134
5.6 Overall flow of proposed approach . 134
5.7 S-graph for illustrating Heuristic-1 . 136
5.8 Combinational paths for illustrating scoring as per Heuristic-2 138
5.9 Example Circuit for illustrating combined trace signal selection 143
5.10 Routing conditions for signal C . 145
5.11 Routing conditions for signal D . 145
5.12 Proposed algorithm for routing of trace signals 148
5.13 Design error-1 (e1) illustration . 156
5.14 Design error-2 (e2) illustration . 157

6.1 Example circuit for illustrating methodology 173
6.2 Error localization with expanded visibility 180
6.3 Inaccuracy (IU in %) with Learning1 (nbrs: 10 to 300) 183
6.4 Inaccuracy (IU in %) with Learning1 (nbrs: 50 to 600) 184
6.5 Inaccuracy (IU in %) with Learning2 (nbrs: 10 to 700) 185
6.6 Error localization results (out of 100) with Mnbr from Learning1 187
6.7 Design response model (M) building methodology 189
6.8 Circuit for illustrating ffZ identification 191
6.9 Circuit portion for illustrating error injection 191
6.10 Error localization success (out of 100) for wire exchange error 198
6.11 Error localization success (out of 100) for gate replacement error 198

LIST OF FIGURES 23

7.1 Overall flow of 2 session-based debug . 202
7.2 Proposed multi-session debug architecture 206
7.3 Session-1 operation in multi-session debug 207
7.4 Session-2 operation in multi-session debug 209
7.5 Intersection of debug signatures of MISR & CR1 211
7.6 Intersection of debug signatures of MISR & CR2 211
7.7 Storage of fine-grained debug data . 217
7.8 Variation of Cy with ER of p16c5x circuit 220
7.9 Variation of |Cy| with ER of MCSB type for different circuits 223
7.10 Variation of ObsvCoBy with ER for different error types 227
7.11 Comparison of |Cy| for burst error for different circuits 227
7.12 Comparison of Bits for burst error for different circuits 228
7.13 Variation of |Cy|, TBits with trs for s38417 (L=512, W=32) 228
7.14 Variation of |Cy| with different trs for different circuits 229
7.15 Variation of TBits with different trs for different circuits 229
7.16 PRAS based observability enhancement scheme 232
7.17 PRAS FF [14] for observability enhancement 234
7.18 Flow chart for debug mode operation . 236
7.19 Change in φ(n) with increase in no. of rows 239
7.20 Change in inc values with increase in no. of rows 240

A.1 Sample .bench format . 254

Chapter 1

Introduction

1.1 Post-silicon Validation and Debug

Demand for higher levels of integration coupled with the shrinking time-to-market win-

dow has drastically increased the chances of errors escaping to the first released silicon

[15–20]. Pre-silicon verification techniques are not capable to establish full correctness of

the design. This is primarily due to the reason that simulation of the design is at least

million orders of magnitude slower than the real execution of the design post-fabrication

[21],[22–26]. Due to exploding search space, formal methods fail in case of verification of

complete designs. Furthermore, given the menace of process variations and the inaccu-

racy in simulation models, a sufficiently verified design still stands probable of failing in

first silicon [5, 27–29]. Other factors responsible for silicon failures range from inaccurate

modeling of physical effects in simulation to incomplete understanding of some of the

design specifications [30, 31]. Figure 1.1 indicates the number of respins required for a

successful product cycle. The fast speed of chip execution can be leveraged for debug-

ging purpose as large number of test cases are applied to exercise the design functionality

and is capable of exposing subtle bugs. This step commonly referred to as post-silicon

validation aims to match the chip (first silicon) behavior with the end-user user expec-

tations by running applications from many hours to days. Many studies suggest that

about 70% of the overall time, efforts, and resources are spent during System-On-Chip

24

Chapter 1. Introduction 25

(SoC) validation (and verification) [15]. Therefore, the debug step needs great deal of

attention for achieving time-to-market (TTM) targets.

Figure 1.1: Design respins required, Mentor Graphics Study [4]

Figure 1.2: Causes behind design respins, Mentor Graphics Study [4]

As is shown in Figure 1.1, functional error are major source of the design respins.

Thus, the random/constrained-random tests applied during pre-silicon verification stage

are not always suitable to exercise those cases, resulting into their escaping into first

silicon. If a large number of tests are applied, these can be caught and then localized.

Diagnosing and debugging electrical failures in modern digital designs is relatively more

challenging than functional errors. Unlike functional errors, electrical failures result in

circuit failures only under certain conditions. For example, operating conditions such as

voltage, temperature and frequency may change the behavior of the failure. Root causes

Chapter 1. Introduction 26

of electrical errors for a typical industrial microprocessor during post- silicon validation

have been analyzed in [5], shown in Figure 1.3. For experimental evaluation, we assume

their manifestation as flipping of bit in the flip-flop(s) of the design [24, 32].

Figure 1.3: Sources of electrical errors [5, 6]

As stated earlier, during post-silicon validation step, we target the detection (and

subsequent localization) of both design and electrical errors because of the fast execu-

tion speed of the manufactured chip. However, merely applying a higher number of test

vectors for validation purposes does not completely solve the debug problem because

of several other hindrances. Restricted observability and controllability of the internal

design states along with the lack of failure repeatability and scarcely available golden

responses are some of the major obstacles during the post-silicon validation and debug-

ging [33, 34]. Scan chains can be utilized for a periodic monitoring scheme wherein their

contents are taken out after some pre-defined intervals [35]. However, for subtle electrical

bugs, this scheme becomes insufficient as the scan dumps can not provide necessary de-

bug information. This necessitates DfD (Design-for-Debug) features for the continuous

tracing of internal signals of the design for a fixed number of clock cycles. Additionally,

due to faster execution and limited on-chip storage available (for debug purpose), com-

pression mechanisms are inevitably required so that useful debugging can be achieved

in quick manner. In this thesis, we aim to solve some of these issues by proposing ef-

fective techniques that are significantly promising compared to similar techniques of the

Chapter 1. Introduction 27

literature. We also make a case for reuse of the design-for-testability (DfT) feature for

the purpose of silicon debug. In particular, we explore a variant of the random access

scan (RAS) architecture for achieving internal debug data acquisition in a reconfigurable

manner. Definitely, because of subtle issues, RAS has not yet been able to replace the

serial scan chains in the designs. However, we believe incorporation of RAS may yield

profitable results for both the manufacturing test and debug purposes.

1.1.1 Examples from Errata Documents of Processors

Sarangi et al.[36] identified the floating-point division bug in the Pentium processor as

the most publicized design error, which led to a $475-million chip recall [37]. In 1999,

another design error in the Pentium III temporarily halted shipment of Intel servers.

Problems in the Pentium IV cache and prefetch engine temporarily led to disabling pre-

fetching in multiprocessor systems. The authors in [36] stated that design errors led to

a recall of Itanium II processors, incorrect results in the AMD Athlon 64, and circuit

errors prevented the IBM PPC 750GX from running at 1 GHz. They have also claimed

that almost every modern processor has tens or even hundreds of design errors, which

manufacturers discover after shipment and publish in errata sheets. Typical reasons be-

hind such design bug escapes are [38]: (a) a result of not fully reading the specification or

starting the design implementation before the specification was complete, (b) situations

in which the design was changed, usually to fix bugs or timing problems, and the designer

did not take into account all the places that would be impacted by the design change, (c)

architects not communicating their expectations clearly to the designers or some misun-

derstandings between microcode and design as well as between different parts of design

(for instance- misassumptions about what another unit in the design was doing), and (d)

problems in the micro-architecture definition or algorithm/micro- instruction/protocol

was not documented properly. Specific examples (from errata sheets) have been provided

by the authors in [36].

Some examples of errata sheets for memory sub-systems in modern processors is

shown in Figure 1.4 [7]. Memory sub-systems are a major region which are prone to bug

Chapter 1. Introduction 28

escapes. We get motivation for cache coherence protocol (CCP) mechanism validation

from this study as the CCP-related errors are most difficult to debug [39, 40]. Note that

constrained-random tests provide very poor coverage while formal methods are infeasible

for verification of complex protocols [41].

Figure 1.4: Bugs related to memory sub-systems in processor designs [7]

Constantinides et al.[8] have provided illustrations of design errors from 1) the Pen-

tium 4 errata sheet, and 2) the Opteron errata sheet. Figure 1.5 shows a design bug in

tlu tcl module of OPENSPARC processor.

Figure 1.5: Design bug illustration at RTL [8]

The lines numbered as 1106 and 1107 are the actual RTL code and line 1105 (shown

in red color) denote the buggy RTL code. From this illustration, it can be observed that

gate-level bug models (like wire exchange between signals) can serve as representative

of actual type of design bugs. This work focuses on the detection and localization of

these kinds of errors at the gate-level abstraction of the design. Although at gate-level,

Chapter 1. Introduction 29

the high level functionality description is lost, we can analyze in terms of the gates and

flip-flops present in the netlist that can provide better diagnosis and debug capabilities

[42–44]. The netlist represents the design in post-silicon environment.

1.1.2 Observability Enhancement Issues

Mitra et al.[21] present various challenges in the process of post-silicon validation. The

most important out of them is the limited observability of the internal states of the design

due to the limited number of externally accessible pins. Abramovici et al.[45] proposed

on-chip trace buffers as a solution to address this issue. A subset of internal signals of

the design are selected and fed to the buffers. These signal values are used to observe

the states of the chip without halting its execution like the scan chains.1 Two industrial

examples are: Intel TraceHub [46] and ARM CoreSight [47].

Depending on the occurrence of some event triggers, the selected trace signals can be

dumped in the buffers. However, as selection of the trace signals must be performed at

the design time, this becomes a complex problem. The difficulty further increases with

the enhancement in design complexity. For instance- if 32 trace signals are to be selected

out of total 1728 flip-flops of a design, there are
(

1728
32

)
= 1069 such possible combinations.

Clearly, an exhaustive evaluation of all such combinations is neither feasible nor profitable

in terms of computational expenses. Hence, efficient trace signal selection is very crucial

[22],[32, 48–51] and needs a systematic approach. Another major impediment in the

success of validation of the first silicon is the absence of functional coverage models at

the post-silicon stage. During pre-silicon verification, assertions help in detecting design

misbehavior. A similar scheme can be envisaged for post-silicon stage too by synthesizing

on-chip assertion checkers. However, this is very expensive from the viewpoint of area

overhead. For instance- if checkers for all assertions for ISCAS’89 benchmark s35932

1The need of halting the chip execution is not fully eliminated with the trace buffer mechanism
because when the buffers are full, to offload their contents, we need to stop the execution in order to
avoid over-writing of traced contents. However, at least for the depth of the trace buffer (typically 1024
cycles), the dumping is continuous. In the next run, the contents of the scan chain from the last run is
fed back to maintain state continuity in the chip execution.

Chapter 1. Introduction 30

circuit are synthesized on-chip, the area overhead is around 20 times of the original

circuit [52]. Therefore, it is important to obtain functional coverage (i.e., occurrence

of particular events during design execution in the post-silicon environment) without

incurring large on-chip overhead.

1.1.3 Validation in a Self-checking Manner

Owing to the large error detection latency of subtle bugs and slow speed of pre-silicon

design simulation, it is very difficult to obtain golden response (of internal signals, specif-

ically, flip-flops) for a large range of clock cycles. This leads to the search of self-checking

methods which are capable of validation without requiring correct responses and lead to

an effective bug localization. Design components that constitute protocol-level specifi-

cations can be easily validated in this manner. Once the protocol is proven correct (say,

through formal methods), it’s implementation and interaction with the rest of the system

can be checked for any design/electrical bugs with the help of high-level specifications

of the protocol. Essentially, this type of validation can be understood as consistency-

checking of the implementation. Addition of some on-chip hardware can assist in the

collection of important signals/messages related to the execution which need to matched

with the design specifications. However, the key challenges in this direction are achiev-

ing minimal error detection latency and ensuring tolerable overheads (because of on-chip

realization). Implementations of cache coherence mechanisms, which are notorious for

causing bug escapes, can be validated in this manner. For electrical bug scenarios, a

smaller error trace can be enforced on the unrolled design netlist description to achieve

consistency-based checking. When the resulting formula turns out to be UNSAT, the

group of clauses behind its unsatisfiability can be obtained. This does not require the

golden responses as the trace (because of electrical error) lead to inconsistencies when

applied on a structurally correct design netlist.

Chapter 1. Introduction 31

1.2 Thesis Contributions and Organization

In the modern era of designs with enormous complexity, limited accessibility of internal

signals is one of the main obstacles during post-silicon validation. Along with address-

ing this problem, this thesis addresses some other related problems such as validation

without requiring the golden responses, on-chip debug data compression and automatic

bug localization (at gate-level). The thesis overview is shown in Figure 1.6 where the

individual chapters are marked against main contributions.

Figure 1.6: Overview of Thesis

The contributions2 of the thesis are outlined as below:

• Chapter 2 presents the literature survey related to post-silicon validation and de-

bugging. The limitations of the prior art are also briefly discussed in relevant

sections of this chapter.3 It also presents our motivation behind improved tech-

niques for trace signal selection and automatic gate-level error localization.

• Chapter 3 elaborates on the proposed self-checking (i.e., without requiring golden

responses) methodology for validation of cache coherence mechanism in chip multi-

processors. The self-checking methodology is aimed at the minimization of error

2The contributions are listed in the way the chapters are written in the thesis.
3The limitations of previous work are discussed in detail in the individual chapters.

Chapter 1. Introduction 32

detection latency and overheads.

• Chapter 4 explains the proposed self-checking methodology of satisfiability (SAT)-

based error localization of bit-flips (which can model electrical errors).

• Chapter 5 presents the proposed methodology for topology-based trace signal se-

lection. It also presents our combined trace signal selection and error localization

methodology using traced and restored signal states.

• Chapter 6 describes the proposed methodology of complete internal visibility ex-

pansion and the subsequent error localization with this approach. It also explains

our method of low-level error localization using design response model building

approach. Both of these techniques utilize some learning from the traced (and

restored) signal states for the purpose of effective error localization.

• Chapter 7 explains the proposed method of on-chip compression of debug data in

a multi-session silicon debug procedure. This chapter also presents a reuse scheme

for random access scan (RAS), that poses a viable alternative to scan chains as a

design-for-test (DfT) solution, in the silicon debug step.

Finally, the thesis is concluded in Chapter 8 with a listing of contributions and future

scope arising out of the work done in this thesis.

− ∗ − ∗ −

Chapter 2

Previous Work

It has been widely reported that pre-silicon verification techniques are not capable to

establish full correctness of the design [4, 15–20, 27, 53, 54]. This is primarily due to the

reason that simulation of the design is at least six to seven orders of magnitude slower

than real execution of the design post-production [21, 55]. Only a few sub-modules

can be completely verified by formal methods as they suffer from state space explosion

problem as the number of state elements increases in the design [56]. Furthermore, owing

to the other issues like process variations and inaccurate simulation models, post-silicon

validation has attained an important position in the modern design implementation

cycle [45]. Scan chains available in the design for DfT (Design for Test) purposes also

offer insights into the internal states of the chip, however, this information is not real-

time as the execution of the chip has to be stopped for dumping the scan values [57,

58]. Hence, on-chip trace buffers need to be utilized for debug data acquisition [59].

BackSpace [56] is a formal method proposed by De Paula et al. for post-silicon validation

using reachability analysis and pre-image computation from the trace buffer contents.

An approach proposed recently by Taatizadeh et al. [52] implements the idea of on-

chip assertion checking for catching bugs (of bit-flip types). On-chip checkers can also

play important role in functional validation [60, 61]. Placing on-chip assertion checkers,

however, raises serious concerns of area overhead [62, 63]. In the next sections, we

discuss some of the most important and relevant work from the literature targeting error

33

Chapter 2. Previous Work 34

detection and localization techniques and debug methodologies.

2.1 Architecture-level Validation Methods

Foutris et al. [64] utilized diversity in Instruction Set Architecture (ISA) to expose de-

sign and electrical bugs in processor systems by the execution of random instruction tests

and corresponding equivalent random instruction tests. Wagner et al. [65] proposed Re-

versi which involves inverse state computation for instruction blocks for detecting and

subsequent localization of bugs. A major benefit of this self-checking approach is that

time-consuming pre-silicon simulation results are not needed. To reduce the error de-

tection latency in the validation of processor designs, duplicated programs can be run

with instruction for checking inserted in the test programs [66–68]. Clearly, these kinds

of approaches are not applicable for general digital blocks within complex SoCs. Park

et al. [69] proposed a technique named as Instruction Footprint Recording and Anal-

ysis (IFRA) for error detection in processor systems using low cost on-chip recorders

as an observability mechanism. They perform program analysis after constructing bug

localization graphs [70] for error localization to a block-level granularity. However, typ-

ically an architectural block may contain a complete SoC. This makes it very difficult

to localize/debug at the netlist level with techniques like IFRA [69] or that of Reversi

[65]. Friedler et al. [71] proposed a method for automatic architectural localization of

post-silicon test-case failures by mismatch of states from chip execution and the states

obtained from executing the similar test on an Instruction Set Simulator (ISS). Lever-

aging this information helps in identification of a set of instructions that could lead to

the faulty final state in a buggy microprocessor design.

Modern processors employ complex cache coherence operations for deployment of

multi-core configurations. Verifying the implementation of a cache coherence protocol

(CCP) in processor designs has been an active area of research for many years [41, 72–74].

However, despite significant success in the formal verification of CCP, errors related to

operation of the cache coherence mechanisms of modern processors escape into the silicon

Chapter 2. Previous Work 35

[7, 39]. Such bugs are a major contributor to the complex errors in processor errata doc-

uments and thus need measures for correction through hardware patching. Alternative

to this, on-chip verification techniques can assist in the detection of bugs [74] at the cost

of performance and area overheads. Cache coherence mechanisms are also susceptible

to soft-errors and thus require effective fault-tolerance mechanisms [75, 76] to mitigate

them. For snoopy-based CCP implementation, checkers have been proposed in [75] to

mitigate soft errors. The technique in [75] employs distributed checkers which has a local

store with tag information for all cache lines. Based on the incoming messages, checkers

maintain correct state of each cache line in the separate (checked) cache. Compared to

technique of watchdog processors in [74], the overheads are lower in [75]. The approach

in [74] uses checker circuits on each cache line and implements a simplified version of

CCP. Whenever state of cache line changes, related information is sent to the checker.

The checker circuit recomputes coherence transactions and verifies the states provided

by the caches. Apart from errors related to coherence mechanism operation, bugs in the

operation of memory sub-systems have held a prominent place in various documented

processor errata [7, 18, 77]. Such bugs are very hard to localize because of longer error

detection latency and manifestation in different forms owing to their non-deterministic

behavior [18, 78]. Errors in the ordering of memory operations are very hard to detect

during simulation-based verification because of unclear specifications and a wide range

of legal and valid execution results. The problem stems from the fact that architects

deviate from the program order (which is provided by the programmer) and allow or-

dering of memory operations during execution. Although, the rules and semantics of

such permissible orderings is formalized by Memory Consistency Models (MCM) [79],

verifying the hardware implementation of a MCM is not straightforward [80]. The fun-

damental reason behind this is the fact that any sort of relaxation from the program

order leads to a wide range of legal and valid execution results further increasing the

non-determinism in MCM behavior. Moreover, the cache coherence mechanism which is

inevitably needed for the correct operation of multiprocessors fails to ensure that MCM

rules are followed always. This is because the cache coherence rules are concerned only

Chapter 2. Previous Work 36

with a single memory location access while consistency caters to a global view of the

memory access ordering. Meixner et al. [81] proposed a method of dynamic (on-chip)

validation of memory consistency through invariant checking. Chen et al. [80] proposed

run-time validation of the memory consistency models by performing on-line analysis

of the constraint graph-based analysis. DeOrio et al. [77] proposed a hardware-based

logging mechanism that records the ordering of memory events. Mammo et al. [82]

proposed a hardware-based memory access tagging methodology for tracking the mem-

ory access orderings for post-silicon consistency validation. One of the earliest work in

software-based memory consistency verification (primarily at the pre-silicon level) was

done by Hangal et al.[78]. They developed a tool for validating Total Store Order (TSO)

specifications in the processor designs through specially crafted test programs. On simi-

lar lines, [18] is a method of software-based post-silicon validation of memory consistency

models. They instrument instructions in test program to capture loaded values. The

bug detection in [18, 77, 78, 80, 82, 83] is facilitated by checking for cyclic property in

the constraint graph, an idea utilized initially in [84].

Post-silicon validation approach for validation of CCP implementations is proposed

in [85] and [39] at low performance and area overheads. Wagner et al.[85] proposed usage

of a specific pattern-based error detection along with bypassing and programmable finite

state machine for correction of coherence errors. DeOrio et al.[39] proposed a technique

to match the coherence transactions between the cache hierarchies (L1 and L2 caches)

through string matching of the logged contents (i.e., CCP state transitions) at both levels.

These techniques have error detection latency in the range of millions of clock cycles based

on their reported results on a high-level architectural simulator. It is worth to note that

an architectural simulator fails to capture the finer intricacies of the complex designs

[86, 87] and hence subtle bug manifestations may not be captured in an architectural

simulator with fidelity. It is because of this reason, we attempt validation with the RTL

description of a multi-core design. The RTL design description is relatively more closer

to the post-silicon environment.

Chapter 2. Previous Work 37

2.2 Gate-level Post-silicon Error Localization

Park et al. [69] proposed IFRA (Instruction Footprint Recording and Analysis) for de-

bugging processor systems for errors with a block-level spatial localization by the use of

low-cost hardware recorders. However, such an architectural block in a processor typi-

cally contain thousands of gates which makes it very difficult to debug at the gate-level.

Furthermore, IFRA assists in localizing the bugs only when errors are detected on-chip

within about a thousand cycles. In the recent years, machine learning techniques [88]

have been utilized for the purpose of bug triaging or error localization at both the pre-

silicon and post-silicon stage [89–92]. Poulos et al.[89] proposed grouping of different

pre-silicon error traces obtained by SAT-based debugging into various groups through

regression analysis. DeOrio et al. [90] proposed a post-silicon bug diagnosis methodol-

ogy based on data collection from failing tests and then applying clustering technique

to form signal groups. Since during post-silicon validation, a large number of tests are

applied, the amount of logs collected is also very large. Therefore, machine learning

techniques like clustering, classification methodologies can be deployed to extract hints

for bug/error localization from the obtained test response logs [90, 91]. Mammo et al.

[93] have proposed an automatic mismatch diagnosis approach for exactly identifying

the buggy unit(i.e., processor block) with the assistance of hints from instruction set

simulation in addition to the normal test execution on DUV (design-under-verification).

In testing phase, the developed model assists in predicting the error location with the

help of carefully engineered features (with the help of design functionality behavior) from

the test execution log. Such feature engineering can not be easily adopted for uncore

components/non-regular designs. Similar to [90], Bertacco et al. [91] proposed a mecha-

nism to detect root-cause signals by identifying “outliers” signals from post-silicon tests

and iteratively selecting signals to be monitored. Khudia et al. [92] have analyzed bugs

that manifest inconsistently over repeated executions of the same test. They classified

the internal signals into passing groups and failing groups for bug diagnosis upon test

executions. A methodology to bridge pre-silicon and post-silicon verification by on-chip

Chapter 2. Previous Work 38

detection of protocols (which have been extracted during pre-silicon) and then perform-

ing an off-line software diagnosis for localization at architectural block level and the

corresponding buggy signal along with the detection cycle has been proposed in [94].

For general design blocks of SoC’s, utilizing state restoration [1, 95] technique1 assists

in enhancing the restricted visibility which in turn would ease the localization princi-

ples. However, increment in state restoration does not translate to the ease in error

detection/localization in the same proportions [96]. Thus, complete discovery of internal

signal states can overcome this bottleneck.

Satisfiablity solving (SAT) is one approach that holds the promise of assisting us to

localize to gate-level in a self-checking manner. Given that the structure of the design is

correct, however, it is providing wrong functional responses because of electrical error(s)

and we have obtain a smaller size error trace (in range of hundreds of clock cycles).

Under this scenario, the error trace can be applied as constraints to the unrolled design

netlist. The unrolling of the netlist is illustrated in Figure 2.1 where the unrolling is

done for two cycles only. The CNF representation over 2 clock cycles is given by:

Figure 2.1: Unrolling a design into time-frames

(r + i11) · (r + s) · (i1 + s+ r) · (i12 + o1) · (s+ o1) · (o1 + i12 + s) ·

(t+ i21) · (t+ r) · (i21 + r + t) · (i22 + o2) · (r + o2) · (o2 + i22 + r)

Here, the superscripts denote the clock cycle (or, time-frame) number. After the clauses

corresponding to the error trace are applied to the above netlist expression in a conjunc-

tive manner, the resulting formula is applied to the SAT solver. Since the error trace

contains a manifestation of electrical error, the final formula would be unsatisfiable. A

proof trace can be extracted which can lead us to the reason behind functional failure

(i.e., the failing flip-flop and the corresponding clock cycle) [34]. SAT-based methodology

1This notion of signal state restoration is totally different from the widely used terminology of state
restoration in the field of processor design/computer architecture.

Chapter 2. Previous Work 39

has been successfully applied in a few approaches for localization under a post-silicon

environment from the efforts developed for pre-silicon stage debugging [97–99]. Vali et

al. [34] presented a bit-flip detection-driven trace signal selection methodology and eval-

uated its efficiency on ISCAS’89 type benchmark circuits. They have considered a trace

buffer width of 128, 256 and achieved spatial localization of around 20 to 40 flip-flops.

Their temporal localization ranges from 5 or 10 to 20 cycles of the actual flip-cycle.

Compared to this approach, the presented methodology (Chapter 4) achieves temporal

and spatial localization with lesser TBw. We evaluate the localization attempts on both

bit-flip and syuck-at errors. Zhu et al.[48] proposed a sliding window (corresponding to

a small number of clock cycles of chip execution) based technique to localize stuck-at

constant faults in the netlist. Debugging is assisted by computation of backbones which

are set of signals (in the unrolled netlist) that are immutable under the chip execution

constraints such as the signal values from the trace buffer or primary input (PI) and pri-

mary output (PO) values. Leveraging backbones computation, a sliding-window based

approach is presented in [100] also for localizing design errors like gate replacements in

the post-silicon environment by considering a trace of 5% of the total signals. The SAT-

based methodology involving UNSAT core(s) can be applied in conjunction with the

technique involving backbones computation. Yang et. al.[101] proposed a satisfiability-

based register-transfer level (RTL) error localization using hierarchical knowledge of the

design and utilized a group of 16 registers as trace buffer width.

2.3 Effective Trace Signal Selection

Typically, error localization becomes a bottleneck during post-silicon validation and de-

bug phase because of the large number of possibilities for complex designs even if an

efficient methodology of error-detection [66] is adopted. Under such a scenario, a quick

debugging of the error scenario can be performed if the on-chip traces collected are highly

relevant and useful which can save us the time spent during off-line processing and analy-

sis. Majority of the trace buffer-based signal selection techniques [1, 9, 102–104] have not

Chapter 2. Previous Work 40

attempted to evaluate the quality of debug data collected from trace buffers. One of the

measures of evaluating trace data merit is error detection latency (EDL). Additionally,

the ease of bug localization (which in turn decides how quickly the bug fixing can be

done) must be of pivotal importance in deciding the merit of a particular trace signal

selection technique.

Due to the constraint of area overhead, effective trace signal selection is essential

for a profitable implementation of the scheme of on-chip trace buffers. Under this sce-

nario, maximization of restored states is one objective which ensures the observability

of internal states is enhanced [1, 9, 102, 104–107]. Restoration is the process of de-

duction of unknown signal states with the help of known signal states through the

process of logic implication (i.e., either forward propagation or backward justification

or combined justification as illustrated in Fig. 2.2). From a broader perspective, the

various restoration-based signal selection methods can be classified into 3 major groups:

a) heuristics exploiting design structure [1], b) techniques based on design simulation

[9, 105] and c) a mixture of design structure and simulation-based techniques [102, 104].

Figure 2.2: Restoration Illustration [9]

The quality of selection is characterized by a selection efficiency metric, called as

“restoration ratio (RR), often also referred to as state restoration ratio (SRR)” which

is given by the Equation 2.1 (Higher RR, higher is the internal observability) [1, 9, 22,

102, 104, 108–110]:

RR =
Signals restored + Signals traced

Signals traced
(2.1)

Chapter 2. Previous Work 41

For the example circuit shown in Figure 2.3, the traced and restored signal states are

shown in Table 2.1 (X depicts an unknown signal value).

Figure 2.3: Example Circuit for illustrating illustration [1]

Table 2.1: Restored and traced signal states [1]

Signal Cycle1 Cycle2 Cycle3 Cycle4

A 0 0 0 0

B 1 0 1 0

C 1 1 0 1

D X 0 0 0

E X 1 0 0

F X X 1 0

G X 0 0 0

H X X 0 0

It has been observed that selective dumping of signals from a larger pool of can-

didate signals is superior to a fixed selection of trace signals [111]. However, dynamic

trace signal selection is achieved at the cost of area overhead due to the multiplexers in

addition to the overhead incurred due to the usage of trace buffers. To enhance restora-

bility maximization, combination of select trace signals and a higher number of flip-flops

connected in scan chains (illustrated in detail in Section 2.3.3) was suggested since this

scheme covers a larger range of FFs as compared to tracing only few flip-flops (trace

signals) [112].

In the literature, few attempts have been made to critically examine the utility of

SRR. Hung et al.[113] proposed two different metrics for evaluation of the selected trace

signals for ease in observing the incorrect behavior due to design bugs in post-silicon

Chapter 2. Previous Work 42

environment. Ma et al.[96] have strongly argued against SRR stating various reasons

for its inefficacy. One of them is the equal assignment of priority to all the signals

without taking into account the particular nature of some bugs which have more chances

to occur in certain regions of the design only. Secondly, the conditions under which

different signals of the design need to be monitored are not identical.

2.3.1 Motivation behind Alternative Signal Selection

To illustrate the indifference of trace signal selection algorithms towards actual local-

ization of errors, we simulated the RTL descriptions of the example circuit in Fig. 2.2

(utilized in previous works [1, 9]) for two different types of errors.2 First, the random

gate replacement (B1 type) and second, exchange of some of the wires of the circuit with

one another (B2 type). Under some circumstances, these kinds of bugs in the design

implementation may not be easily detectable at the pre-silicon stage. Suppose, the next

state logic of a design contains a 2-input XOR gate which is replaced by a 2-input OR

gate. The only input combination that can identify this gate replacement is “11”. How-

ever, if the corresponding state is rarely activated in the state machine of the design,

then pre-silicon verification fails to identify this change of gate. A similar analogy can

be drawn for B2 type bugs too for justifying their relevance.

Tables 2.2 and 2.3 respectively report the error detection latency (i.e., the first clock

cycle in which flip-flops capture an erroneous bit as compared to the golden response

bits).3 Observing an erroneous bit at the flip-flop can give a quick indication of the

actual error/bug location. For each type of error, four iterations of error injection were

done. An entry of “ND” in the tables indicate that the flip-flop could not observe the

error or the error did not propagate to these flip-flops.

Apart from the combination of {C,F}[50, 114] some other suggestions for trace signal

2More details on these are discussed in Section 5.9.3.1 of Chapter 5.
3In strict sense, the usage of term “latency” is not appropriate. However, considering the source of

error as cycle 0, we compute the first clock cycle in which flip-flops capture an erroneous bit as compared
to the golden response bits. So, it can be termed as error detection latency.

Chapter 2. Previous Work 43

Table 2.2: Latency for observing B1 type bugs

Error A B C D E F G H

e1 ND ND ND 2 ND 3 4 5

e2 ND ND 2 4 3 4 5 5

e3 ND ND 3 4 5 5 2 7

e4 ND ND ND ND ND ND ND 2

selection for the example circuit (Fig. 2.2) include {A,C}[1] and {A,B}[9] for achiev-

ing high restoration ratio. If state restoration techniques were to effectively assist in

error localization/detection, these combination of signals should be able to capture the

erroneous response bit(s) as early as possible for all kinds of errors.

Table 2.3: Latency for observing B2 type bugs

Error A B C D E F G H

e1 ND ND 2 3 ND 3 4 5

e2 ND ND ND ND ND 2 2 3

e3 ND ND ND ND 3 4 4 5

e4 ND ND 2 ND 5 ND 3 ND

It is evident from the above tables that the flip-flops which are suitable for high SRR

values do not always observe the erroneous response. Typically, when two signals are

highly correlated if one is traced the other can be almost fully restored leading to high

SRR values. However, tracing one of these correlated signals turns out to be ineffective

for error localization as if the traced flip-flop fails to capture an erroneous response, the

restored states follow the same trend.

The trace signal selection methods classified in the previous sub-section are applied

on the design description in the netlist (gate-level synthesized) form. However, signal

selection can be performed at RTL level too [1, 115]. The data flow graph (DFG) or

control data flow graph (CDFG) is generated from the design description and register-

variables (possible candidates of signal selection) are chosen based on the relationships

between different variables of the design.

Chapter 2. Previous Work 44

2.3.2 Relevance of Restoration Ratio as Signal Selection Metric

Ma et al.[96] have strongly argued with empirical evidence that RR (defined in Section

2.3) as a metric overlooks certain subtle aspects of the signal selection problem. The

authors state that the principle of restorability maximization favors large arrays for the

design. This is because tracing some elements of big arrays helps to restore a larger

fraction of internal states of the design. However, tracing such elements do not provide

useful hints for error localization. Another argument which authors in [96] put forward

against using RR as a metric is the fact that it does not take into account natural design

structure. The ignorance of the original design structure leads this metric to consider all

the signals equally which is not true from the viewpoint of debugging.

We have shown results for some design errors on ISCAS’89 benchmark circuits which

indicate that state restoration technique performs poorly on the account of error detec-

tion/localization [51, 55]. In [55], assignment of ranks to flip-flops through simulations

based on pre-determined list of netlist-based bugs/errors. A simplified approach to the

methodology of [111] is presented in [116]. The techniques described in [55, 116] apply

erroneous traced state bits (tsberr) for a fixed trace buffer configuration as a metric which

is given by the following equation:

tsberr =
erroneous traced signal states

total number of traced signal states
(2.2)

Compared to RR [1, 9, 102, 104, 105], the above metric helps to select trace signals

which can detect more errors as compared to signals selected by restorability maximiza-

tion techniques. Among other important parameters which must be investigated include

the trigger conditions for deciding the intervals of on-chip signal dumping [117] and

generation of proper input stimuli. For in-system validation, based on assertions and

property specifications, inputs can be derived and delivered to internal blocks of the

design via some on-chip storage. However, facilitating such in-system validation tasks

for complex designs is not trivial and requires proportionate on-chip infrastructure.

Chapter 2. Previous Work 45

2.3.3 Different Types of Post-silicon Observability Enhance-

ment Techniques

As stated previously, trace buffers are widely utilized as a design-for-debug feature for

storing a selected group of signals for a specified number of clock cycles, which can

then be dumped off-line for debugging [1, 15, 45, 59]. However, given the constraint

of area overhead, number of signals to be traced is typically 1-2% of the total signals.

Furthermore, the signals utilized for tracing in the post-silicon environment are decided

at the design stage. When reconfigurability is intended in the tracing of internal signals,

a multiplexed scheme needs to be employed [50, 118]. Table 2.4 shows a scenario where

trace buffer width is 4 and buffer depth is 6 (denoted by the six clock cycles). Let us

consider that FFA, FFB, FFC and FFD are four trace signals. Note that FFA1

denotes the signal state of FFA in the first clock cycle. The contents of these trace

signals(flip-flops) are continuously dumped into the trace buffers for six clock cycles.

Table 2.4: Illustration of signals for tracing

Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Cycle6

FFA1 FFA2 FFA3 FFA4 FFA5 FFA6

FFB1 FFB2 FFB3 FFB4 FFB5 FFB6

FFC1 FFC2 FFC3 FFC4 FFC5 FFC6

FFD1 FFD2 FFD3 FFD4 FFC5 FFD6

To aid in the process of internal signal tracing, some flip-flops can be combined into

fixed length scan chains4 which provide temporal variability in signal tracing [22, 103,

112, 119]. This variability in the temporal tracing of internal signals leads to a higher

state restoration ratio [22] and also assists in error detection enhancement [119]. This

mechanism needs the usage of shadow flip-flops and the dumping frequency of each signal

is determined by the length of the chain. These mechanisms require a small controller

4This is slightly different from the notion of scan chains widely utilized in manufacturing testing. In
this context, the input to the chain comes from the circuit components and the output is fed to the
trace buffer. The dumping of contents as illustrated in Table 2.5 (where trace buffer width is reduced
to 2 while the buffer depth is maintained at 6) shows the connection of the signals in the chain and the
resulting dumping frequency.

Chapter 2. Previous Work 46

Table 2.5: Combination of signals for temporal variability

Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Cycle6

FFA1 FFB1 FFA3 FFB3 FFA5 FFB5

FFC1 FFD1 FFC3 FFD3 FFC5 FFD5

required for managing the dumping of signal contents in trace buffers [22, 103, 120, 121].

In a static signal tracing scheme (as illustrated in Table 2.4), only 2 signals can be

dumped for 6 clock cycles, whereas in this scheme, 4 signals (flip-flops) meaning that

all the signals are dumped in alternate cycles. Since a larger number of internal signals

can be covered for signal tracing with this observability enhancement scheme, error

localization can be more effective. Note that the dumping of signal contents into the

trace buffers is not continuous here and the dump frequency is decided by the length of

these smaller chains.

2.4 Debug Data Compression Techniques

Due to the huge amount of data being generated during the step of post-silicon valida-

tion and limited on-chip storage, there is a need of effective compression mechanisms.

Additionally, owing to the slow speed of offload dumping of internal contents (as chip

execution is in range of Gigahertz while the offloading speed may be in range of tens of

Kilohertz or Megahertz), if an on-chip compression scheme is adopted, the amount of

debug data to be offloaded can be significantly reduced. This is because with compres-

sion, the chances of overwriting the data stored in on-chip trace buffers is minimized.

Additionally, in a complex debug scenario, it is needed to halt the chip execution to

facilitate the offloading of the contents of on-chip trace buffers. The debug procedure

eventually requires mechanism to state continuity because of this halt of execution. With

on-chip compression, since the amount of debug data to be stored in the on-chip storage

gets reduced, the number of halts also decrease in number subsequently. For repeatable

debugging experiments, scheduling of debug experiments in different sessions has been

proposed by Anis et al. [122–125]. Compression of trace buffer data (through various

Chapter 2. Previous Work 47

encoding schemes and their on-chip realizations) has been proposed in [126, 127] to re-

duce the amount of data to be stored after on-chip tracing. Since the debug exercise

needs to be carried out in multiple sessions (which essentially mean multiple run-and-halt

intervals), on-chip compression can play an important role in the effective utilization of

on-chip storage and the reduction of overall debug time. However, we must ensure that

the on-chip compression mechanisms have sufficiently low area and power overheads. For

debug scenarios involving large number of experiments, significant improvement can be

obtained with on-chip compression to get large expansion in the observation window.

Typically, under these scenarios, the success of debug experiments is limited by the trace

buffer capacity. Due to the efficient use of the on-chip trace buffers, a larger range of

clock cycles can be observed at one time, leading to reduction in the total number of

iterations required to analyze the debug data.

During manufacturing testing, serial scan chains offer observability and controlla-

bility at the expense of elongated test application time, inflated test data volume and

excessive test power. This poses serious challenges to test strategies using serial scan

chain architecture in the nanometer regime [128]. As a better alternative, random access

scan (RAS) originally proposed by Ando [129] was re-investigated by Baik et al. [130] to

address these issues and a slightly modified version known as progressive random access

scan (PRAS). This scheme aims at a simultaneous minimization of test volume, power

and time. Instead of stitching all flip-flops into a single chain, RAS (or, PRAS) felicitates

selection of a single flip-flop for the purpose of writing the test vector bit or for the task

of reading out the response bit. The mechanism uses a MISR (multiple input signature

register) for obtaining time compaction of the responses generated by the application of

test vectors. Hence, with the usage of MISR, the on-chip compression of test responses

can be achieved. We view the PRAS architecture as an alternative debug scheme that

offers on-chip compression. Apart from usage in structural testing, this mechanism can

be utilized for the purpose of functional debug also with the exception that manufac-

turing test vectors need to be replaced by functional inputs. Essentially, we can achieve

reconfigurable visibility of the internal signal states of the design with the usage of PRAS

Chapter 2. Previous Work 48

architecture. This serves as efficient reuse of the infrastructure available on-chip (for the

purpose of manufacturing test) in the silicon debug stage.

− ∗ − ∗ −

Chapter 3

Validating Multi-processor Cache

Coherence Mechanisms

3.1 Introduction

Chip multi-processors need local caches for effective performance enhancement [2]. This

is facilitated by complex cache coherence protocols (CCP) which maintain the correct-

ness of caching operations in the multi-core system. However, it is well known that the

functional verification of cache coherence protocol implementation is a challenging prob-

lem [72–75, 85]. This leads to bugs releasing into the errors in memory sub-systems of

the multi-core1 systems in the first silicon [39]. Since pre-silicon simulation is generally

slow in nature, a large number of test cases covering all possible cache coherence transac-

tions can not be exercised. Due to the fast execution speed of the silicon, comparatively

higher number of complex cache coherence transactions can be analyzed. However, sub-

tle errors such as those related to cache coherence mechanisms have very large error

detection latency and their manifestations can not be easily detected [39, 85]. Further-

more, there is highly restricted observability at this stage which makes debugging very

difficult. The internal signals of the complex coherence mechanism such as those involved

in the maintenance of states of cache lines can not be observed directly and it can not be

1core and processor are often used interchangeably in this chapter.

49

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 50

determined if the state (whether it is shared or not, etc.) of each cache line is correct or

wrong. Therefore, for detection of cache coherence errors, on-chip logging/observability

mechanisms prove useful at the cost of limited area and power overheads. Apart from

the limited visibility of internal signal states, lack of golden response and irreproducible

nature of errors are the major obstacles in post-silicon validation and debugging. Hence,

this necessitates a self-checking methodology for debugging complex coherence errors.

Typically, global or distributed checkers can be incorporated on-chip to catch CCP er-

rors. However, these checkers can have significant impact on the network traffic which

can significantly deteriorate system performance [75].

In this chapter, we propose a hardware-based on-chip logging scheme which captures

important signals related to cache coherence mechanism and error detection is performed

on-line based on their analysis. Since the high-level specifications of the particular CCP

such as MESI [131] are known beforehand, corresponding to an implementation of the

protocol, signals required to be observed on-line can be determined. These observed

signals are to be analyzed by a detector block which provides the expected (correct)

protocol states and other associated signal states. By comparing the correct signal states

(based on the protocol specifications) and the signal states of CCP of design-under-

validation (DUV), errors can be detected. With the help of an on-chip checkpoint-based

rollback and recovery scheme [132], the correct operation of coherence mechanism can

be ensured. The proposed hardware structure can assist in the dependable operation of

CCP mechanism for both design errors and soft errors. For the case of soft-errors, minor

performance degradation is expected to ensure dependable operation as the detector

module is deployed in active condition to the customers. However, for design bugs, the

logging and error detection module can be disabled after the validation is over causing

zero performance degradation to the customers.2 The only difference in the procedure to

ensure correct operations of CCP in case of design bugs and soft errors is that in case of

the former, a dedicated bypass path is needed while for the latter, it is not needed as the

2Since we utilize a RTL framework evaluation of the proposed technique, the estimation of perfor-
mance overhead (or, possible performance degradation) is not a trivial exercise.

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 51

impact of soft error typically is a transient one. Due to this reason, during the rollback

and recovery phase after the soft error is detected, the design can easily resume correct

operation. The remainder of the chapter is organized as follows. Section 3.2 presents the

preliminaries behind working of directory-based cache coherence protocols. Section 3.3

presents the proposed methodology of on-chip observability and the detection scheme in

detail. This section also elaborates on the hardware module which is to be incorporated

on-chip for the purpose of validation. Section 3.4 discusses the experimental setup,

observations, the results for various type of errors and discussions on them. Section

3.5 presents related work briefly. Different aspects of the proposed methodology are

discussed in Section 3.6. Section 3.7 finally concludes the chapter.

3.2 Cache Coherence Protocol (CCP) Preliminaries

In Chip multi-processors (CMP) architecture, memory organization can be either shared

or distributed. For better performance, there is a separate cache for every core. There

can multiple copies of the same data in the main memory and caches of several cores. If

one of the core modifies the data, then other copies of the same data should be updated.

Cache coherence mechanism ensures that each core will use valid data, not the old data

in case the data is modified.

Simplest form of ensuring cache coherence is through the snooping-based protocol. In

this protocol, each core monitors the signals on the shared bus. When a read operation

is observed on a shared bus, all processor check whether they have the copy of data in

their cache. If they have the data, they have to supply it else main memory will provide

the data. When one of the core writes the data in their cache, a signal related to the

corresponding operation is broadcast on the bus. The caches which have the same data

will update/invalidate their copy. Therefore, the shared bus becomes a severe bottleneck

in this protocol. The issue of scalability can be resolved by storing the status of all the

cache line in the single storage space called directory. This approach is called directory-

based cache coherence mechanism (as introduced in previous subsection). Whenever

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 52

access to any memory address arises, the status of that memory block (cache line) is

checked in the directory and its gets modified as per the protocol specifications. Based

on the available information, we get the data (for read operation) or update the data

and directory (after write operation). Figure 3.1 represents a simple directory structure.3

It can be seen that for every cache line, there is an entry in the directory. Each entry

consists of a presence bit and a dirty bit. Presence bit denotes which processors have

that cache line. Dirty bit denotes which processor modified the cache line. A different

representation of the directory structure is shown in Table 3.1.

Figure 3.1: Simple Directory Structure [10],[11]

Table 3.1: Directory entry for a cache line in system with N cores [2]

bstate
(2 bit)

owner
(log2Nbit)

sharer list (N bit
as per one-hot encoding)

MESI protocol [131] is an invalidation-based cache coherence protocol which has been

widely commercialized. It has four stable states. Modified (M) means that one processor

core (owner) has data, but it is dirty (memory is out-of-date). Exclusive (E) means that

one core (owner) has data, and it is clean (memory is up-to-date). Shared (S) means

3This is for the purpose of illustration only. The design we utilized in our experiments has slightly
different structure than this.

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 53

that data is cached in more than one core and memory is up-to-date. Invalid (I) means

that no core has data (i.e., data is not valid in any cache).

There are four types of operations in MESI protocol: local read and local write that

mean core operations is in its cache while remote read and remote write that mean

operation are in the other cache.

1. When there is “read miss” at the cache, the core will load the data and change the

state of the cache line to:

• Exclusive if block is not available in any of the caches:

• Shared if:

– block is cached in cache of another core

– another core modifies the block

– block is exclusive to one of the remaining core(s)

2. When the operation is “write miss”, the core will load the data, and the state is

Exclusive. Also, the core will send the message to invalidate the other copies.

3. When the operation is “write hit”,

• if write hit to a Modified block, then there is no change in state

• if write hit to an Exclusive block, then the state of block changes from Exclu-

sive to Modified

• if write hit to a Shared block, then the state of block changes from Shared to

Modified and the core will send the message to invalidate the other copies.

4. On the eviction of the Modified block, we have to write-back the data

A high-level state transition diagram of MESI CCP is shown in Figure 3.2. In accordance

with the terminology adopted in [2], GetS/GetM refers the action to obtain block in

Shared/Modified state while PutS/PutM refers the action to evict a cache block in the

Shared/Modified state. In other words, GetS and GetM mean read and write permission

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 54

respectively. In this representation, “own” indicates the requests (loads/stores) arriving

at a cache which have been made by that particular core while “other” indicates the

requests originated by other cores of the multi-core system. For some change of cache

line states, no coherence transaction is required and hence, those are referred to as

“silent”.4

Figure 3.2: High-level FSM of MESI CCP[2, 12]

As per [11] and [133], the actions taken by the directory controller in various condi-

tions can be described as below:

1. Block is in Uncached (Invalid) state: copy in memory is the current value. Upon

receiving the following requests, the required actions are:

• Read miss: requesting processor sent data from memory & requestor made

the only sharing node and state of block made Shared.

• Write miss: requesting processor is sent the value & becomes the Sharing

node. The block is made Exclusive to indicate that the only valid copy is

cached. Sharers field in the directory indicates the identity of the owner.

2. Block is in Shared state: the memory value is up-to-date. Upon receiving the

following requests, the required actions are:

4More details can be followed from [2].

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 55

• Read miss: requesting processor is sent back the data from the memory & the

requesting processor is added to the sharing set in the directory entry.

• Write miss: requesting processor is sent the data value. All the processors

(cores) in the Sharers set are sent invalidate messages, & Sharers is set to the

identity of requesting processor. The state of the block is made Exclusive.

3. Block is in Exclusive state:5 the current value of the block is held in the cache of

the processor identified by the Sharers set in the directory entry.

• Read miss: the owner processor sent data request message, which causes state

of block in the cache of owner to transition to Shared and causes the owner

to send data to the directory and it is written to memory & then sent back

to the requesting processor. Identity of the requesting processor is added to

Sharers set in the directory, which still contains the identity of the processor

that was the owner.

• Data write-back: the owner processor is replacing the block and hence must

write it back. This makes the memory copy up-to- date which leads to the

block being uncached, and the Sharer set in the directory becomes now empty.

• Write miss: block has a new owner (core-id/processor-id). A message is sent

to the old owner causing the cache to send the value of the block to the

directory from which it is sent to the requesting processor. Because of this,

the requesting processor becomes the new owner. Sharers field in the directory

is set to the identity of new owner, and state of block is made Exclusive.

3.3 Proposed Methodology of CCP Validation

Post-silicon validation and debugging of complex functionalities such as the correctness

of CCP implementation requires addressing two important issues:

5In Figure 3.2, Exclusive and Modified states are merged as one at the directory controller (main-
tained at the main memory).

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 56

• What type of internal signals are to be observed?

• How the correctness of the implementation can be ascertained in the absence of

golden responses?

An implementation of a complex CCP in a modern processor utilizing an effective on-

chip routing system would have thousands of internal signals. Clearly, identifying error

detection related useful signals out of thousands from the design description is not trivial.

Hence, we formulate the identification problem based on invariant-related analysis and

then extend this analysis for devising an on-chip error detection scheme.

3.3.1 Basic Premise

For ensuring correct operation of a CCP implementation, the authors in [2] describe the

most important property, SWMR invariant as For any given memory location, at any

given moment in time, there is either a single core that may write it or certain number of

cores that may read it. Thus, at any time, it does not occur that a given memory location

may be written by one core and simultaneously either read or written by any other cores.

Hence, the name of this invariant is given as single writer, multiple readers (SWMR).6

Therefore, for checking correctness, we need to observe the actions of the single writer

(particular core-id) along with multiple readers (respective core-ids) for assisting in the

design validation/debugging process. The overview of this methodology is presented in

Figure 3.3. The exercise to derive the signals to be observed on-chip is manual in nature.

We mostly relied on the detailed explanation of directory-based CCP in [2] and [133].

Once the type of signals are identified, they need to be selected from the RTL design

available from [134]. The invariants [2] merely act as a guiding principle behind the

identification of RTL signals.

It is difficult to ensure CCP implementation correctness by merely observing events

at one or more caches. We also need to observe the different requests coming from

6The other coherence invariant from [2] is that of Data-value integrity. As per it, the value of the
memory location at the start of an epoch is the same as the value of the memory location at the end of
its last read-write epoch.

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 57

Protocol
Specifications

(translated
from

invariants)

Coherence
Transaction
Conditions

Multi-core
Design
(RTL)

Internal state
signals/intermediate

conditions to be
observed
(on-chip)

Figure 3.3: Deriving on-chip logging scheme

memory and the requests to be processed from one cache to another after passing through

the on-chip network. Typically, in any CCP implementation, there is a finite state

machine (FSM) at controller that has few stable states and many transient states. As the

number of cores increase, the number of transient states becomes large and the possible

number of interactions among them becomes intractable. For observing whether a CCP

implementation conforms to the SWMR invariant or not, it is obvious that we need

to observe signals related to the CCP finite state machine. Depending on whether the

CCP implementation is directory-based or snoopy-based, we have to decide other signals

for observing. Suppose, we consider a directory-based CCP wherein the information

regarding state of cache lines is maintained in a directory. Typically, the directory is

distributed across the CMP system. Hence, each core has a slice of the directory. Each

entry of such a directory slice consists of at least 3 fields- status of memory block, owner-

id, list of sharer nodes (cores). Therefore, to obtain an on-chip checker module which

can detect illegal coherence transactions, it would be beneficial to observe the actions of

the directory such as whether read/write is being performed in it or memory update is

getting performed, etc. Based on these observations, for a given CCP implementation,

we derived that following type of signals should be logged (on-chip):

• state of memory block belonging to individual caches : for knowing the current state

of the CCP finite state machine (FSM) for a memory block, we need to observe

the state of that particular block in the directory.

• status of directory controller : current action performed by the directory controller

(which is present along with memory controller) is to observed for checking what

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 58

kinds of transactions are allowed corresponding to each action. Note that for

snooping-based implementation, broadcast messages (on the bus) should be ob-

served.

• incoming coherence messages : various coherence messages (incoming in the mem-

ory sub-system) i.e., invalidation requests, write/read requests by cores etc. sent

by the processor core need to be tracked.

• current coherence messages : various coherence messages (present in the memory

sub-system) i.e., invalidation responses etc. received by the processor cores need

to be tracked for finding the next valid cache line state.

• tracking of sharer requests : for sharing of cache lines, various requests are generally

transacted between cache and memory. So, we need to observe the sharer-id (i.e.,

processor/core-id etc.) and related messages.

• tracking of sharing relations : for checking legality/validity of coherence transac-

tions (i.e., address matching between requester and sender caches, sharing condi-

tions set true/not, etc.) and some miscellaneous messages between the caches to

memory need to be observed.

3.3.2 Description of Logging Structure & Detection Mechanism

Table 3.2 shows the on-chip logging scheme (i.e., the group of signals to be observed) in

the proposed methodology. Out of these observable signals at any T th clock cycle, the first

three serve as signal states to be compared with expected (correct) signal states within

the detector module (and thus are stored in logging register at (T + 1)th cycle, shown in

Figure 3.4) and remaining three are validity conditions which assist in fully checking the

generation of a valid/legal coherence transaction output. Essentially, we call them so

to differentiate between the signal which constitutes coherence transaction output and

signal conditions which are reasons behind coherence transactions (i.e., state transitions

and other status changes). The selection of the entries in Table 3.2 is particularly aimed

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 59

at the maximization of design/electrical bug detection and subsequent bug localization.

Table 3.2: Signals to be observed

bstate mstatus curmsg inmsg sharereq sharercond

In the above observability scheme, bstate depicts state of the memory block (or, equiv-

alently each cache line) which is maintained at the directory, mstatus denotes the state7

of directory action being performed (by directory/memory controller), curmsg denote the

current coherence message being processed, inmsg represent the incoming coherence mes-

sage from the memory sub-system network, sharereq depict the sharers (cache id’s) and

sharercond stands for checking various address matches and conditions on which the cache

coherence transactions are true. Typical CCP implementation enforces that at any given

time, bstate depends on previous bstate and mstatus. Additionally, to minimize detection

latency mstatus helps as the errors can be detected early in the form of mismatch between

directory actions, without waiting for a mismatch between bstate values. The proposed

detection scheme is shown in Figure 3.4. The detector module is to be incorporated

for each core. On a per-core basis, the error detection is performed and then rollback

and recovery option can be activated. Note that the rollback and recovery scheme is

labeled optional because in the case of design error validation, this is not needed. If

it is intended to provide dependable operation in the presence of design errors, then

this scheme is required along with bypass path mechanism to avoid re-occurrence of the

design errors. Alternatively, during the validation of first silicon, after error detection,

some limited trace (in the form of contents of logging register shown in Figure 3.4 stored

into on-chip trace buffers with a fixed width and depth) and then they can be dumped

off-line for bug localization. In the case of soft-errors (due to transient effects), to ensure

dependable operation after customer shipment, an effective rollback and recovery scheme

is definitely needed.

7We deliberately name it as mstatus to avoid confusion with bstate as both of them belong to differ-
ent components in the system although both of them point to states of finite-state machines (FSMs).
Specifically, bstate points to the cache line state and mstatus points to the state of the memory controller.

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 60

The detection mechanism (shown in Figure 3.4) contains a logging register, validity

condition matcher, comparator and a combinational circuit which implements the co-

herence transaction output logic. Generally, for checking cache coherence transactions,

we need to match the tuple of {Current state, Request/Message, Response} between

the CCP specification and the respective implementation. Consider the requests arriv-

ing from the core and memory sub-system in clock cycle T which are input to the

detector module. Depending on CCP specifications, the expected signal states are

computed corresponding to (T + 1)th clock cycle which are stored in a register (say, lr1)

internal to the detector module (and not explicitly depicted in Figure 3.4). Essen-

tially, this computation is performed by a combinational logic block based on the signal

states observed at Tth clock cycle. These computed signal states/values are compared

with the contents of logging register (say, lr2) which have logged these signal states

from core and memory sub-system at (T + 1)th clock cycle. So, the contents of lr1

and lr2 are to be matched for detecting the error. This detection mechanism is intended

at minimizing error detection latency for different kinds of errors(design errors/soft er-

rors). Note that signal values of lr1 are computed in accordance with the conditions of

curmsg, sharereq and sharercond. Therefore, these three fields of Table 3.2 act as validity

conditions. Specifically, both lr1 and lr2 contain bstate, mstatus and curmsg of (T + 1)th

clock cycle. Comparing curmsg assists in detecting errors related to the request/message

response generation logic. This is because curmsg at (T + 1)th clock cycle serves as the

response of the requests which may have arrived at the memory sub-system till Tth clock

cycle. The high-level working of the detector module is described as Algorithm 1. The

validity conditions (in the form of incoming coherence messages, sharer requests and

sharing conditions) serve as important part of the invariant checking and comparing the

contents of lr1 and lr2.

As explained earlier, the widely popular MESI protocol [131] has four stable states-

Modified (M), Exclusive (E), Shared (S) and Invalid (I). Transitions from any state s

of the cache line to the state t must proceed only as per the specifications of MESI

CCP. However, having dedicated checkers for these state transitions for each cache line

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 61

Figure 3.4: High-level overview of proposed error detector module incorporation into
multi-core design

is not an easily affordable solution. The proposed design of the detector module is

intended to minimize network traffic overhead compared to the techniques which employ

distributed/global checkers for CCP verification. Note that in the proposed technique,

checking is confined inside the module itself, so, there is no injection of traffic into the

on-chip network for the purpose of error detection.

The idea behind the check condition (cur′msg == inmsg) is that inmsg of T th cycle

becomes curmsg of (T + 1)th cycle. In absence of any error, cur′msg (the expected mes-

sage) equals the previous incoming message (inmsg). Note that merely checking for the

state transitions between a pair of cache lines may not assist in the detection of errors

related to the directory or the logic components related to the generation of proper re-

quests/messages. This is the reason behind observing the different signal types listed in

Table 3.2. For instance, for the 7-stage pipeline processor design in our experiments, the

memory controller (which incorporates the directory controller also) implementation has

11 states (depicted by mstatus) such as IDLE, WAIT, DONE READ, DONE WRITE,

UPDATE, UPDATE DONE, RE TRY and so on.8 At each of these directory states, de-

pending on inmsg and curmsg, cache line states (bstate) changes or remains in the previous

bstate. Therefore, one of the important features in the proposed approach (Algorithm

8This would definitely vary from one particular implementation to the other. The name of different
states of this controller is self-explanatory. The high-level specifications typically do not engage such
detailed states of the memory controller (implementing the directory functionality). However, from
RTL, we can know about these states of the memory controller. We assume that trivial errors such as
a missing state in memory controller have already been detected at pre-silicon verification stage.

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 62

Algorithm 1: DetectionModule

Input: {bstate, mstatus, inmsg, curmsg, sharereq, sharercond (at T th clock cycle)},
{b′state, m′status, cur′msg (at (T + 1)th clock cycle)}

Output: OutSig
1 for each item of mstatus do
2 for each item of inmsg do
3 Match inmsg, sharereq and sharercond to their validity conditions;
4 Compute m1status, b1state corresponding to (T + 1)th clock cycle);
5 if cur′msg == inmsg && m1status == m′status then
6 if b1state == b′state then
7 OutSig ← NoError;
8 else
9 OutSig ← Error;

10 end

11 else
12 OutSig ← Error;
13 end

14 end

15 end

1) is that we are observing memory controller states in addition to the signals observed

only in the cache coherence mechanisms. Because of this, the design bug coverage is

expected to be higher than the techniques which target error detection only with the

signals involved in CCP mechanism operation.

3.3.3 Deriving Validity Conditions Inside Detector Module

For checking of CCP implementation, we need to maintain a list of sharers (i.e., processor

cores/caches which are sharing memory blocks). The error detection module has to utilize

this list which is maintained and updated at the directory. We need to check for a given

memory block, if the particular request is coming from a core (i.e., it’s core-id) is equal

to the core-ids present in the list of sharers. Further, the address of the cache line in any

one particular state (say, shared) is to be compared with the memory address for which

requests are currently arriving. Thereafter, we can check if the received responses are

proper or not. It may happen that the only sharer might be the requestor for data, in

that case no invalidation messages are sent. Therefore, for bug detection, merely checking

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 63

invalidations (in the form of curmsg) would lead to false positives. Specifically, following

checks (although not exhaustive) can serve as validity conditions for the analysis of a

directory-based MESI CCP implementation:

• we need to check if the requests (sharerreq) for a memory block arriving at the

directory controller is already present in the list of sharers in the directory. De-

pending on this checking, expected (i.e., correct) memory block status (bstate) can

be computed by detector module.

• we must check if new requests (inmsg) are arriving for an address which is cur-

rently being processed. While waiting for actions corresponding to one address,

the directory needs to respond to other addresses as well.

• since the directory sizes are limited, a large number of sharers can not be stored

in it. The position of sharers (sharercond) need to be checked as when a directory

entry cannot handle all sharers, other sharers are evicted.

With the help of above checking conditions, the detector module is able to differentiate

between the large number of possible coherence related events at the directory coherence

controller. Furthermore, it is difficult to specify cache line state transitions without the

above validity checking conditions. Specifically, following five conditions are identified

for the error detection as per Algorithm 1 (here, sharer[pos] indicates the list of sharers

which is maintained at the directory):

• sharercond1: check if sharer[pos] 6= coreid: when sharer[pos] is not equal to coreid,

it means data is available in other core, the expected bstate is shared, however, if

this condition is equal, data is in the same core and the expected bstate is modified

• sharercond2: check if sharer[pos] = coreid: when sharer[pos] is not equal to coreid,

it means that same core is modifying the data, the expected bstate is modified

• sharercond3: check if inaddress for the incoming request equals the address of the

memory block which is shared

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 64

• sharercond4: check if sharing condition is true for the cores (which are the potential

sharers) in the directory entry

• sharercond5: check if core(s) originating a coherence transaction request is present

in the sharer list

The major conditions inside the DetectionModule (written after the analysis of RTL

description and with high-level specifications) are shown in Tables 3.3 and 3.4. These

tables are deliberately divided into two parts to provide better clarity on the change of

different signals with changing conditions. Specifically, the message names (inmsg) are

obtained from the analysis of multi-core design RTL.9. For the sake of brevity, only the

important messages inmsg/curmsg, state/status transitions (mstatus/bstate) and tracking

conditions (sharercond) are depicted.10

3.3.4 Coverage Issues Under Proposed Methodology

The proposed methodology ensures that the tuple of {Current state, Request/Message,

Response} between the CCP specification and the respective implementation is checked

continuously till the completion of test program. There is a close relationship between the

signals observed (i.e., {Current state, Request/Message, Response} and validity condi-

tions), the detector logic and the design bug detection coverage. The same is true for soft

errors too. However, because of overhead issues, we have not covered the network/router

errors. As stated previously, if the error in the communication network results into

manifestation at the directory or the cache controller FSM, then the proposed technique

can detect those error(s). We strongly believe that the design bug/soft error coverage

9It is assumed that the corresponding message names are properly written in the RTL design de-
scription. Most of these message names are self-explanatory. For instance, REQ indicates request, INV
indicates invalidation, WB indicates write-back, M indicates memory, W indicates write, R indicates
read, and so on.

10A vacant entry in these tables means that the respective entries are not important for the working
of detector module for the checking of corresponding transitions of mstatus/bstate. This is because
the respective entries remain same as the previous transaction and no change is observed for those
fields. In other words, the transition of mstatus to m′

status or bstate to b′state does not depend on those
entries/fields. Also, completely specifying the entries in this table can lead to additional synthesized
gates in the resulting on-chip hardware.

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 65

Table 3.3: DetectionModule Conditions-1

mstatus bstate sharereq inmsg sharercond b′state
READ DIR INVALID EXCLUSIVE
READ DIR SHARED SHARED
READ DIR SHARED SHARED
READ DIR EXCLUSIVE EXCLUSIVE
READ DIR MODIFIED MODIFIED

WRITE DIR INVALID MODIFIED
WRITE DIR SHARED SHARED
WRITE DIR SHARED MODIFIED
WRITE DIR EXCLUSIVE MODIFIED
WRITE DIR EXCLUSIVE EXCLUSIVE
WRITE DIR MODIFIED MODIFIED

WAIT EXCLUSIVE INV RESP
(sharer[u] ==

src id)
& v sharers[u]

INVALID

WAIT
shari-

ng(v sharers)
INV RESP ” SHARED

WAIT
!(shari-

ng(v sharers))
INV RESP ” INVALID

WAIT SH RESP ” SHARED
WAIT WB RESP ” SHARED
WAIT WB INV RESP ” INVALID

also depends on the quality of tests applied. Since, the design is a multi-core system,

we apply test (assembly programs) which have shared memory addresses among them.

Specifically, the tests could contain only load and store instructions, however, in our ex-

periments, we utilized tests containing all instructions of the ISA. The exact analysis of

design bug/soft error coverage and their dependence on test program quality is a part of

our future work. As stated earlier, the dumped traces (i.e., contents of logging register,

lr2) can be analyzed off-line for bug localization through invariant-based checking for

CCP specifications. For achieving quick dumping of these logged contents, a hashing

mechanism can be implemented. A content addressable memory can also be utilized for

the storage of these contents.

3.3.5 Test Programs for RTL Simulation

For triggering coherence related errors, we need multi-core programs (i.e., parallel pro-

grams) with the condition that these programs contain shared memory addresses. Figure

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 66

Table 3.4: DetectionModule Conditions-2

mstatus bstate sharercond inmsg curmsg m′
status

IDLE R REQ READ
IDLE W REQ WRITE

IDLE M WB REQ READ
IDLE INV RESP UPDATE

IDLE WB INV RESP UPDATE
RE TRY R REQ READ
RE TRY W REQ WRITE
RE TRY M WB REQ READ

READ DIR INVALID DONE READ
READ DIR SHARED DONE READ
READ DIR SHARED WAIT
READ DIR EXCLUSIVE WAIT
READ DIR MODIFIED WAIT

WRITE DIR INVALID DONE WRITE

WRITE DIR SHARED
sharer[pos] !=

pe id
WAIT

WRITE DIR SHARED
sharer[pos] =

pe id
DONE WRITE

WRITE DIR EXCLUSIVE sharer[0] == pe id DONE WRITE

WRITE DIR EXCLUSIVE sharer[0] != pe id WAIT
WRITE DIR MODIFIED WAIT

WAIT EXCLUSIVE INV RESP
check for

in address ==
address

RE TRY

3.5 shows the procedure adopted for converting the parallel programs into Hex file which

is utilized with ModelSim simulator for the multi-core RTL simulation (using .tcl scripts

which have commands for loading the individual test program Hex codes on to the I-

caches of individual cores). We utilize the tool-chain available at [134] for carrying out

this conversion. We utilized the multi-core Fibonacci series computation and matrix

multiplications programs which are supplied with the software tool-chain from [134].

These programs have all kinds of instructions as per MIPS ISA. However, most impor-

tant instructions which are concerned with coherence mechanism validation are loads

and stores. Therefore, in our random constraints-based test programs, we have mix of

load and store instructions with few addresses shared among all the cores. It is obvious

that higher the sharing of memory addresses between the cores, better is the quality of

the test programs.

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 67

C program Parallelized
assembly code

Compilation for
getting MIPS

assembly

Object codeDump output
(by mips-objdump)Hex memory file

Figure 3.5: Steps involved in Hex file generation (for multi-core RTL simulation)

3.4 Experimental Setup, Observation & Results

3.4.1 Experimental Setup Details

We considered the open-source multi-core MIPS processor implementation [13] for our

experiments. The design consists of a seven-stage pipeline processor and utilizes di-

rectory version of MESI CCP. We performed experiments with a 4 core version of the

design in [13]. The memory organization in this design is of cache coherent non-uniform

memory access (ccNUMA) type. Each processor core has its own local cache and mem-

ory. Specifically, we consider a 4 core processor with each core having ccNUMA main

memory. The caches are split into I-cache and D-cache.

3.4.2 Overview of Multi-core Design Framework

For better understanding of the multi-core design, an expanded view of the memory sub-

system architecture from [13] is shown in Figures 3.6 and 3.7. The left side expansion

in this figure shows the local memory structure (of the NUMA setup) and the right side

expansion shows the routing structure of the system. Figure 3.7 shows the detailed view

of the memory sub-system architecture. The Address Resolution Logic works with the

Packetizer module to facilitate the interaction of the caches and the local memory of the

rest of the system. All cache traffic goes through the Address Resolution Logic, which

determines if a request can be served at the local memory, or if the request needs to

be sent over the network [13]. The Packetizer is mainly responsible for converting data

traffic (such as a load) coming from the local memory and the cache system into packets

or flits that can be routed inside the Network-on-chip (NoC), and for reconstructing

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 68

Figure 3.6: Memory sub-system architecture [13] utilized in experiments

packets or flits into the data traffic at the opposite side when getting out of the NoC.

Figure 3.7: Detailed view of memory sub-system architecture [13]

By using the approach shown in Figure 3.3, we identified 23 bits for Table 3.2, out

of which 5 bits depict the presence/absence of validity conditions (sharercond). For the

structures elaborated in Section 3.3.2, lr1 and lr2 are of 10 bits only (mstatus is of 4 bits,

curmsg is of 4 bits and because of only 4 stable states in MESI, bstate is of 2 bits). Similarly,

the messages, inmsg and sharerreq are each of 4 bits. For the purpose of comparative

evaluation, we repeated the error injection experiments and analyzed their detection

with a previous method [3] proposed in the literature. The technique in [3] involves

the incorporation of an additional core into the multi-core system for computation of

the correct signal transitions and protocol states when the related coherence messages

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 69

(identical to the observed signals in our approach, bstate and inmsg as shown in Table 3.2)

are received as described in Algorithm 2.

3.4.3 RTL Implementation Analysis of Proposed Technique

We synthesized the RTL implementation with Synopsys Design compiler tool utilizing

a 32-nm standard library (Synopsys educational library). The overhead results for each

core are shown in Table 3.5. The second column shows the numbers for the original

implementation which includes the 7-stage pipeline core (Instruction Fetch1, Instruction

Fetch2, Instruction Decode, Execute, Memory Access1, Memory Access2 and Write-

back)11 and the third column depicts the numbers for the proposed detector scheme.

The fourth column indicates the overhead percentages for the proposed detection module.

Table 3.5: Overhead Analysis

Core Prop. Ov.(%) mFSM Ov.(%)

Area(um2) 39158.80 202.07 0.51 894.91 2.28

Power(uW) 714.75 5.05 0.70 22.65 3.16

We also implemented a duplicate memory controller finite state machine which is mainly

responsible for coherence transaction output (i.e., next mstatus, curmsg) generation at

the directory to mimic double modular redundancy error (DMR) detection scheme. We

assume that the second (i.e., the duplicated) FSM is design bug free and hence capable

of bug detection. For soft errors, the additional FSM (denoted by mFSM) can assist in

error detection under the conditions that the soft error impacts only the actual memory

controller.12 The fifth column shows the numbers for this additional FSM. The overhead

percentages due to this extra FSM is reported in the sixth column. Total power (static

+ dynamic) is reported in the third row of Table 3.5. Compared to DMR, the proposed

technique has lesser overheads. It is obvious that as the size of core increases, the

overhead numbers would proportionately reduce.

11The processor is a single-issue in-order MIPS core, fully bypassed, no branch prediction or branch
delay slot, running MIPS-III instruction set architecture (ISA) without floating point support.

12In a strict sense, for design errors, this FSM would not be useful as the same design error may be
present in it also.

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 70

3.4.4 Comparative Evaluation with Literature

Among various approaches to tackle coherence mechanism validation proposed in the

literature, the work closest to our approach is that of Rodrigues et al.[3]. The authors

have proposed a special-purpose diminutive core (called as Sentry Core shown in Figure

3.6) which takes as inputs the current messages and coherence transactions and produces

the expected state transitions as output. The method is described in [3] for a snoopy

protocol system to detect soft-errors. We implemented this detection technique for a

directory-based CCP.

Table 3.6: Previous approach for checking multi-processor coherence [3]
Core1 Core1 Core2 Core2

Addr Curr. state Exp. state Curr. state Exp. state Mem. op Reques. ID
A E S - - write 1
..

The high-level working of the approach in [3] is shown as Algorithm 2. Note that

this is the modified version of the technique in [3] for a directory implementation, unlike

the broadcast-based snooping approach in the original proposal. We have performed

experimental studies for the technique in [3] and the proposed methodology for both

design errors and soft errors (bit flips).

Overhead Analysis: A major reason behind the area overhead in [3] is because of

CenLogStruct structure in the alternate core (called as SC in [3]). From Figure 3.6,

the bits required are : Address (16 bits), Current & expected states (4 bits for one core

totaling as 16 bits for 4 cores), Mem. op (2 bits) and Reques. ID (2 bits). Therefore,

if we consider length of CenLogStruct as 2K, the total requirement is 36 bits for each

line in 2K cache (which is basically the local cache of the alternate diminutive core,

SC). Additionally, SC has logic for generation of the Exp. state for each coherence

transaction of each core and the address tag search hardware (which is part of the cache

structure in SC). Therefore, the total overhead in case of [3] is expected to be more than

the combined overhead for the proposed hardware (i.e., considering the detector module

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 71

Algorithm 2: SentryCoreApproach
Input: {bstate of each core, Address of CacheLine, inmsg(Mem. op, Reques. ID)
Output: OutSig

1 Store bstate of each core, Address of CacheLine, inmsg(Mem. op, Reques. ID in
CenLogStruct (SC Cache) ;

2 for each bstate entry in each core do
3 Compute expected state (bestate) and store in CenLogStruct ;
4 end
5 for each coherence transaction in each core do
6 lAdd ← Search for Address of CacheLine in CenLogStruct ;
7 b′state ← observed coherence transaction of the core ;
8 if lAdd matches && bestate == b′state then
9 OutSig ← NoError;

10 else
11 OutSig ← Error;
12 end

13 end

overhead of all the cores.)13

3.4.4.1 Design Bug Injection Study

We injected design bugs as per the case studies reported in previous literature, partic-

ularly [39, 85] along with other scenarios. These error injection cases are reported in

Table 3.7. ND denotes that error could not be detected by the respective technique. All

simulations were done for a duration of 0.1 to 1 million clock cycles14 for either random

assembly tests or C applications. The numbers reported in Tables 3.7 and 3.8 are re-

ported for simulation for 0.2 million clock cycles of the application for Fibonacci series

13We did not implement the complete cache structure as described in [3]. It is definitely true that the
described cache structure (as in [3]), would incur less area overheads than our implementation of SC
structure (for each core) because the alternate core utilizes the same address search mechanism (as in the
other caches of the cores) for comparison tasks and other associated logic circuitry. However, based on
our observations of RTL implementation of a separate module (considering the length of CenLogStruct
as 2K) representing the alternate diminutive core (SC), we speculate that the technique in [3] would
incur at least 10 to 50 times more area overhead (in overall terms for all the cores in the complete
system) than the proposed technique.

14It is true that such test programs can be easily run during pre-silicon verification, however, during
post-silicon validation, we can target electrical effects which can not be simulated accurately during the
pre-silicon verification stage.

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 72

computation. We consider first 0.05 million cycles for initialization of the design. There-

after, the error detection analysis is performed for the proposed technique as well as the

methodology in [3]. Note that these design bugs can occur because of any reason or

combination of reasons/effects. The second column in Table 3.7 shows the manifestation

of the particular error. This reasoning is true for electrical error scenarios illustrated

in Table 3.8. The errors are injected at the directory controller (or, the memory con-

troller), cache controller and the interface between cache and the local memory (i.e.,

main memory in ccNUMA configuration).

Table 3.7: Comparative evaluation of error detection cycles for design bugs

Design Bug Name Description Cycle Cycle[3]

Memory block
state

state of memory
block is stuck-at shared state

146 2995

Memory out
message

out message is stuck-at
memory request in

directory
127 2243

Deadlock condition 1
directory state machine is

stuck-at at a state
2798 23038

Deadlock condition 2
state of cache line becomes

invalid in one state
of directory controller

149 3715

Cache to
memory invalid

cache2mem invalid
signal is set to zero

269 5426

L1 Store race
L1 transitions from S
to M while another
cache issues a store

3216 ND

L1 WBack + load
L1 evicting dirty

data while another
cache issues a load

5390 35830

Delayed-message
cache to

memory messages
6042 ND

Dropped-message
out msg from
main memory

6096 42560

Delayed-writes
messages for

store operations
3323 28266

As is shown in third and fourth columns of Table 3.7, the proposed technique achieves

much lower error detection latency (shown in the third column) compared to [3]. This is

because the technique in [3] employs a logging structure for observing important signals

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 73

for a fixed number of clock cycles. In our implementation, we have considered the depth

of this logging structure (CenLogStruct) as 2000 clock cycles. Since this logging is done

for per-address basis, for every checking of a coherence transaction involving a memory

address, the methodology involves search of the the logging structure until an address

match is found, and hence it can require a maximum of 2000 cycles for that purpose.

Thus, the overall detection latency (which requires searching for a number of memory

addresses) increases significantly compared to the proposed technique. Additionally, it

can be observed that for two design bugs, the technique in [3] fails to detect them (which

are denoted by ND).

3.4.4.2 Soft Error (Electrical Error) Injection Study

To measure the efficacy of the proposed scheme for soft-error scenarios, we consider few

case studies in Table 3.8. Note that these bit-flip errors can act as electrical errors (due

to different design bug issues), too, which are very difficult to debug.15 The clock cycle

at which the flip is injected is shown in the second column. The third and fourth column

Table 3.8: Comparative evaluation of error detection cycles for soft errors

Flipped Signal(s) Injection Cycle Cycle[3] Reduction

directory controller state 4997 4998 33679 6.73X

out msg in translator 3999 4001 29683 7.41X

cache2mem rq msg in translator 3000 3002 24022 8.00X

cache2mem rq data in
translator

5000 ND ND –

translator state and mem2cache 6000 6067 39350 6.48X

network2mem msg 2500 6462 ND –

cache2network msg 3000 3522 32869 9.33X

local2cache msg 6000 10424 40113 3.84X

from core empty and
to core empty in packetizer

1750 ND ND –

mem2network data 2000 ND ND –

denote the clock cycle in which the error is detected by the proposed methodology and

15Therefore, we do not target here dependable operation of the design. Instead, we are aiming only
at the detection of a failure arising out of such scenarios. It is assumed that the bit-flip is not getting
masked and therefore has the potential of creating functional failures during the design execution.

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 74

technique in [3]. Similar to the case of design bugs, lower error detection latency is

achieved with the proposed technique. There is a significant difference of cycles between

both the methods. This is because the technique in [3] relies on detecting the error

(i.e., bit-flip) manifestation in the protocol state only. Contrast to this, in the proposed

methodology, since more signals (Table 3.2) are covered, we succeed in detecting the bugs

close to their origin in these cases (i.e., different messages/requests). Additionally, the

technique in [3] needs complete search of the logging structure until an address match

is found, as already explained previously. Note that the proposed methodology succeeds

in detecting only seven out of ten cases, while the technique of [3] succeeds in six. These

cases are linked to the errors at components (or at respective messages/requests) which

are not covered under the proposed observability mechanism.

3.5 Discussion on Previous Methods

A study of CCP verification techniques (particularly, through formal methods) is pre-

sented16 in [73]. These techniques involve model checking of coherence protocols for

different properties through reachability analysis. The model checking exercise is ca-

pable of exposing subtle errors in the design of the protocol. To address scalability

issues, parameterized verification of CCP has been explored in [135]. On similar lines,

a design methodology to ease out verification efforts has been proposed by Zhang et

al. in [41]. However, this scheme requires significant changes in the widely used CCPs

thereby hindering its application. Test generation for multi-core system for simulation-

based verification has been proposed in [136]. Effective test programs have the potential

to discover bugs at the pre-silicon verification stage. The technique in [40] proposed a

simulation-based method for abstracted CCP finite state machine. However, carrying out

such abstraction of a complex CCP implementation is not trivial. Typically, the verifica-

tion of complete cache coherent system (i.e., all components of a CCP implementation)

is more difficult than the verification of only the protocol or the memory controller [7]. A

16Previous methods of CCP validation are already discussed in Section 2.1 of Chapter 2.

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 75

Table 3.9: Comparative evaluation with other runtime/post-silicon CCP validation methods

Methodology/
Technique

Merits Drawbacks

[74]
simplified version

of CCP for checking

succeeds in covering
some bus transactions

at cost of overhead

additional network
messages need to
be transmitted

[39]
string matching for

consistency between state
of L1 & L2 cache blocks

minimal area
overhead (<0.005%)

not suitable for single
level cache hierarchy; network

traffic overhead ↑

[85]
bug-pattern matching &

distributed event detectors
low performance penalty

not useful for new
bug scenarios (bug-

patterns are not known)

[75]
utilizing watchdog processors,

put checker for each core
low area &

performance overheads

not scalable; poor
bug/fault coverage
as only stable cache

line states
can be checked

[3]
an alternate core

for correct coherence
transaction computation

low performance overhead

high error
detection latency

for searching cache
of the alternate core

[137]

a fault-tolerant
directory to

handle wrong/loss
of messages

capable of handling network
related errors also

needs new
message types
network traffic

overhead ↑

[138]

signature-based
checking by verifiers at

every cache and
memory controller

capable of detecting
global conflicts in

coherence transactions

not scalable as a hierarchy
of verifiers is needed

Prop.
a detector & logging scheme

for each core to predict
correct signal states

low area overhead, applicable
for complex directory-based CCP

fails to detect
network related errors

qualitative comparison of the proposed technique with previous methods (dealing with

the complete verification/validation of a cache coherent system) from the literature is

presented in Table 3.9 where we present their merits and demerits. We strongly believe

that the proposed methodology can be applied in collaboration with some of these tech-

niques. It is worth to note that all of the techniques in Table 3.9 are implemented at the

level of architectural simulation (high level system representation) whereas the proposed

technique has been evaluated within RTL framework. This makes a direct comparison

of proposed methodology with all the techniques in Table 3.9 extremely difficult.

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 76

3.6 Applicability to Other System Configurations

3.6.1 Variation with Number of Cores

Since the proposed technique assumes one detector module per core, there is no alteration

in the scheme even when the number of cores are changed. As stated previously, the

multi-core design utilized in our experiments adheres to a non-uniform memory config-

uration (ccNUMA), with the addition of each core (and its memory), the corresponding

detector needs to be incorporated. For a shared memory configuration also, similar

modification needs to be applied.

3.6.2 Variation with Cache/Memory Organization

For a multi-level cache organization (for instance- local L1 and shared L2 caches), the

detector module can be incorporated at the memory controller (where the directory is

maintained) which interacts with the L2 cache controller (depending on the incluisvity

maintained by the caches). As already explained, with minor modifications, the proposed

scheme can be applied to the shared unified main memory configuration as well.

3.6.3 Implications on Performance Overhead

If dependable operation (in the event of soft-error occurrences) is desired, then the pro-

posed detector module (along with a suitable rollback and recovery mechanism) needs

to be enable permanently. However, typically for the validation purpose, the proposed

scheme does not incur any performance overheads as stated before. In the case of perma-

nent on-chip deployment of the proposed scheme (detector module and logging register),

the performance degradation (during the step of validation) can be brought down with

following improvements:

1. The CCP checking can be done between T th and (T + p)th cycle where p > 1. We

believe p can take values from 2 to 5 or 10 depending on the design implementa-

tion. This can lead to elongation of error detection latency in some cases while

Chapter 3. Validating Multi-processor Cache Coherence Mechanisms 77

maintaining the same bug coverage in most cases.

2. Some of the checking conditions can be relaxed. For instance- for an illegal/unwanted

transition from Exclusive to Shared. This transition is harmless, because the local

processor/core can still read valid data from the cache line, and does not write to

this line [75]. Similarly, an illegal change to Modified state, it will result in write

back when this line is evicted from the cache, but the data does not get corrupted.

On the other hand, an illegal change of cache line in Modified state to a differ-

ent state must be detected as upon eviction the cache line will not be written to

memory and therefore, memory will no longer be up-to-date [3].

An effective by-pass mechanism for dependable operation (in both design and soft-error

cases) needs to be designed such that performance overhead due to all the additional

activities (logging in register, error detection, rollback/recovery) is minimized. Such

mechanisms have been elaborately discussed in [132, 139].

3.7 Conclusion

Complete functional pre-silicon verification of cache coherence mechanism implementa-

tion in modern multi-core systems is a difficult task. With ever increasing processor

design complexity, some of the design bugs escape into the first silicon which must be

caught before customer shipment. Further, the restricted observability and controlla-

bility makes the debug process of cache coherent systems very difficult. This chapter

proposed an in-system validation approach to detect design and electrical errors with

minimal latency. The proposed methodology utilized high level CCP specifications for

the incorporation of an on-chip detector module.

− ∗ − ∗ −

Chapter 4

SAT-based Silicon Debug of

Electrical Errors

4.1 Introduction

Error localization from post-silicon debug data is severely challenging and is generally

done in a semi-automatic manner. For processors, automated solutions have been devel-

oped as identification of internal signals (which are to be traced) is relatively easier and

the collected traces can be analyzed with the help of proper classification and segregation

at RTL abstraction. However, debugging at granularity of low level (i.e., gates/flip-flops)

under restricted visibility is still a difficult task. Debug of electrical errors is very chal-

lenging because of several factors, most pertinent of them, is the lack of golden responses

[69, 140]. A self-checking method can offer some respite in these debug scenarios. Be-

cause of nature of electrical errors, the design netlist is correct. Satisfiability(SAT)-based

methods are adept in handling analysis of design netlists through a structural analysis.

For automatic electrical error diagnosis, after creating a Boolean formula from the CNF

of the unrolled design, we need to apply appropriate constraints to solve it. These con-

straints assist in the logical inconsistencies in the SAT (satisfiability) instance leading

to the root-cause discovery. In this chapter, we propose a graph-based signal tracing

methodology to address the signal selection problem and then utilize satisfiability-based

78

Chapter 4. SAT-based Silicon Debug of Electrical Errors 79

debugging of the obtained post-silicon signal dumps. This provides the most essential

benefit as we succeed in debugging without requiring golden responses. We rely on the

assumption that the error has been detected in the first silicon either through built-in

assertion checkers or application crash while running real-world applications. We also

assume that an error trace is available to us for the debugging purpose. Nevertheless,

error detection in post-silicon environment and collection of error traces are equally chal-

lenging problems. Since post-silicon execution has extremely limited visibility, obtaining

constraints for solving the SAT instances is a challenging task and involves trade-offs of

debug time, deployed design-for-debug features and required off-chip dumping. In this

chapter, different SAT formulations with respect to the constraints required for SAT-

based error localization of data collected from the chip execution are analyzed. With

different observability enhancement mechanisms, the constraints required for SAT solv-

ing differ appreciably resulting into different solutions. The proposed signal selection

methodology is agnostic of the type of error and the deployed observability enhance-

ment scheme. Additionally, few selection strategies which rely on graph-based centrality

measures are also evaluated. We also discuss the scalability issues of SAT-based debug-

ging under post-silicon environment for electrical error scenarios. The remainder of the

chapter is organized as follows. Section 4.2 presents the preliminaries on satisfiability-

based error localization methodologies. Section 4.3 presents the proposed signal tracing

methodology and its application to different observability expansion techniques. Sec-

tion 4.4 describes the satisfiability based error localization methodology in post-silicon

environment. This section also presents a list of detailed evaluation metrics which are

utilized for assessing the efficacy of the proposed technique towards error localization.

Experimental setup, results and observations are presented in Section 4.5. An elaborate

discussion on the scalability issues is presented in Section 4.6. Section 4.7 describes the

related work on post-silicon SAT-based error localization. Section 4.8 finally concludes

the chapter.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 80

Convert unrolled
netlist

into CNF, apply
constraints as

per
different SAT
formulations

Translate UNSAT
core(s)

into flip-flop and
flip-cycle
suspects

SAT solving

Figure 4.1: Overview of SAT-based error localization

4.2 Satisfiability-based Post-silicon Error Localiza-

tion

Applying satisfiability (SAT) during design debugging, Suelflow et al.[97] proposed the

usage of UNSAT core (clauses which are responsible for unsatisfiability of a SAT in-

stance) for the purpose of error localization. Typically, any SAT-based methodology for

a sequential design involves unrolling the netlist and applying various constraints(which

correspond to particular debug scenario) on the resulting Boolean formulae. For error

localization, we need to compute the UNSAT core(s) after forcing constraints (obtained

from the error trace) on the CNF expression of unrolled netlist.

Given a Boolean formula in Conjunctive Normal Form (CNF), if it is UNSAT, any

subset of clauses in the instance that is also unsatisfiable is called as an UNSAT core[97,

101]. Let’s consider the following unsatisfied CNF formula (here, · indicates that the

clauses are combined in conjunctive fashion):

φ = (e+ g) · (e+ f) · (ḡ) · (ē) · (f̄ + ḡ) (4.1)

For the above formula, the UNSAT core(s) include {(e+g),(ḡ),(ē)}. Analysis of these

clauses leads to the root-cause of the error. For bit-flip kinds of errors, we need to localize

the infected flip-flop (and the corresponding flip cycle). For other kinds of error scenarios

such as stuck-at1 only particular flip-flop (in the logic cone of which the sa-0 or sa-1

nets/wires are present) is localized. In the post-silicon environment, one challenge is to

1the notion of stuck-at here refers to electrical error manifestations because of different reasons. This
does not essentially refer to the stuck-at fault of manufacturing testing

Chapter 4. SAT-based Silicon Debug of Electrical Errors 81

force constraints on the SAT instance in such way that the resulting CNF formula turns

out to be UNSAT. The generated UNSAT core(s) from the unsatisfiable SAT instance(s)

hint towards error localization. However, if the error has not propagated to the obtained

signal dumps (from traced signals) or primary input/output values, the error localization

process is ineffective. For illustration, Let’s consider the following UNSAT core(where

the super-script in all literals denotes the respective time-frames/clock cycles):

(a3 + b4) · (g4 + b4 + h4) · (e3 + a3) · (k2 + e3) · (i2 + k2) · (g4) · (h4) · (i2) (4.2)

As per the netlist description, the flip-flops are represented by e3 and b4 while rest are

combinational nets. Therefore, the suspects of bit-flips are either e in the third clock

cycle or b in the fourth cycle.

4.3 Proposed Signal Clustering Methodology

As mentioned previously, we assume that the error trace is available and the error has

been detected by mechanisms such as assertion checkers or manifestation at the primary

outputs. Thereafter, the goal is to localize the error source (at gate-level) given the

available error trace (which can be internal signal contents dumped off-line or the primary

output values). The primary input values are also assumed to be traced. In this section,

we describe the proposed graph-based signal grouping/clustering methodology. The

terminology utilized in this chapter is introduced in Table 4.1. As mentioned earlier, for

application of SAT-based debugging, chip execution trace is needed which can be utilized

in creating a Boolean instance for the localization problem. In a post-silicon environment,

a detailed execution trace is impossible to obtain. Thus, to extract useful error trace

from the chip execution is of crucial importance. This can be done by off-dumping the

contents of on-chip trace buffers. However, whether the collected debug information is

profitable or not depends on the trace signals selected for this purpose. We propose a

methodology that can be utilized in either static (fixed tracing of signals) or dynamic

Chapter 4. SAT-based Silicon Debug of Electrical Errors 82

manner (through the usage of multiplexers [111, 118]). The proposed grouping/clustering

of the signals is aimed at minimizing the number of trace signals required for SAT-based

error localization. The proposed methodology explores the logical connectivity among

different signals of the design. This merging-based greedy methodology has been adopted

in [35] for determining the position of multiple input signature registers which are used

for compacting responses stored in shadow flip-flops of the design. In comparison to a

selection methodology [34] aimed at certain kinds of errors such as bit-flips, the proposed

methodology is agnostic of the targeted error scenarios. We show in the experimental

results that different SAT formulations play an important role in error localization for

some circuits. Specifically, we demonstrate that only one kind of SAT formulation is

unable to achieve exact error localization for all types of circuits.

Table 4.1: Symbols and their meaning

Term Meaning

Nclu number of clusters

T length of error trace

B Boolean formula(for SAT solving)

Fi flip-flop (where bit-flip is injected)

Ci clock cycle (where bit-flip is injected)

neti net (where stuck-at is injected)

TBw trace buffer width

STr set of trace signals

k number of partitions

Sufc suspect flip candidates (flip-flops)

Succ suspect flip candidates (clock cycles)

Susa suspect stuck-at candidates (nets)

Lsc length of smaller scan chains

NE no. of error injection experiments

Ftot total flip-flops in the netlist

Glc logic cone connectivity graph

UDi unrolled design (netlist) in ith cycle

STBi state of traced signals in ith cycle

SRESi state of restored signals in ith cycle

PIi state of primary inputs in ith cycle

POi state of primary outputs in ith cycle

Note that unlike the techniques introduced in [1, 9, 22, 49, 102, 112, 141], the proposed

Chapter 4. SAT-based Silicon Debug of Electrical Errors 83

methodology is not aimed at maximization of the restored signal states (SRES).2 How-

ever, during our localization experiments, we utilize the concept of signal state restoration

with the signals obtained by the proposed clustering methodology.

Algorithm 3: MakeGraph

Input: Netlist
Output: Glc

1 Glc, graphedges ← ∅;
2 FFlist ← all flip-flops in Netlist;
3 FFrem ← FFlist-FFi;
4 for each flip-flop FFi in FFlist do
5 Add a node to Glc corresponding to FFi;
6 end
7 for each flip-flop FFi in FFlist do
8 Conei ← Compute fan-in cone of FFi;
9 for each flip-flop FFj in FFrem do

10 if edge between nodes for FFi and FFj not exists in graphedges then
11 Conej ← Compute fan-in cone of FFj;
12 if overlap exists in Conei and Conej then
13 edgewt ← number of overlapping gates between Conei and Conej;
14 add an edge (graphEdge, gE) between nodes corresponding to

FFi and FFj with edgewt as weight of this edge;
15 graphedges ← graphedges ∪ gE
16 end
17 else
18 no overlap exists among these nodes;
19 end

20 end
21 else
22 analysis for this edge done;
23 end

24 end
25 Glc ← nodes corresponding to all flip-flops and edges between them

representing logical connectivity overlap between them;

26 end

2The problem of trace signal selection in post-silicon environment is dealt in a detailed manner in
Chapter 5. However, unlike this chapter, we consider debugging of design errors in Chapter 5.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 84

4.3.1 Description of Clustering Methodology

The methodology segregates all the flip-flops (signals) in the design into a certain number

of clusters. After the formation of signal clusters, depending on the trace buffer width, the

required number of trace signals can be selected from these signal clusters. The proposed

methodology consists of two parts- first, the netlist connections are represented by a

graph (Glc) where the flip-flops are represented by nodes, second, a merging procedure

is followed to cluster the candidate signals and finally select trace signals. The first part

is presented as Algorithm 3. The clustering steps are illustrated in Figures 4.2 and 4.3.3

Typically, each flip-flop has some gates common between its logic cone and logic cone of

Figure 4.2: Circuit graph(G) illustration

other flip-flop(s). This overlap of logic cones is quantified as cone sharing. For the graph

(Glc), the cone sharing is represented as weights of edges between the different nodes.

Thus, the weight on the edges of Glc corresponds to the logic cones of the corresponding

nodes measured in terms of the number of gates that are shared between these two cones.

Note that G is an undirected graph because an edge between any two nodes does not

indicate the availability of any path/direction between these two nodes(flip-flops). Thus,

these flip-flops may not be related by any other means except the fact that they share

some gates in their respective logic-cones.

A sample Glc obtained from the analysis of a netlist is illustrated in Fig. 4.2 which has

eight nodes and eleven edges. This serves as a running example to illustrate the proposed

methodology. Since a trace signal becomes highly useful for debugging if the error

propagates to it, we need to find effective flip-flops from this perspective. Conditional

3Such graph construction is more elaborately discussed in Section 5.2.1 of Chapter 5.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 85

probability-based error propagation methods rely on the assumption of 0/1 at the inputs

of the gates. Compared to these methods, we measure the error transmission capability

of signals (flip-flops) from the heuristic of logical connectivity, without accounting for

sensitization of the errors. With the proposed approach, we aim to reduce the signal

tracing overhead. In other words, we are targeting error localization with a reduced

number of signals to be traced (particularly 32).

The number of clusters(Nclu), which depends on trace buffer width (TBw) is an input

to the clustering algorithm. The edge of Glc with the largest weight is selected as the

initial edge for the formation of the first signal cluster. Since the edge-weight in Glc

represents the logic cone overlap size, the largest edge-weight has a higher probability of

error propagation to both the graph nodes. Because of varied types of logical connectivity

in different netlists, ensuring the equal size of each cluster turns out to be difficult.

Further, we do not wish to constrain the choice of only one element from each cluster

for inclusion in the list of trace signals. Therefore, if we get too large clusters, we

need to select a larger number of entries. Also, we propose to select a minimum one

element(signal) from each cluster. Ranking of the trace signals(flip-flops) inside a given

cluster is explained in the latter part of this section.

Figure 4.3: Illustration of grouping of nodes

We introduce a second parameter MinSize in the proposed graph-based selection

algorithm. The grouping algorithm attempts to assign that many number of elements as

minimum to the clusters when they are getting formed. Clearly, the clusters which are

formed towards the end fail to full-fill the criterion of MinSize. Thus, few clusters can

have different number of flip-flops in them. This is especially true for the last cluster

which contains all left-over signals. The numerical value of MinSize is given by:

Chapter 4. SAT-based Silicon Debug of Electrical Errors 86

MinSize ≤ Ftot
Nclu

(4.3)

The proposed methodology of trace signal selection is formally presented as Algorithm

4. If a multiplexed signal tracing scheme[118] is available, content of two (or, more)

signals/flip-flops from each of the clusters can be dumped into the trace buffers. This

scheme can increase the variability in dumping of internal signal contents. Alternatively,

similar temporal variation can be observed via the smaller scan chain stitching mechanism

as illustrated in Table 2.5.

Algorithm 4: GroupAndSelectSignals

Input: G, TBw, MinSize, Netlist, q
Output: STr

1 obtain Gdir from Netlist;
2 DegRank ← Rank all nodes(flip-flops) of Gdir by in-degree centrality measure;
3 numGroup ← ∅;
4 NodesG ← nodes in G;
5 TraceSignals ← ∅;
6 while numgroup != TBw do
7 Edgehwt ← edge with highest edge-weight;
8 N1, N2 ← any 2 nodes of Edgehwt edge;
9 {wt1, wt2} ← weights of edges connecting to N1, N2 with the remaining

nodes of G;
10 Nodem ← Merge nodes {N1, N2} into one node;
11 Choose maximum out of {wt1, wt2} for edge connecting Nodem to other

nodes of G;
12 Remove N1, N2 from NodesG;
13 Add Nodem to NodesG;
14 TempGroup ← Nodem;
15 if size of TempGroup == MinSize then
16 numGroup = numGroup+1;
17 begin formation of another cluster;

18 end

19 end
20 for each cluster gi in numGroup do
21 Rank signals (nodes) of gi in the decreasing order of their rank in DegRank;
22 end
23 STr ← top q signals from each numGroup for equal distribution or select

different number of top signals from clusters(for unequal distribution);

Chapter 4. SAT-based Silicon Debug of Electrical Errors 87

4.3.2 Illustration of Clustering Methodology

Let’s consider the graph G for illustration in Fig. 4.2. The edge between node F4 and

F7 is selected since this edge has the highest weight, and node F4 and F7 are merged

to begin forming the first cluster. Subsequently, the edge weights in G is updated after

these two nodes are merged. Thereafter, node F3 is merged with F4 and F7 to form a

composite node in the graph Glc. This composite node is shown in Figure 4.3.

The process of adding additional nodes to the obtained composite node continues

greedily by selecting the edge with the larger weight attached to the composite node

until the size of these clusters reaches minimum size. This essentially means that the

current cluster only looks for merging opportunities among its neighbors. Suppose,

we fix MinSize4 as 4, then the present cluster formation stops after merging F1 with

{F4,F7,F3}. Next, for the formation of second cluster, we observe that F2 and F5 are

connected with the highest edge-weight. So, they are merged into one cluster. Note that

node F6 is connected to the node containing F2,F5 and F8 through an edge where two

edge-weights (i.e., 15 and 21) are possible because of the merging. Out of this, the highest

edge-weight (i.e., 21) is selected as the final weight for this edge because of the larger

extent of overlap. Thereafter, the last node F8 is also merged with the second cluster

{F2,F5,F6}. If there are multiple edges between a composite node and any other node

of Glc, the highest edge-weight among them is selected for the final (or, combined) edge

between the composite node and that particular node. The final trace signal selection

depends on the formation of clusters. For the graph (G) shown in Fig.4.2,

• with MinSize as 4, we obtain two clusters as {F4,F7,F3,F1} and {F2,F5,F6,F8}

after the merge-and-update procedure (Algorithm 4) ends. Depending on ranking

inside the cluster, the top-ranked signal should be chosen.

• when we fix MinSize as 3, then the three clusters are given by {F4,F7,F3},

{F2,F5,F8} and {F1,F6}. Under such scenario(s), an unequal number of flip-

flops(trace signals) can be chosen from each of the three obtained clusters or from

4We are assuming a TBw of 2 which equals Nclu.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 88

two of them.

4.3.3 Ranking within Individual Clusters

Once the clusters are formed, the final decision regarding the selection of trace signals

is done based on graph centrality measures. We consider “degree centrality” for this

purpose which is defined as the number of neighbors a node of the graph has. Specifically,

we utilize in-degree centrality for ranking of all signals of the flip-flop connectivity graph

(G). Note that G is a directed graph where all the nodes are flip-flops similar to the

representation in Glc. Edges of G denote the connectivity between flip-flops and the

directions on the edges denote the incoming/outgoing logical connection(s). Towards the

end of cluster formation, this ranking is utilized to select trace signals from respective

clusters. Note that similar graph centrality measures have been utilized in literature for

trace signal selection. Eigen vector centrality and Pagerank centrality has been utilized

in [142] and [23] respectively.5 An illustrative graph G is shown in Fig. 4.4 where the

nodes FF1, FF2, FF3, FF4, FF5, FF6, FF7 and FF8 denote the eight flip-flops of the

design and the weights on these edges depict the number of parallel paths between a pair

of flip-flops(nodes). Note that this graph is different from Glc in its representation as it

is a directed graph and its edge-weights have a different interpretation as compared to

the edge-weights in G. By ranking with the in-degree centrality measure, FF7 is ranked

highest followed by FF8 and then FF6. FF2, FF3 and FF4 all have same score, followed

by FF5 and the lowest score (which is zero) belongs to FF1.

It is worth to note that degree centrality can be obtained for any undirected graph

such as Glc also. However, we prefer the computation of in-degree centrality taking a

5Since signals corresponding to the techniques of [142] and [23] are not available publicly, we im-
plemented these procedures and obtained those signals after the analysis of G for different benchmarks
utilized in our experiments.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 89

Figure 4.4: G illustration

directed graph(G) for the purpose of ranking flip-flops(nodes) inside a cluster.6 We also

utilize G later for one of the metrics used for evaluation of bit-flip error localization.

4.3.4 Algorithmic Complexity of Clustering Algorithm

The worst-case time complexity of the above clustering algorithm can be expressed as

O(p2) where p is the number of nodes in the graph Glc. The time spent in clustering for

a variety of benchmarks is reported in Figure 4.6. Based on this result, we believe that

the complexity is significantly dependent on the number of edges in Glc. Note that the

complexity of degree centrality measure computation is also expressed as O(p2). How-

ever, obtaining degree centrality is independent of the steps in the clustering algorithm

and can be directly computed before the start of the clustering procedure.

4.4 SAT-based Post-silicon Error Localization

We formulate SAT-based error localization in four different ways which are outlined in

Table 4.2. The methodology in [34] performs the error localization only for the case

when constraints corresponding to traced and restored signal state values are enforced

on the unrolled netlist. It is worth to note that the evaluation in [34] has been done

6An interesting proposition is to select final trace signals by simply utilizing in-degree centrality
measure instead of cluster formation and then subsequent selection. However, this graph (G) does not
take into account of gates present along these paths and may not help us in selecting trace signals such
that a flip anywhere in the circuit could be localized. For the sake of completion, we evaluated signals
obtained by in-degree centrality in our experiments too. They did not perform better than the signals
obtained through the clustering-based approach (Algorithm 4). This is primarily because of coarse
approximation of error transmission capabilities through the in-degree measure.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 90

Table 4.2: Different SAT formulations

Name Expression Key feature

B1
∏i=T
i=1 (UDi · PIi · POi · STBi) traced, PI, PO

B2
∏i=T
i=1 (UDi · PIi · POi) only PI,PO

B3
∏i=T
i=1 (UDi · STBi) only traced

B4
∏i=T
i=1 (UDi · PIi · POi · STBi · SRESi) · FFT traced, restored PI,PO

on few circuits (corresponding to ISCAS’89 benchmark suite only). We observed in our

experiments that such a formulation with restored and traced signal values only fails

to perform error localization in case of other types of circuits (ITC’99,Opencores[143]).

As per the terminology in Table 4.1, UDi represents the unrolled circuit in ith time-

frame, PIi and POi respectively represent the primary input and primary output values

in ith clock cycle. STBi and SRESi respectively represent the signal values of traced

signals and restored signals in ith clock cycle. Note that for each value of i, the number

of signal states is fixed in STBi whereas the number of signal states is variable in the

case of SRESi. If the restored signal values are not utilized for creating the Boolean

formula (Bj
7), SRESi is dropped from the above equation. However, we show in the

experimental section that usage of state restoration technique assists in obtaining a lesser

number of suspect candidates. By providing Bj to the SAT solver, the UNSAT core can

be obtained which hints towards the error root-cause. Since the sequential circuit needs

to be unrolled for T time-frames (i.e., clock cycles), the size of Bj in terms of number of

clauses increases which can lead to serious implications on the solver time (and memory

usage) for large designs. For example- in the case of s38584 circuit, the number of clauses

after the netlist is unrolled for 256 clock cycles reaches close to 13.4 million. It has also

been observed that a ten times larger SAT instance requires approximately hundred

times larger run time and ten times higher memory usage while solving [34]. Therefore,

7It is clear that j can take the values of 1,2,3 or 4.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 91

to perform error localization in the case of large error traces, we break the complete error

trace (ETrace) into smaller sections of the trace (i.e., chip execution). The goal is to

obtain resulting SAT formula/instance, Bj in such a manner that it becomes relatively

smaller leading to reduced requirement of runtime and memory for SAT solving. It is

clear that the number of such partitions would vary depending on the trace length and

the debug scenario.

4.4.1 Methodology for Debugging Large Error traces

The collected chip execution trace, ETrace of length T (consisting of traced signal states

and/or PI and PO signal values) can be viewed as a composition of smaller error traces

(eTracej). This combination can be represented by the following equation:

ETrace = ∪j=kj=1(eTracej) (4.4)

where, k is the number of divisions required. However, while applying constraints on

the SAT instances for each division of ETrace, we need to know the initial values of the

circuit state for each smaller division. Assuming the reproducible behavior of the bugs,

this can be obtained with the help of scan chains. For example- Consider T as 1000 and k

as 10, to know the initial state for the second division (eTrace2), the contents of the flip-

flops at the end of 100th clock cycle are simply the scan chain values (at 100th cycle) which

can be dumped off-line. This is the link between different partitions and information is

carried over from one partition to another using it. In the SAT formulations shown in

Table 4.1, we additionally utilize this initial state while generating Bj expressions. There

are two possible scenarios which can emerge when SAT-solving of each of the partitions

(i.e., eTracej) is attempted:

1. The Boolean formula corresponding to only one of the partition (eTracej) is un-

satisfiable(UNSAT) while the formulae for all other partitions are satisfiable.

2. The Boolean formulae corresponding to more than one partition (eTracej) are

UNSAT.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 92

Figure 4.5: Breaking large error trace into smaller ones

For the second case discussed above, the error has propagated to the subsequent par-

titions in addition to the partition containing the flip-cycle i.e., the actual partition,

eTracej and eTracej+1. In our experiments, we observed lesser occurrences of the sec-

ond case. The complete SAT-based localization analysis is then performed for these

smaller error traces (eTracej) leading to the unrolling of the circuit for only 100 cycles

compared to the case when the netlist needs to be unrolled for a total of 1000 cycles

(which is complete error trace length).

4.4.2 Description of Evaluation Metrics

4.4.2.1 Metrics for bit-flip error localization

For bit-flip errors, we need to achieve both temporal localization and spatial localization

with the mentioned SAT-based methodology. Thus, for quantifying the efficiency of

this methodology, we must devise some metrics. Let n(v) denote the number of times

condition v occurs during a run of error injection experiments (represented earlier by

NE). We obtain Sufc, Succ and Susa as solution(s) after translating the UNSAT cores(s)

obtained by solving the respective Bj formulations. In the notations Sufc and Succ,

the sub-script fc means flip-flop candidates and cc means cycle candidates respectively.

Therefore, suspect candidates are the net names/flip-flop names of the circuit which

are annotated with the time-frame number. Given this notation and the terminology

introduced earlier in Table 4.1, two important evaluation metrics for bit-flip localization

can be described as follows:

φ1 =
∑

n(Bj is UNSAT) (4.5)

Chapter 4. SAT-based Silicon Debug of Electrical Errors 93

The above metric tells the number of iterations (out of a total of NE experiments)

in which the Boolean formulae becomes UNSAT. It is obvious that we prefer a value

as high as possible for φ1 which can attain a maximum value of NE. To measure the

quantity of exact error localization(C ∈ Succ, F ∈ Sufc) for bit-flip errors, we define the

following metric:

φ2 =
∑

n(F = Fi and C = Ci) (4.6)

The above metric gives the number of iterations (out of a total of NE experiments)

in which both the suspect flip-cycle and flip-flop are obtained. However, we observed

during our experiments (especially on opencore circuits[143]) that the above metrics do

not capture the variation in efficacy of the different formulations of B in terms of error

localization, especially in the case of incomplete error localization. Hence, we devised

a set of detailed evaluation metrics (in Table 4.3) which also assist in capturing the

variation of the efficacy of SAT-based debugging with different trace signal selections.8

In the case of incomplete localization, we evaluate the spatial localization indirectly

by measuring the distance between the bit-flip(Fi) and the obtained suspect candidates

(Sufc). The motivation behind this is to analyze all flip-flops within a topological dis-

tance for the injected bit-flip(Fi). By analyzing the graph G, we obtain O as the topo-

logical arrangement of all flip-flops (Ftot) of the design. The topological position of any

flip-flop (F) is denoted by O(F) for a given G. The metric is formally defined as φ7

in Table 4.3. Note that obtaining a topological order of nodes of a graph (which repre-

sents the flip-flops of the circuit) becomes a non-trivial exercise when the graph contains

cycle(s). Therefore, for approximation, we consider all the cycles as removed and then

compute the topological order. This is a deviation from the exact meaning of topological

order, however, we believe that our purpose can still be full-filled to some extent.9 For

the graph shown in Figure 4.4, one topological ordering is given by FF1, FF4, FF5, FF2,

8In the published conference version of this work ([32]), the evaluation of localization efficacy was done
only in terms of size of Sufc. This kind of evaluation becomes clearly an over-simplified quantification
of the methodology and did not consider the cases of inexact localization. Additionally, the detailed set
of metrics in Table 4.3 helps us to analyze the input sensitivity in error localization.

9This method of obtaining a topological order for cyclic graphs is similar to the methodology pre-
sented in [51], which is explained in Chapter 5.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 94

Table 4.3: Detailed Evaluation metrics

Metric Expression Meaning

φ3

∑
|Ci−C|
NE avg. distance of flip-cycle

φ4

∑
n(F)
NE avg. no. of flip-flop suspects

φ5
∑
n(F = Fi) exact flip-flop localization

φ6
∑
n(C = Ci) exact flip-cycle localization

φ7

∑|O(Fi)−O(F)|
NE

avg. topological order distance

of the suspect flip-flops

FF3, FF7, FF6 and FF8. Therefore, the averaged topological distance shows the effort

in analyzing the suspect flip-flops towards localizing culprit flip-flop (Fi).

In the computation of metrics φ3
10 and φ6, C ∈ Succ. Similarly, in case of metrics

φ4, φ5 and φ7, F ∈ Sufc. The metric φ3 measures how far away the obtained suspect

cycles (in Succ) are from the actual flipped cycle (Ci) for all the suspect flip-flops present

present in Sufc. Similarly, metric φ4 counts the averaged number of obtained suspect

candidates (flip-flops) each corresponding to a different flip-cycle. We show in later sec-

tions that these metrics are important for measuring the quality of SAT-based silicon

debugging of bit-flip errors. These metrics assume more significance in efficiency evalua-

tion across different SAT formulations when the methodology succeeds in achieving only

partial/inexact error localization.

4.4.2.2 Metrics for stuck-at error localization

In accordance with the terminology introduced in Table 4.1, by translation of the UNSAT

cores after solving, we obtain the suspect stuck-at nets, Susa. Similar to the bit-flip error

case, the following metric is defined to measure the efficacy of SAT-based stuck-at error

10Another way of evaluation could be dividing the numerator of metrics φ3, φ4 and φ7 by φ1 instead
of NE as those iterations which turn out SAT, can be removed.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 95

localization (where net ∈ Susa and neti is the wire/net in the netlist which is stuck-at):

φ8 =
∑

n(net = neti) (4.7)

Another metric worth consideration is the total number of suspect nets obtained after

analysis of UNSAT cores in the error injection experiments:

φ9 =

∑
n(net)

NE

(4.8)

It is obvious that lower the values of φ9, better is the stuck-at error localization. Note

that the opposite trend is true for metric φ8 i.e., maximum iterations (out of a total of

NE) should turn into UNSAT so that the stuck-at error can be localized after analysis.

4.5 Experimental Results and Observations

We used PicoSAT [144] as the SAT solver for extracting the UNSAT core from the

Boolean formulae. For simulation under different error conditions, we utilized our in-

house developed simulator. We performed time-frame expansion in a fashion similar to

[24]. For all other scripting tasks (viz. SAT formula encoding), we utilize Python and

bash shell functions. We performed localization experiments for different benchmark

circuits of varying sizes as reported in Table 4.4.

4.5.1 Chosen Benchmark Circuits

Across all the chapters in the thesis, proposed algorithms/techniques11 are evaluated

on a variety of benchmark circuits, characteristics of which are reported in Table 4.4.

These circuits are chosen from 3 different widely popular suites- ISCAS’89 [145], ITC’99

11The evaluation in Chapter 3 is based on an open-source RTL framework and hence does not have
scope of application to benchmark circuits. Chapter 7 utilizes benchmark circuits in RTL format as well
as their .bench descriptions, whereas Chapters 4, 5 and 6 utilize only the .bench description of these
benchmark circuits.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 96

[146] and Opencores [143] which have been utilized in experiments in [23, 96]. Some

more details on them are available in Appendix A. We deliberately omit the results on

the smaller benchmarks from ISCAS’89 and ITC’99 for our experiments as they contain

lesser number of sequential elements (flip-flops) in them. Because of lesser number of

flip-flops (i.e., < 100 or < 200) in the design, tracing of 32 flip-flops (which is typical trace

buffer width in literature) is not needed. From our experiments, we deduced that for such

smaller circuits, 16 (or even less than 16) flip-flops are sufficient. The circuits elaborated

Table 4.4: Characteristics of benchmark circuits

Type Name FFs Gates PI PO

ITC’99 b15 417 10241 37 69

ITC’99 b17 864 13988 39 96

ITC’99 b21 429 13098 33 22

ITC’99 b14 245 9767 32 54

OpenSparc[23] dmuclu 2893 14850 697 1344

Opencore[143] p16c5x 739 4107 26 191

Opencore[143] mips 1859 38190 74 106

Opencore[143] usb 1761 10650 128 106

Opencore[143] softusb 317 4718 34 50

ISCAS’89 s5378 179 2779 35 49

ISCAS’89 s9234 228 5597 19 22

ISCAS’89 s13207 669 7951 62 152

ISCAS’89 s15850 597 9772 77 50

ISCAS’89 s38417 1636 22179 28 106

ISCAS’89 s38584 1452 19253 12 278

ISCAS’89 s35932 1728 16065 35 320

in Table 4.4 serve as representatives of digital blocks inside complex SoCs because of

varying number of sequential and combinational elements. For industrial designs, trace

buffers may be distributed across the entire chip [125]. This distribution would follow

a partitioning formulation resulting into specific number of blocks (or, modules). The

proposed techniques of signal selection and automatic bug localization can be applied to

each of these internal blocks (i.e., modules) of the large design.

All experiments were conducted with a machine having 16GB RAM and Intel i7

processor operating at 2.80 GHz. Note that the flip-cycle varies in all the experiments

Chapter 4. SAT-based Silicon Debug of Electrical Errors 97

unlike a fixed flip-cycle utilized in the experiments in [34]. We report the time12 spent

in clustering process for final signal selection in Figure 4.6. When we attempt to choose

from 8 or 64 clusters, we observed the same trend (i.e., minuscule variation) for the time

spent in clustering. We observed that some circuits having lesser number of flip-flops

 0

 5

 10

 15

 20

 25

 30

 35

 40

dmuclu usb b15 b17 s38417 s38584 s13207 b21 s9234 softusb

T
im

e(
m

in
ut

es
)

sp
en

t i
n

cl
us

te
rin

g

TBw=32
TBw=64

Figure 4.6: Time(minutes) spent in clustering

(which correspond to nodes in G) require less time as compared to those having higher

number of flip-flops. We believe that this is because of the structure of the circuits.

4.5.2 Comparison with Other Signal Selection Methods

4.5.2.1 Exact localization of bit-flip errors with different SAT formulations

With different selection of signals for tracing, variation in the number of suspects(φ2 or

φ4) is expected. Considering NE as 102, T=100 and TBw as 32, results of metric φ2 for

s38417 and s38584 circuits are shown in Fig. 4.7 and 4.8 respectively. We obtained the

same values for φ1 and φ2 for these circuits. The values of metrics φ5 and φ6 were also

identical to that of φ2 (Note that ILP-based, RATS, Hybrid, Graph-based and Pager-

ank refer to [9], [1], [141], [142] and [23] respectively, Clustering denotes the proposed

method). We observed that the clustering-based signal selection technique performs

slightly better than some of the other selection methods (including the graph centrality

based measures [23, 142] and those aimed at restorability maximization [1, 9, 141]) for

12The reported numbers on Y-axis denote the wall clock time (elapsed time) taken by the particular
command to get executed.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 98

 0

 20

 40

 60

 80

 100

B1 B2 B3 B4

S
uc

ce
ss

fu
l l

oc
al

iz
at

io
n

at
te

m
pt

s

ILP−based
Clustering

RATS
Hybrid

Graph−based
Pagerank

Figure 4.7: Successful bit-flip localization results (φ2) for s38417

s38417. Clustering-based technique offers better localization than some of the previous

techniques for B4 formulation. Furthermore, the clustering-based signal selection can

be done in quick time (shown in Table 4.6) as compared to other techniques, particu-

larly that of [9]. It is worth to note the effectiveness of B4 towards error localization

as compared to the other formulations. The same observation has also been noted in

[34] based on their analysis of experiments on ISCAS’89 circuits only. As expected, B2

 0

 20

 40

 60

 80

 100

B1 B2 B3 B4

S
uc

ce
ss

fu
l l

oc
al

iz
at

io
n

at
te

m
pt

s

ILP−based
Clustering

RATS
Hybrid

Graph−based
Pagerank

Figure 4.8: Successful bit-flip localization results (φ2) for s38584

performs poorly for both the circuits, s38584 and s38417. However, we show in results

in later part of this section that this formulation(B2) is useful for other type of circuits,

especially when other formulations fail to achieve exact localization of bit-flip. In fact,

the same holds true for stuck-at errors (Figure 4.18).

Chapter 4. SAT-based Silicon Debug of Electrical Errors 99

We increased NE to 250 for s38584 circuit and performed the localization analysis for

each SAT formulation. With the clustering-based selection, the values of metric φ2 for

B1, B2, B3 and B4 are obtained as 133, 47, 99 and 153 respectively. This shows that for

larger values of NE, the different SAT formulations follow the same trend as described

above for NE as 102.

4.5.2.2 Variation in localization parameters with SAT formulations and se-

lection techniques

 0

 500

 1000

 1500

 2000

s38417−B3 s38417−B4 s38584−B3 s38584−B4

A
ve

ra
ge

d
nu

m
be

r
of

 fl
ip

−
flo

p
su

sp
ec

ts

ILP−based
Clustering

RATS
Hybrid

Graph−based
Pagerank

Figure 4.9: Avg. number of bit-flip suspects (φ4) for s38417, s38584

As stated before, we need to achieve both spatial and temporal localization for bit-

flip errors. Since we could not achieve exact localization for each iteration in NE, we

measured φ3 and φ4 for the clustering-based selection, restorability-based and graph

measures-based selections. As defined in Table 4.3, φ4 measures the average number

of suspects(flip-flops) obtained in each error injection experiment. Therefore, the lesser

the values of φ4, the better is the bit-flip error localization. The same trend is true for

other metrics like φ3 and φ7. We observed that clustering-based technique provides lesser

values of φ4 as compared to other techniques in majority of the cases. However, φ3 values

with clustering-based technique are slightly higher as compared to other methods. In

this context, it must be stated that clustering-based techniques provides slightly higher

φ1 values as compared to other methods. Because of this, techniques which have lower

Chapter 4. SAT-based Silicon Debug of Electrical Errors 100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

s38417−B3 s38417−B4 s38584−B3 s38584−B4

A
ve

ra
ge

d
di

st
an

ce
 fr

om
 fl

ip
 c

yc
le

ILP−based
Clustering

RATS
Hybrid

Graph−based
Pagerank

Figure 4.10: Avg. flip-cycle distance (φ3) for s38417, s38584

values of φ3 and φ4 are not always useful as a lower value of φ1 means that Bj’s are not

very effective towards error localization.

The strong dependence of localization efficiency on SAT formulations is an important

takeaway from our detailed analysis of experiments on s38417 and s38584. We report

results of metrics φ1, φ2, φ3, φ4 and φ7 for rest of the benchmark circuits in the next

sub-section (results for circuit s9234 are discussed later in a different sub-section). Note

that B4 performs better in temporal localization as lower values of φ3 are obtained as

compared to other formulations. Hereafter, we present error localization results obtained

with the clustering-based signals only(Algorithm 3). We ran experiments with other

techniques also to study the localization sensitivity with trace signals. In cases of inexact

localization, varying trace signal selection has very less impact.

4.5.3 Error Localization Results with Fixed Tracing

Unless stated otherwise, we have always considered NE as 102, T=100 and TBw as 32

in our experiments. For bit-flip errors, we obtained varying degree of success in error

localization for the circuits reported in Figure 4.11. We observed no major difference in

φ1, φ3, φ4 and φ7 for different signal selection techniques for these circuits.

As per definition of φ1, its higher values are desirable. However, the higher values

of φ1 along with relatively lower values of φ2 hint towards inexact temporal and spatial

Chapter 4. SAT-based Silicon Debug of Electrical Errors 101

 0

 20

 40

 60

 80

 100

 120

dmuclu usb b15 b17 s13207 b21 s15850 mips softusb p16c5x

N
o.

 o
f U

N
S

A
T

 a
tte

m
pt

s(
φ 1)

B1
B2
B3
B4

Figure 4.11: Number of UNSAT attempts(φ1) with different SAT formulations

error localization. As observed from Figure 4.11, except for softusb, B2 provides very

lower φ1 compared to other three formulations. However, as observed from Figure 4.12,

B2 provides higher amount of exact error localization as compared to other formulations.

We observed minor difference in φ2 values for B1 and B4. Nevertheless, these values were

lower than that of B2 and B3. As stated earlier, trace signal selection has minimal in-

 0

 20

 40

 60

 80

 100

dmuclu usb b15 b17 s13207 b21 s15850 mips softusb p16c5x

S
uc

ce
ss

fu
l b

it−
fli

p
lo

ca
liz

at
io

n(
φ 2)

B2
B3

Figure 4.12: Successful bit-flip localization (φ2) with B2 and B3 formulations

fluence on error localization of these circuits. Therefore, we believe that the failure of

suitable UNSAT core(s) extraction from the Boolean formulae constructed with unrolled

circuit netlist and PIi, POi, STBi or SRESi constraints is the reason behind this ineffi-

ciency (i.e., lower values of φ2). As expected, changing primary inputs has impact on the

achieved temporal, spatial localization, avg. number of flip-flop and flip-cycle suspects

Chapter 4. SAT-based Silicon Debug of Electrical Errors 102

and the avg. topological distance from Fi. We observed that for circuits giving lower val-

ues of φ4 or φ3, generally less than five suspect candidates are obtained in each iteration

of NE. These suspects do not match with the actual culprit flip-flop (Fi) indicating that

the suitable UNSAT core(s) were not extracted from the respective Bj formulations. We

 0

 50

 100

 150

 200

 250

 300

dmuclu usb b17 s13207 p16c5x b15 mips

A
vg

. f
lip

−
cy

cl
e

di
st

an
ce

(φ
3)

B1
B2
B3
B4

Figure 4.13: Avg. flip-cycle distance (φ3) with different SAT formulations

observed a strong dependence of inputs (along with SAT formulations) on the localiza-

tion efficiency for these circuits. Available description of these netlists reveal that these

are mostly processor designs containing structures such as registers, instruction and ad-

dress pointers, multiple ready/enable signals and so on. Since we rely on random inputs

(along with explicit specification of few inputs like clock/reset), the formulations fail to

discover the proper logical inconsistencies13 which in turn would have led to suitable UN-

SAT core(s). In some of the formulations for few circuits, we were able to achieve exact

only temporal localization (which is measured by φ6 metric). Similar trend is observed

for other circuits such as softusb, s15850 and s35932.

One of the interesting observations of our experiments is the poor performance of

B4 or B1 even if B2 or B3 succeeds in error localization. The primary reason behind

this is the meddling in UNSAT core(s) when additional constraints in the form of the

restored signal states or the traced signal states are added to obtain B4 from B2 or B3

13We did another set of error localization by properly assigning the reset/clock values. However,
there was only minuscule improvement in the error localization efficacy. This observation hints towards
interplay of a range of different other factors also.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 103

 0

 5

 10

 15

 20

dmuclu usb b17 s13207 p16c5x b15 mips b14

A
vg

. n
um

be
r

of
 b

it−
fli

p
su

sp
ec

ts
(φ

4)

B1
B2
B3
B4

Figure 4.14: Avg. number of bit-flip suspects with different formulations for different
circuits

formulation. Figure 4.15 shows the values of φ7 reflecting the averaged number of flip-

flops(which are represented by nodes in G) required to be analyzed for identifying the

actual flip-flop(Fi) affected by the bit-flip. Metrics such as φ5 and φ6 follow the same

trends as depicted by the above figures.

 0

 500

 1000

 1500

 2000

dmuclu usb b17 s13207 p16c5x mips b15

A
vg

. t
op

ol
og

ic
al

 d
is

ta
nc

e(
φ 7)

B1
B2
B3
B4

Figure 4.15: Avg. topological distance (from culprit flip-flop) with different SAT formu-
lations

Achieving better error localization for these circuits is one of the directions of fu-

ture extension of this work. Obtaining suitable input constraints is needed which can

help in enhancing the quality of error localization. We believe that properly chosen

inputs (taking the design hierarchy into account) can improve the performance of all

four SAT formulations for error localization because the traced/restored signal states

Chapter 4. SAT-based Silicon Debug of Electrical Errors 104

(STBi/SRESi) also depend on the inputs(PIi) to a large extent.

4.5.4 Impact of Increasing Trace Buffer Width on Bit-flip Error

Localization

An increase in trace buffer width(TBw) increases the amount of internal signal visibility.

We performed experiments on s9234 circuit for 4 different trace buffer widths as 16, 32,

48 and 64. The values of φ2 which denote the number of exact solutions (out of NE) are

reported in Figure 4.16. In most of the cases for all the three formulations of B1, B3

and B4, there is an increase in the number of exact solutions as trace buffer width is

increased. It is obvious that with change of TBW , there is no impact on B2. Note that

upon TBw increase, there is a slight decrease in φ2 for B4. This can be because increase

in signal state restoration leads to SAT instance(s) becoming satisfiable from which no

UNSAT core(s) could be extracted. Similarly, we observed an increase in φ1, φ5 and φ6

 0

 20

 40

 60

 80

 100

B1 B2 B3 B4

S
uc

ce
ss

fu
l b

it−
fli

p
lo

ca
liz

at
io

n(
φ 2)

TBw=16
TBw=32
TBw=48
TBw=64

Figure 4.16: Successful bit-flip localization for s9234

when TBw is increased for other circuits also. Additionally, we observed a decrease in

φ3 and φ4. The decrease in these metrics range from 2% to 50% as we increase the trace

buffer width. Also, we observed a decrease in the topological distance from flip-cycle

(φ7) as the error localization improves on TBw enhancement.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 105

4.5.5 Impact of Different Selection from Clustering Choices

and Ranking Inside Clusters

As was previously stated, selecting different signals from obtained clusters can have im-

plications on error localization. We performed a detailed experiment on four circuits, for

which the variation is shown in Figure 4.17. For softusb and b21 circuits, we considered

two configurations(denoted by C1 and C2) with TBw as 32 and 64 respectively. For

softusb circuit, we consider C1 as selection of one flip-flop from each of 32 clusters, C2

as the selection of two flip-flops from each of 16 clusters. Inside the individual clusters,

the ranked signals as per the in-degree measure are chosen as final trace signals. Except

B2 formulation, other 3 formulations provide better bit-flip localization with C2 grouping

than C1 grouping. For b21, in C1, we had put MinSize as 9 and for C2, MinSize was

chosen as 19. Similarly, for b21 circuit, we consider C1 as selection of one flip-flop from

 0

 20

 40

 60

 80

 100

softusbC1 softusbC2 b21C1 b21C2 s38584C1 s38584C2 s38417C1 s38417C2

S
uc

ce
ss

fu
l b

it−
fli

p
lo

ca
liz

at
io

n(
φ 2)

B1
B2
B3
B4

Figure 4.17: Successful bit-flip localization for different clustering configurations

each of 64 clusters, C2 as selection of two flip-flops from each of 32 clusters. For b21, in

C1, we had put MinSize as 6 and for C2, MinSize was chosen as 13. We observed that

for the second configuration(C2), φ2 values are higher as compared to that of C1. In

other words, configuration C1 resembles the choice of trace signals in [32]. This means

that the ranking-based selection of two flip-flops from each cluster is more beneficial

over the selection of one signal from clusters. We observed similar trends during our

experiments on s38417 and s38584 circuits. For s38417, C1 and C2 are chosen with re-

spective MinSize as 24 and 48 respectively. Similarly, for s38584, C1 and C2 are chosen

Chapter 4. SAT-based Silicon Debug of Electrical Errors 106

with respective MinSize as 21 and 42 respectively. As expected, there is no impact of

clustering variation on error localization with B2. Analyzing impact of unequal selection

of flip-flop/signals from each cluster is also one of the directions of future work.

4.5.6 Localization of Stuck-at Errors

We injected random stuck-at fault at one of the nets (ni)in the netlist. Since, the UN-

SAT core(s) contain nets and flip-flops together, after translating the obtained UNSAT

core(s), we can obtain a list of suspect nets. We carried out the localization efficiency

evaluation by using metrics φ8 and φ9. Note that in addition to an electrical scenario, a

stuck-at condition can also resemble a design error[100]. The flip-flops (signals) in the

outward logic cone of the net ni are computed and can be matched with the translated

UNSAT core(s). We did not utilize this approach (of identifying the flip-flops in the out-

ward logic cone of ni) because a subsequent analysis needs be performed to localize the

particular net. Once again considering NE = 102, T = 100 and TBw as 32, the values

of metric φ8 are reported in Figure 4.18. For some of the circuits, the SAT formulations

 0

 20

 40

 60

 80

 100

dmuclu usb b21 b17 s13207 p16c5x s15850 s38584 s38417 b15

S
uc

ce
ss

fu
l s

tu
ck

−
at

 lo
ca

liz
at

io
n(

φ 8)

B1
B2
B3
B4

Figure 4.18: Successful stuck-at localization

succeed in localizing the particular net (ni). Note that stuck-at error localization(Susa)

is also strongly dependent on the suitable sensitization by the primary inputs. In fact,

the requirement of sensitization by primary inputs make the stuck-at error localization

difficult. To measure the inexact error localization, values of metric φ9 are reported in

Figure 4.19. For dmuclu and usb, only few nets are obtained after translating the UN-

Chapter 4. SAT-based Silicon Debug of Electrical Errors 107

 0

 100

 200

 300

 400

 500

 600

 700

dmuclu usb b15 s13207 b17 s15850 s38584 s38417 p16c5x

A
vg

. s
us

pe
ct

 s
tu

ck
−

at
 n

et
s(

φ 9)

B1
B2
B3
B4

Figure 4.19: Avg. suspect stuck-at nets with different formulations for different circuits

SAT core(s) even though for a large number of error iteration, the constrained Boolean

formula (Bj) turns into UNSAT. We observed a strong dependence of φ9 on the trace

signal selection technique which means that different trace signal lists provide different

kinds of UNSAT core(s) during extraction from the unsatisfiable instances. For p16c5x

circuit, the exact suspect net localization is poor. The localization for these circuits is

poor because of improper sensitization by inputs which need to be identified carefully.

Nevertheless, stuck-at fault localization with a limited error trace is not a trivial task.

We aim to refine the stuck-at localization by utilizing the technique of [100] as future

enhancement.

4.5.7 Error Localization with Temporally Variable Visibility

Enhancement

We consider small chains (each of length two/four which means that two/four flip-flops

are stitched together) with the scheme outlined in [22, 119]. For TBw as 16, 32 signals

can be dumped as explained in Section 2.3.3. Figure 4.20 shows the values of metric φ2

for such an observability mechanism for bit-flip errors. Here, TBw of 16 is considered,

however, because of temporal tracing, 32 and 64 flip-flops(signals) are traced when length

of smaller scan-chains are considered as two(denoted as scan2, Lsc=2) and four(denoted

as scan4, Lsc=4) respectively. Note that as stated previously, the dumping of the traced

signals is not continuous which leads to a respective dumping period of two and four

Chapter 4. SAT-based Silicon Debug of Electrical Errors 108

 0

 10

 20

 30

 40

 50

 60

 70

 80

s38584−scan2 s38584−scan4 s38417−scan2 s38417−scan4

S
uc

ce
ss

fu
l b

it−
fli

p
lo

ca
liz

at
io

n(
φ 2)

B1
B2
B3
B4

Figure 4.20: Successful bit-flip localization variation for different scan configurations in
temporal tracing

respectively. Since temporal tracing introduces variability in dumped signals, the amount

of signal state restoration significantly enhances when Lsc is increased from 2 to 4. Due to

this in scan4 configuration (Lsc=4), B4 performs better than the other three formulations

for both the circuits. We observed similar trends while experiments on other circuits

also. Temporal tracing has a significant impact on the metric φ9 also. For instance-

we observed a maximum decrease of 90% in φ9 values for b21 circuit when the tracing

configuration is changed from scan2 to scan4 for bit-flip errors. It is worth to note that

because of the change of inputs, the overall success in bit-flip localization (φ2) values

shown in Figure 4.20 are lower than those of Figures 4.7 and 4.8.

Since the circuits in Table 4.4 can be considered as blocks within a complex SoC,

with a fixed trace buffer width of 64, four such blocks can be traced. Thus, in addition to

an appreciable increase in signal restoration with this observability enhancement scheme

[22], SAT-based error localization also improves. Moreover, in industrial designs, it is

common to have distributed trace buffers wherein each trace buffer can be connected

with a different type of temporal tracing depending on the circuit. We performed the

temporally variable tracing for stuck-at errors by considering Lsc as 2 and 4 for two

circuits, b21 and s13207. Similar to the analysis presented previously for bit-flip errors,

we consider TBw as 16. Because of temporal tracing, 32 and 64 flip-flops can be traced

albeit with non-continuous dumping into the trace buffers. By definition, φ9 should be

Chapter 4. SAT-based Silicon Debug of Electrical Errors 109

as low as possible to meet the targets of exact localization.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

b21−scan2 b21−scan4 s13207−scan2 s13207−scan4

A
vg

. s
us

pe
ct

 s
tu

ck
−

at
 n

et
s(

φ 9)
B1
B2
B3
B4

Figure 4.21: Avg. suspect stuck-at nets variation for different scan configurations in
temporal tracing

We did not observe any major change in φ8 with change in Lsc. Due to temporal

tracing, B4 provides lower or comparable φ9 values when Lsc is changed from 2 to 4. B1

and B3 also follow the similar trend.

4.5.8 Summary of Variation in Localization Results with Dif-

ferent SAT Formulations

Since different SAT formulations have different type of constraints in them, the error

localization efficiency varies significantly as the nature of UNSAT core(s) obtained af-

ter their solution differs from one another. Major observations regarding the utility of

different SAT formulations can be summarized as follows:

1. Trace signal selection has no impact on localization with B2. For few circuits

(s38417, s38584, s9234), the remaining three formulations perform better than B2.

However, for other circuits (mainly of opencores and ITC’99 type), B2 succeeds in

error localization in a more effective manner compared to other three formulations.

2. B4 performs best in error localization for some circuits, justifying the contribution

of restored signal states in error localization. B4 provides lower average flip-cycle

Chapter 4. SAT-based Silicon Debug of Electrical Errors 110

(φ3) compared to B3 which means that the flip-cycle candidates are closer to the

actual flip-cycle with former formulation compared to the latter formulation (B3).

3. For all the circuits, the number of UNSAT attempts with B2 is less that of other

formulations which means that error does not propagate to primary outputs (PO)

in those cases. In most cases, B1, B3 and B4 always result in UNSAT.

4. In cases of inexact localization, compared to other formulation, B4 provides lower

topological distance (φ7) of flip-flop suspects from the actual flip-flop. Where B2

has lower φ7 than B4, it is because the former (B2) has lower number of attempts

turning UNSAT than the latter (B4).

5. The behavior of different SAT formulations is similar for bit-flip and stuck-at errors.

Hence, with different SAT formulations, fine-grained electrical error localization can be

achieved with varying degree of success. In spite of scalability limitations of SAT solvers,

we believe that SAT-based debugging methodology in post-silicon environment can be

applied to any large circuit provided the length of error trace is reasonably smaller.

In the next section, we discuss in detail the impact of various steps of the proposed

methodology on the scalability issue.

4.6 Addressing Different Scalability Issues in SAT-

based Error Localization

4.6.1 Scalability of Design Unrolling Step

We measured the increase in the formulae sizes(i.e., number of clauses in Bj) over the

formula size corresponding to the unrolled netlist(UD) for different SAT formulations.

For dmuclu circuit, the relative increase (over the formula for only the unrolled netlist)

corresponding to B1, B2, B3 and B4 is 4%, 4%, 0.1% and 8% respectively. For usb

circuit, the similar increase for different formulations stand at 0.8%, 0.6%, 0.1% and

0.9% respectively. Note that the above computations are done for T = 100 and TBw =

Chapter 4. SAT-based Silicon Debug of Electrical Errors 111

32. Thus, it can be observed that the increase in formulae sizes is reasonable for large

circuits. Other benchmark circuits also follow same trend for any selection of STr.

4.6.1.1 Time Spent in Unrolling

Time spent in the design unrolling stage is not very critical for applying the methodology

to large circuits or applying it to long error traces. This is because time-frame expansion

corresponding to a certain length of cycles needs to be done only once. Thereafter,

different type of SAT formulations (Bj) can be repeatedly applied on the expanded

netlist (UD). Different type of error traces (obtained by changing input assignments

etc.) can be applied as constraints on the same expanded netlist for SAT solving. We

 0

 5

 10

 15

 20

 25

dmuclu usb b15 b17 s38417 s38584 mips b21

T
im

e(
m

in
ut

es
)

sp
en

t i
n

un
ro

lli
ng

T=100
T=200

Figure 4.22: Time spent in design/netlist unrolling

observed a linear increase in the time required for unrolling of the design netlist when

the error trace length (the number of clock cycles) is doubled. For the larger benchmark

circuits, the time required to unroll for 100 and 200 cycles is shown in Figure 4.22.

4.6.1.2 Memory Usage in Unrolling

Figure 4.23 shows the memory usage (in MB) during time-frame expansion for the larger

circuits for a error trace length ranging from 50 to 1000 cycles. When the time-frame

expansion duration is increased from 500 to 1000 cycles, there is less than double increase

in the memory usage. The same trend is observed for all the circuits when T is increased

Chapter 4. SAT-based Silicon Debug of Electrical Errors 112

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

s35932 b21 usb mips p16c5x

M
em

or
y

us
ag

e
(in

 M
B

)
fo

r
un

ro
lli

ng

T=50
T=100
T=200
T=500

T=1000

Figure 4.23: Memory usage in design/netlist unrolling

from 50 to 100 or 100 to 200. This shows that time-frame unrolling step can be completed

even for larger circuits for debug scenarios with T exceeding 1000 cycles also.

4.6.2 Scalability of SAT Solving Step

To address the scalability issue further, we assessed the variation in SAT solver efforts

in solving for all the circuits. Figures 4.24 and 4.25 denote the average time spent (in

seconds) during SAT solving step with different formulations and the memory usage (in

MB) respectively for all the benchmark circuits. The increase in time and memory usage

 0

 1

 2

 3

 4

 5

 6

 7

s15850 usb b17 s13207 dmuclu p16c5x b15 mips s38417 b21 s38584

A
vg

. t
im

e(
se

co
nd

s)
 s

pe
nt

 in
 S

A
T

 s
ol

vi
ng

B1
B2
B3
B4

Figure 4.24: Average time usage(in SAT solving)

is linear with respect to the circuit size. When we doubled the error trace length (T) to

200, the time and memory usage were observed to be close to double the time and memory

required for T = 100 (Figures 4.24 and 4.25). Thus, time and memory usage increase

Chapter 4. SAT-based Silicon Debug of Electrical Errors 113

is linear with respect to error trace length also. Nevertheless, one of the restrictions of

this debugging methodology is the requirement of unrolling the netlist into time-frames

equal to the length of an error trace. Hence, if a shorter error trace can be obtained, the

time-frame unrolling exercise is less computationally intensive. However, this exercise

needs to be done only once. Thereafter, different SAT formulations can be attempted

with different constraints depending on the debug scenario. We did not observe any

 0

 100

 200

 300

 400

 500

 600

 700

 800

s15850 usb b17 s13207dmuclu p16c5x b15 mips s38417 b21 s38584

A
vg

. m
em

or
y

us
ag

e(
M

B
)

in
 S

A
T

 s
ol

vi
ng

B1
B2
B3
B4

Figure 4.25: Average memory usage(in SAT solving)

appreciable difference in the time and memory usage across all the benchmark circuits for

SAT solving when the trace signal selection technique is varied. Additionally, there is not

much difference in time and memory usage between bit-flip and stuck-at error localization

scenarios. We believe that satisfiability-based formulation would be successful for error

localization of logic modules even if a directed trace signal selection(such as that of [34])

is not utilized. However, suitable inputs must be provided to the SAT formulations. In

addition to this, the internal signals (such as control signals) must be set properly so that

formulations (other than B2) succeed in error localization. We are currently working in

this direction by a proper analysis of the circuit structure. For design components having

a large number of sequential elements such as memories/caches, time-frame unrolling

may pose a severe bottleneck as the expansion requirement can range from 5000 to

10000 cycles or more. However, such structures are generally not prone to bit-flip errors

and are already provided with suitable detection and correction mechanisms.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 114

4.6.3 Analysis of Localization in Large Error Traces

Error traces of length (T) equal to 500 and 1000 clock cycles were divided into 5

divisions(k) resulting in smaller error traces of 100 and 200 clock cycles respectively.

We injected a bit-flip randomly somewhere between the first and T th cycle. As explained

in Section 4.4.1, the SAT instances are created for these smaller divisions and provided

to the solver. It is obvious that these instances (Boolean formula, Bj) corresponding to

some divisions(eTracej) would be satisfiable. However, in the division which contains

the flip-cycle, the SAT instance turns out to be unsatisfiable from which the UNSAT

core is to be extracted. The translation of these UNSAT core provides the suspect flip-

flops and flip-cycles. After division into smaller traces, the time and memory usage was

comparable to that of Figures 4.25 and 4.24.

4.7 Comparative Evaluation with Previous Silicon

Debug Methods

4.7.1 Post-silicon Debug Methods at Architecture-level

One of the notable techniques in post-silicon error localization is the methodology pre-

sented in Instruction Footprint Recording and Analysis [69] work which performs error lo-

calization at block-level granularity in processor systems using low cost on-chip recorders

as an observability mechanism. However, typically an architectural block is quite large

which renders localization at the netlist level very difficult with such techniques [66][69].

Therefore, additional methodologies are needed for fine-grained error localization of the

processor cores. Further, for achieving exact error localization of other digital blocks

(peripherals, uncore components etc. in a complex SoC) from the collected error traces

in an automatic manner, we require other approaches as lower level design information

is missing. In absence of golden response, satisfiability-based method can assist in bet-

ter bug localization as it achieves so in a self-checking manner. Therefore, with the

Chapter 4. SAT-based Silicon Debug of Electrical Errors 115

satisfiability-based technique, the methodology of IFRA (or, QED[66]) can be comple-

mented to achieve exact error localization after a shorter error trace is obtained with

these architecture-level validation methodologies.

Table 4.5: Comparison with other SAT-based localization methods

Method
Type of

error
Spatial

localization
Temporal

localization
Trace
width

Length of
error
trace

Signal
selection

[34] bit-flip
within
20 to

40 FFs

4 to
20 cycles

of flip-cycle
128, 256 100 cycles

bit-flip
detection-driven

[101]
(pre-silicon)

RTL errors
max. 3% of

modules
10 to 15% of
total trace

groups of
16

registers

2,4,8,16
cycles

(session-
based)

design
heirarchy-

based

[48] stuck-at
actual

net/wire
-

5% of all
signals

upto 2000
cycles

random
selection

Proposed
bit-flip,
stuck-at

mostly <10
to 20

flip-flops

within 1 to 20
cycles

16, 32, 64
partitions
of 100, 200

cycles

graph-based
clustering

4.7.2 SAT-related Post-silicon Error Localization Methods

The proposed signal selection technique can be applied in conjunction with the debug

methodology of [101], [48] and [100] for design errors also. A qualitative comparison of

SAT-based gate-level localization techniques with the proposed methodology is reported

in Table 4.5.14 Some of the trace signal selection techniques which have attempted trace

signal selection aimed at error localization in the post-silicon environment[33, 50] are

only for design errors. A dynamically reconfigurable selection technique for detecting bit-

flip errors was proposed by Basu et al.[111] using an arrangement of few multiplexers.

Sabaghian-Bidgoli et al.[147] proposed probability-based error calculation methods to

14Based on the reported results in the respective works. For the proposed approach, the temporal and
spatial localization numbers reported have been obtained by averaging the results of s38417 and s38584
circuits. Note that area overhead of the techniques is proportional to the trace width. Bug localization
accuracy is reported in temporal and spatial localization columns of Table 4.5. The length of error trace
for which the respective techniques are best suited to, are reported in the second last column. Ideally,
the length of these error traces should not be very small (i.e., < 100 cycles) as acquisition of such small
traces may not be feasible for large designs.

Chapter 4. SAT-based Silicon Debug of Electrical Errors 116

improve SAT-based fault diagnosis of stuck-at nets. One of the merits of the method

in [147] is that it can be applied to both pre-silicon and post-silicon debugging. This

methodology can be utilized in conjunction with the proposed technique for effective post-

silicon error localization as the trace signal selection can be enhanced through probability

analysis. Signal selection techniques such as [51, 55] can also be utilized along with the

graph-based clustering to obtain a refined list of trace signals. Particularly, a combined

signal selection approach like that of [33, 116] can be attempted with a mixing of signals

from previous techniques of [1, 9, 102] and the graph-based topological analysis for

obtaining trace signals [23, 142].

4.8 Conclusion

This chapter proposed a signal tracing methodology for satisfiability based error local-

ization in the post-silicon environment. A grouping based methodology is presented for

signal selection and it is used with different observability enhancement schemes to obtain

a smaller execution trace. The grouping methodology is intended to minimize the trace

buffer width. The error trace obtained from chip execution is forced on the time-frame

unrolled circuit for satisfiability solving as constraints. For the larger error traces ranging

in the range of thousands of clock cycles, SAT-based debugging can run into memory

and solving time issues. To alleviate this, the error trace was partitioned into smaller

traces. Experiments on a variety of benchmark circuits show that SAT-based debugging

methodology succeeds in the post-silicon environment for two kinds of error scenarios.

− ∗ − ∗ −

Chapter 5

Effective & Combined Trace Signal

Selection

5.1 Introduction

As stated in the earlier chapters, one of the key challenges during post-silicon validation of

the first released silicon is the limited observability of internal states of the design. Debug

of design and electrical errors in the post-silicon environment becomes very difficult due to

the poor accessibility of internal signals. Scan chains help in enhancing the observability

and controllability for the purpose of manufacturing testing. However, they are less

effective during post-silicon validation and debugging as the chip execution has to be

halted to enable read-out of the states of the flip-flops. To achieve a non-destructive

reading of internal states, trace buffers are incorporated on-chip which store few signals

for a limited number of clock cycles as the chip execution progresses [45]. However,

given the constraint of area overhead, only a small set of signals can be selected for

tracing. These signals are decided at the design stage itself. This increases the difficulty

of selection of appropriate trace signals. For small designs, the design engineers can

suggest a few important signals based on the knowledge of the circuit behavior. However,

there is a need for automated signal selection for large designs. Signal state restoration

enables increased visibility as some of the untraced states can be inferred from the

117

Chapter 5. Effective & Combined Trace Signal Selection 118

traced flip-flop values [114]. This technique has been the guiding principle in most of the

proposed solutions for automatic trace signal selection [1, 9, 50, 102], although none of

these methods report the efficacy of their selection techniques from the point of localizing

or detecting the bug/error. Therefore, devising signal selection with the mere objective

of maximization of signal state restoration is not a very good choice [55, 96, 116]. The

primary reason behind this lies in the fact that the restoration-aware signal selection

techniques favor signals that may lead to little value addition to the debug process.

Some approaches have presented signal selection techniques based on the ease of

error detection [34, 50, 55, 111, 148], error localization with the restored and traced

states has not yet been explored in detail. By and large, the signal state restoration-

based trace signal selection techniques are not sufficient for debugging different kinds

of functional and electrical errors [55, 116]. Thus, trace signal selection process should

aim at objectives such as enhancement in the debug process instead of focusing only on

maximization of the internal state visibility. Let’s consider a design having few large

arrays of registers in its netlist structure. Prevalent trace signal selection techniques

would prefer selecting elements from those large arrays as restorability is highly favored

with this selection because of logical connectivity. However, these signals (i.e., register

elements) are not very useful for debugging scenarios because of their simple logical

relationships. This necessitates a trace signal selection methodology aimed at identifying

signals most useful for error localization. Additionally, as stated previously, the signal

state restoration-based signal selection algorithms rely on the assumption that restoring

higher number of untraced signal states results in a larger quantity of debug data which

may be useful for localizing the incorrect functional implementation. However, as is

clear from the above example scenario, this assumption is not true as signals favorable

for restorability maximization are not very effective in error detection/localization [34,

51, 55, 96, 116].

We present an approach of trace signal selection for observability enhancement in

terms of their effectiveness for detecting the bug and the latency with which its effect

can be observed at the traced flip-flops. A methodology of signal selection is proposed

Chapter 5. Effective & Combined Trace Signal Selection 119

which takes into account the combinational paths between the flip-flops and their topo-

logical order. The main benefits from this signal selection methodology are reduced error

detection latency and an increase in the number of times the traced flip-flops capture the

erroneous responses. Trace buffers incur area penalty and may lead to routing conges-

tion. A routing-aware signal selection technique can help reduce the associated routing

overhead compared to only restorability maximization-based signal selection techniques

[107]. Hence, another important consideration is to take into the ease of routing of trace

signals to the trace buffers. To comply with off-line dumping constraints, trace buffers

can not be arbitrarily placed closer to the traced signals. Due to this, some trace sig-

nals could not be routed. For instance- we observed in our experiments that for s35932

circuit, as many as 7 (out of total 32) trace signals obtained from technique outlined

in [1] can not be routed to the trace buffers when routing is carried out within specific

constraints (such as congestion limit and wire length budget). We propose a trace sig-

nal selection methodology considering the combination of three important parameters-

enhancement of signal restoration-based on the traced signal states, increasing error de-

tection/localization with the traced (and restored) signal states and routing overhead

reduction (in terms of wirelength).

The remainder of this chapter is organized as follows. The proposed methodology

of topology-based signal selection is explained in detail in Section 5.2. Experimental

formulation and results on the topology-based signal selection are discussed in Section

5.3. Section 5.4 puts forward the preliminaries behind our combined trace signal selection

approach. Section 5.5 presents the proposed 2-Parameter combined signal selection. The

proposed routing-aware signal selection technique is mentioned in detail in Section 5.6.

Section 5.7 presents the proposed 3-Parameter combined signal selection methodology.

Section 5.8 describes the proposed error localization methodology using the expanded

internal visibility. Section 5.9 elaborately analyses the routing and error localization

results obtained for benchmark circuits. Section 5.10 finally concludes the chapter.

Chapter 5. Effective & Combined Trace Signal Selection 120

5.2 Proposed Methodology of Topology-based Trace

Signal Selection

The restorability-based signal selection approaches consider whether untraced signals are

recoverable from the traced ones or not. However, the error propagation capability of the

flip-flops is generally not considered in these approaches.1 The propagation of an error to

flip-flops (internal signals) depends on the presence or absence of combinational path(s).

We exploit this principle for our methodology by considering the circuit topology. For

the proposed2 approach, a S-graph needs to be constructed to analyze the propagation of

bugs from one flip-flop to another flip-flop of the design. Note that actual sensitization of

bugs is a factor of the gates present on combinational paths. However, analysis of these

gates makes the methodology tedious as computation of conditional probabilities of signal

transitions needs to be performed. In the S-graph, flip-flops are represented as graph

nodes and combinational paths between them as directed weighted edges. Apart from

considering flip-flop interconnections, we take into account their topological ordering

too. Accounting for the order of flip-flops in the design structure helps in the direct

optimization of error detection and the latency. To ensure that error detection latency

is minimized, the traced flip-flops must capture the error within few clock cycles.

We make two propositions here. First, it is not necessary that the flip-flops in the

vicinity of primary outputs (PO) are traced as the effects of the bug can be captured at

the PO although with a higher latency. Second, the flip-flops in the proximity of primary

inputs can be excluded from the set of candidate trace signals as the flip-flops succeeding

them can observe the erroneous behavior. Thus, after performing a topological sort of

the candidate trace signals (S-graph nodes), a list (of flip-flops) can be obtained which

1Based on experiments with ranking of trace signals through detectability preference of randomly
injected errors, reported results in [149] and [55] show that trace signals selected for restorability maxi-
mization fail to detect errors in many iterations.

2Note that the signal selection approach outlined in Chapter 4 could also have been used here.
However, because of clustering, chances are there that design bugs may go undetected. Indeed we
had attempted error localization with signals from Chapter 4 in the experiments conducted in this
chapter. We observed that clustering-based signals perform inferior. The primary reason we believe is
the difference in the modeling of errors in case of bit-flips and gate-level design errors.

Chapter 5. Effective & Combined Trace Signal Selection 121

is to be pruned until the number of elements in the list is comparable with width of

TB (TBw). The objective behind above propositions is to select flip-flops which can

capture the maximum number of erroneous responses (due to bugs) as early as possible.

We aim at a joint optimization of both these factors through pruning of S-graph nodes.

However, this approach has a major limitation since topological sort can be performed

only on acyclic graphs whereas practical circuits often contain cycles. Due to this reason,

we group flip-flops forming cycles in S-graph as one node and make it a directed acyclic

graph (DAG). Any of the constituent flip-flops can be selected for the purpose of tracing

as a representative of this node. This definitely has implications on the bug propagation

and in turn bug detection. However, this serves as a crude solution to the limitation

incurred by topological sort in case of cyclic graphs.

The proposed methodology can be broadly divided into four steps: (a) S-graph cre-

ation of design (GraphCreate), (b) Score assignment of flip-flops (ScoreAssign), (c)

Arranging flip-flops based on their order, and, (d) Trace signal selection (SelectSignal)

based on score.

5.2.1 S-graph Creation and Score Calculation

The S-graph (represented as G) construction steps are outlined in Algorithm 5. A node in

a graph G has a certain number of weighted in-coming and out-going edges. The weights

on edges account for the different paths through which two flip-flops are connected.

Note that Convert function in the above algorithm leads to building G as a directed

acyclic graph by grouping those flip-flops which form a cycle into an individual node.

This node contains a number of flip-flops (FFs), one out of them can be selected for

tracing depending on the score of this node in comparison with other nodes. For large

cycles (i.e., cycles involving a large number of nodes), Convert function in the above

methodology breaks the cycles. To achieve this, Convert function utilizes a threshold

(Nth) can be decided in term of the number of nodes in the S-graph. For the purpose of

flip-flop selection, we need to assign priority to different nodes through score calculation.

The steps for this is outlined as Algorithm 6. Although other scoring mechanisms can

Chapter 5. Effective & Combined Trace Signal Selection 122

Algorithm 5: GraphCreate

Input: Design
Output: G

1 FFtot ← total flip-flops in Design;
2 for each FF Fi in Design do
3 FFrem ← FFtot - Fi;
4 for each FF Fj in FFrem do
5 n=0;
6 if path exists from Fj to Fi then
7 n = n + 1;
8 end

9 end
10 wt ← n;
11 n = 0;
12 connect Fj to Fi by an edge;
13 weight of edge ← wt;

14 end
15 G′ ← directed weighted graph of Design;
16 G ← Convert(G′);

be attempted, this calculation of score is aimed at the ranking of signals through the

connectivity of each trace signal with other signals (i.e., flip-flops).

Algorithm 6: ScoreAssign

Input: G
Output: scoreList

1 for each node Ni of G do
2 Ein ← no. of in-coming edges;
3 wti ← weight of in-coming edge;
4 Eout ← no. of out-going edges;
5 wto ← weight of out-going edge;
6 score = Ein*(Σ wti) + Eout*(Σ wto);
7 scoreList ← score of each node;

8 end

The flip-flops are assigned score for the purpose of ranking in terms of error collecting

ability. The score is determined by the total number of connections with the other

flip-flops of design (i.e., remaining nodes of G). For obtaining the total connections,

we multiply the number of in-coming and out-going edges (i.e., Ein, Eout) with their

Chapter 5. Effective & Combined Trace Signal Selection 123

respective weights (i.e., wti, different number of parallel paths between a pair of FFs).

The worst case time complexity of the score assignment procedure (Algorithm 6) is

O(npath) where npath is the number of paths in the S-graph.

5.2.2 Arranging Flip-flops and Trace Signal Selection

As per our propositions, after topological sorting of flip-flops (or nodes), this list (repre-

sented by Glist) has to be pruned down from both the ends (corresponding to PI and PO

ends of the actual circuit). To account for this, a pruning factor (pf) is introduced. We

describe next the methodology of obtaining the optimal pruning factor for any circuit.

5.2.2.1 Methodology for Obtaining Pruning Factor

The factor, pf represents the nodes which are to be removed from the S-graph nodes

list (Glist). Thus, pruning factor (pf) plays a vital role in selection of candidate trace

signals (FFs). The algorithm Findpf (outlined below) searches for the optimal pruning

factor in a fine-grained manner.

• Algorithm 7 has two user-defined inputs: ipf (initial pruning factor) and pfinc

(pruning factor increment) which are to be assigned based on the level of granularity

desired.

• The algorithm begins with a complete list of topological list of S-graph nodes

(TempList) and depending on ipf (which is first pf), pruning is done for the first

time (i.e., some nodes get removed from both ends of the list).

• Thereafter, with the remaining list (TempList′), the score calculation is done for

these nodes and the average score (labeled as Normscore) is obtained.

• Depending on the chosen pfinc, pf gets incremented (pf+pfinc) and the process

continues till TBwidth becomes comparable with the number of nodes remaining

in the list (TempList). At the end, the pruning factor chosen for the design is the

pf that provides highest Normscore.

Chapter 5. Effective & Combined Trace Signal Selection 124

It is worth to note that the cycles in the S-graph (G) do not actually inhibit the

error propagation as some of the nodes connected to the ones (in the cycle) can capture

the erroneous behavior through any of the combinational paths between them. The

implementation of topologicalsort in Algorithm 7 takes into account the cyclic nature3

of the created S-graph (G) and then provides the topological order of nodes (Glist). The

worst case complexity of topologicalsort is O(V + E) where V and E denote vertices

and edges respectively in the S-graph.

Algorithm 7: Findpf

Input: G,TBwidth,scoreList
Output: pf

1 Glist ← topologicalsort(G);
2 TempList ← Glist;
3 pf ← ipf ;
4 while TempList > TBwidth do
5 TempList′ ← TempList pruned by pf ;
6 Totscore = Σ(score of entries of TempList′);
7 num ← number of entries of TempList′;
8 Normscore = Totscore / num;
9 List ← store pf and Normscore;

10 pf = pf + pfinc;
11 TempList ← TempList′;

12 end
13 pf ← pf for which Normscore is highest;

As an analogue to pruning factor term, “window size” can be defined as set of flip-

flops of the list Glist′ after the original flip-flop list (Glist) is pruned by a certain pf

from both ends. Thus, window size (ω) of 100%, 80%, 60% and 40% means that the

pf is set at 0, 0.1, 0.2 and 0.3 respectively. ω of 100% means no pruning of the S-graph

nodes. Note that the topological sorting must be done before the pruning exercise. With

the combination of pruning and score assignment, the proposed technique attempts to

capture a large number of bugs within a lesser number of clock cycles. The final step

to select the trace signals depending on the topological order is shown as Algorithm 8.

3This surely serves as a limitation of the proposed approach prohibiting its applicability to all kinds
of designs/circuits.

Chapter 5. Effective & Combined Trace Signal Selection 125

After pruning of topologically ordered nodes, the left-over nodes are ordered by score.

As per requirement (i.e., TBw), signals having highest score are to be selected. The

Algorithm 8: SelectTopoSignal

Input: Glist, pf , scoreList, TBwidth
Output: FFlist

1 score ← score of each node from scoreList;
2 Prune Glist as per pf and obtain Glist′;
3 Sort Glist′ by respective score to get FFlist′;
4 FFlist ← entries from FFlist′ as per TBwidth;

proposed methodology is illustrated for an example circuit in the next section assuming

trace buffer width (TBw) as 2.

We analyzed derivation of pf for 3 benchmark circuits with ipf as 0 and pfinc as 0.05.

As per Algorithm 7, pf is to be iteratively searched such that highest Normalized Score

(Normscore) is achieved. Figure 5.1 shows the variation ofNormscore with ω. Normscore

is observed to be maximum when ω is 60-80% for all the three benchmark circuits. Thus,

maximum error detection with less clock cycles is expected if flip-flops of this window

size (ω) are traced. The selection of flip-flops as per given TB width with in this range of

flip-flops is decided by their individual score obtained by ScoreAssign. The results pre-

 0

 200

 400

 600

 800

 1000

10 20 30 40 50 60 70 80 90

N
o

rm
al

iz
ed

 S
co

re

Window Size(%)

s15850

s35932

s38417

Figure 5.1: Variation of Normalized Score with Window Size

sented in Table 5.2 are as per the nature of variation of Normscore reported in Fig. 5.1.

Thus, central to the success of idea of topological pruning is the derivation of optimal

Chapter 5. Effective & Combined Trace Signal Selection 126

pruning factor (which can be easily translated to window size, ω). Note that wide varia-

tion in Normalized Score (Normscore) among these three circuits is because of varying

number of connections between the flip-flops for each circuit.

5.2.3 Topological Selection Methodology Illustration

We consider a small design with eight flip-flops. For brevity in presentation, we consider

the simple case of a directed acyclic graph. The S-graph (G) created for this design4 is

shown in Fig. 5.2. The graph has eight nodes, numbered FF1 to FF8 (corresponding to

each FF i.e., trace signal).5

Figure 5.2: S-graph for illustrating proposed methodology

Different steps of the proposed methodology are described below and their results are

reported in Table 5.1.

• By the score assignment process outlined in Algorithm 6, the corresponding score

of FF1-FF8 are 18, 4, 23, 3, 13, 5, 23 and 28 respectively.

• For different nodes, values of score computed by Algorithm 6 are shown (in de-

creasing order) in third column of Table 5.1.

• For the S-graph (Fig. 5.2), topological order is given by FF1, FF4, FF5, FF2, FF3,

FF7, FF6, FF8 (second column of Table 5.1).

• As pruning starts (pf increases), window size (ω) shrinks, we obtain pruned list of

nodes which are ordered as per their score (third column of Table 5.1).

4This design is a slightly modified version of s208 ISCAS’89 benchmark circuit.
5The flip-flop numbers depicted as FF1 to FF8 are not themselves indicative of any sort of ordering.

Chapter 5. Effective & Combined Trace Signal Selection 127

Table 5.1: Illustration of proposed methodology
Window
Size(%)

topological order arrangement by score

100 FF1,FF4,FF5,FF2,FF3,FF7,FF6,FF8 FF8,FF7,FF3,FF1,FF5,FF6,FF2,FF4

80 FF1,FF4,FF5,FF2,FF3,FF7,FF6 FF7,FF3,FF1,FF5,FF6,FF2,FF4

60 FF4,FF5,FF2,FF3,FF7 FF7,FF3,FF5,FF2,FF4

40 FF5,FF2,FF3 FF3,FF5,FF2

• The pruning stops when ω reaches 40% as number of left-over nodes is comparable

to TBwidth (=2). Thus, FF3 and FF5 are selected as trace signals since their

score is greater than the other signal (FF2).

Note that ω as 40% means that 0.3 is value of pruning factor (pf) as per Algorithm 7.

5.3 Experimental Formulation and Results for Topology-

based Selection

5.3.1 Description of Evaluation Metrics

For evaluating the efficacy of the proposed trace signal selection (TSS) with respect to

restorability techniques, following 3 parameters are identified for each trace signal: (a)

State restorability (α), (b) Error detection latency (β), and (c) Number of bug injections

not detected (γ).

As explained earlier, from the viewpoint of error localization/detection, restorability

approach is inefficient. However, principles of signal state restoration can be applied on

the signals selected from the proposed technique too. With the proposed technique, the

visibility of internal states is enhanced albeit lesser than techniques which particularly

aim at state restorability [1, 9, 50, 102]. To evaluate how a diminished state restorability

relates to the number of errors detected and their latency, following 3 parameters can be

derived from the parameters considered above:6

6SRR (State Restoration Ratio) is mentioned simply as RR (Restoration Ratio) also at some places
in this thesis.

Chapter 5. Effective & Combined Trace Signal Selection 128

1. ∆α = α{SRR based TSS} - α{proposed TSS}

2. ∆β = β{SRR based TSS} - β{proposed TSS}

3. ∆γ = γ{SRR based TSS} - γ{proposed TSS}

∆α is the difference between signal state restoration ratio for the two set of selected

trace signals, averaged over the TB width (which is considered as 32 in our experiments).

Similarly the other two parameters, ∆β and ∆γ report the difference for error detection

latency (per error) and number of error (bug) iterations not detected by each trace signal.

The trace signals are selected by two methods, restorability approach (SRR based TSS)

and the proposed approach (proposed TSS). For the purpose of comparison, we consider

region growth based heuristic trace signal selection [1] which aims at maximizing SRR

as a representative of SRR based TSS.

5.3.2 Evaluation Results

The three derived parameters (1,2 and 3) are evaluated for 1000 iterations of error

injection through random gate replacements. Table 5.2 presents the evaluation of these

parameters. The Window Size (ω) has been kept at 60-80% for the evaluation of these

3 parameters. The salient observations are listed as below:

Table 5.2: Evaluation of parameters on different circuits
Circuit TotalFF TBwidth ∆α ∆β ∆γ

s15850 534 16 0.062 7.35 191
32 0.059 15.61 157

s13207 638 16 0.396 8.69 423
32 0.136 9.36 536

s38584 1426 16 0.961 3.88 152
32 0.474 3.85 217

s38417 1636 16 -0.271 5.69 491
32 -0.188 7.43 529

s35932 1728 16 -0.046 40.86 229
32 -0.245 17.04 393

• Results indicate minuscule difference in restorability per signal, ∆α while ∆β and

∆γ values are fairly large.

Chapter 5. Effective & Combined Trace Signal Selection 129

• Negative values of ∆α in Table 5.2 mean that the signals with the proposed ap-

proach has higher restorability than restoration based approach [1].7

• For s38417 circuit, the signals with proposed methodology detected the erroneous

behavior for all 1000 error injection iterations (γ=0).

• Note that an effective trace signal selection should give low values for both the

parameters: β and γ. In Table5.2, positive values of ∆β and ∆γ parameters

indicate their low values for β and γ with the proposed methodology.

We performed another set of experiments on a wider range of circuits for finding

out the difference in average detection latency (φ0) for the proposed technique and the

methodology presented in [1] (depicted here as RATS) for TBw as 32. The metric8

utilized for this evaluation is shown below (total number of iterations is represented as

Titer, considered here as 100):9

χ =
i=TBw∑
i=0

first cycle in which each signal detects error (5.1)

Avg. cycle =
χ

Titer − iterations with no error detection
(5.2)

As can be observed from Figure 5.3, with the proposed method achieves lower values

of average cycle of error detection as compared to the technique in [1] for all circuits

except s38584 circuit. The number of iterations in which there is no error detection by

trace signals (which is denoted by denominator in Equation 5.2) for [1] is lower than

that of the proposed methodology. Out of 100 iterations, trace signals with the proposed

methodology succeeded in 78 iterations while the technique in [1] succeeds in only 42

iterations. The same trend can be observed from the values reported in Table 5.2.

7Since the computation of parameter results is done per signal, the results corresponding to trace
buffer width of 32 and 16 do not correlate among themselves.

8We devise this as the previous metric β does not capture the iterations in which the bug/error
detection fails by all the trace signals

9We consider 50 iterations of random wire exchange and 50 iterations of random extra inverter
insertion.

Chapter 5. Effective & Combined Trace Signal Selection 130

 0

 200

 400

 600

 800

 1000

s15850 b15 s38584 s38417 p16c5x b21 b17 usb

A
vg

. c
yc

le
 o

f e
rr

or
 d

et
ec

tio
n

Proposed
RATS

Figure 5.3: Avg. cycle of error detection for different circuits

A weighted combination of the individual parameters (i.e., β and γ) for signal selec-

tion metric can serve as a better option. We believe that deriving the particular weights

is not trivial and it would depend on the debug process. For instance, bugs in some of the

sub-modules of design may be required to be debugged early so as to enable understand-

ing of the bug at the complete level of the design. However, in practice, identification

of such sub-modules of a large and complex design is not an easy exercise. To solve the

issues of combined evaluation of any signal selection, a better approach would be to con-

sider different choices during the process of signal selection itself. As explained earlier in

this chapter, trace signal selection can depend on a wide range of factors. Therefore, we

propose a combined trace signal selection methodology that takes cognizance of multiple

factors while deciding the final set of trace signals.

5.4 Signal Selection with Combination of Preferences

As stated in Section 5.1, we aim the combination of three different preferences for the

trace signal selection. The combined signal selection methodology focuses on the selection

of a fixed number of trace signals from the three groups of ranked signals: Sres (signals

leading to higher state restoration), Sed (signals capable of maximum error detection)

and Sra (signals which incur minimal routing overhead). The combination of these three

lists (which are separately ranked) can be described through the following equation:

Chapter 5. Effective & Combined Trace Signal Selection 131

Selected Signals(S) = a ∗ Sres + b ∗ Sed + c ∗ Sra (5.3)

The three parameters: a, b, c in the above equation are defined by the designer (and,

debug engineer) and these weights represent the importance of each parameter (signal

restoration, error detection and routing-awareness) in the trace signal selection process.

While a separate consideration of each parameter provides a list of trace signals highly

profitable for the maximum enhancement of the respective parameter, the proposed trace

signal selection methodology attempts a judicious mixing of signals from each of the three

sets (Sres, Sed, Sra). The overall flow of the combined signal selection methodology is

depicted in Fig. 5.4.

Design
(netlist)

Placement
(P&R tool)

Select signals
as per input

a,b,c

Topological analysis Co-odinates of
all signals

Manufacturing

DfD inserted

Apply state restoration to

enhance debug data

Traced data

Restoration
analysis

Error localization

Pre-silicon phase

Traced + Restored signal states

Post-silicon phase

Figure 5.4: Overview of the proposed methodology of trace signal selection and debugging
during post-silicon validation

As explained previously, existing research on trace signal selection seldom analyzes

the impact of the selected trace signals on the process of post-silicon debug, which

makes the signal selection very superficial. We address this issue (as shown in Fig.

5.4) in later sections of this chapter. In addition to a signal selection methodology, we

attempt error localization (at netlist level) by analyzing the restored and traced internal

Chapter 5. Effective & Combined Trace Signal Selection 132

signal states of the design.10 Specifically, our contributions in this direction are: (a)

a combined trace signal selection approach is proposed which decides signal selection-

based on restorability, error detection and routing considerations, (b) a methodology is

proposed for routing of internal signal wires to the trace buffers, which avoids collision,

reduces routing congestion and wire length11 required for routing, and (c) a technique is

proposed for error localization by analyzing the traced and restored signal states.

5.4.1 Error Detection-aware Trace Signal Selection

To capture the error at some/all of the traced FFs, the error must propagate to these flip-

flops. This depends on many factors, one of them is the propagation by the gates present

along the different paths between flip-flops. For determining the error propagation by

the respective gates, the input values at these gates must be known. One method to

obtain these values is through execution of the buggy circuit/design. However, the signal

selection has to be done at the design stage itself and hence the actual values arriving

at the gates can not be known a priori. It is definitely not possible for the scenario

when functional input patterns are involved as exhaustive netlist-level simulations for

large circuits is prohibitive. For some of the bug scenarios (single cycle errors), the

bug manifestation can be propagated in a trace signal by forward propagation from its

inwards logic cone. Therefore, only those trace signals which are in the fan-out cone of

the erroneous signal can get affected by the error. Note that this is not fully applicable

to sequential paths where errors are propagated in more than one cycle [150].

Some of the previous error detection approaches [50, 111] have modeled the circuit

description as a S-graph, where an edge indicates the path between flip-flops and all nodes

represent the flip-flops. Along each path, analysis of conditional error propagation needs

to be done from probabilities of signal transitions from input to output of gates present

10Note that the methodology explained before in this chapter utilizes only traced signal states for the
purpose of error localization.

11In practice, merely obtaining a reduced wire length may not be that profitable. However, we aim
the routing within a budget of wire length so that no concerns regarding physical design arise while
accommodating the on-chip debug requirements.

Chapter 5. Effective & Combined Trace Signal Selection 133

on paths between various flip-flops. Depending on the gates and the connections between

flip-flops, we need to compute signal propagation probabilities at the output of each gate.

Leveraging this approach, Basu et al. [111] proposed dynamic trace signal selection

based on knowledge of some error-prone zones of the design. In their approach, ranking

of flip-flops is done through analysis of conditional error propagation from probabilities

of signal transitions due to the gates present in the paths between various flip-flops.

However, specialized error zone information is not available for every design. A similar

approach has been proposed by Liu et al.[50] considering the conditional probability of

error propagation to different candidate trace signals and a multiplexer-based selection

of a group of trace signals. Generally, techniques based on probabilistic calculations may

not be very effective for post-silicon error detection scenarios. For ranking of candidate

trace signals, profiling of the conditional probabilities of the signal transitions is needed.

The signal profiling (i.e., actual determination of signal values and then computation

of conditional probabilities) is based on simulations with deterministic/random inputs.

Hence, the topological ranking of the candidate trace signals, and in turn the signal

selection depends on the inputs applied for signal profiling.

There are few approaches for detection of particular kinds of errors in post-silicon

scenario [34, 55]. However, deciding the trace signals based on detection of only certain

kinds of errors [34, 55, 148, 151] leads to their restricted acceptability as they can not

be generalized for other error scenarios. As explained earlier, during post-silicon val-

idation, some of the internal signal states can be read-out from the trace buffers in a

non-destructive fashion and a sizable portion of the remaining signal states can be known

with the help of restoration technique. For some scenarios, an expanded observability

becomes a necessary condition while in other cases, an effective (even if diminished) visi-

bility is sufficient [51, 152]. Hence, a mixed formulation for signal selection must consider

both the parameters: error detection ability and restoration capability of the candidate

trace signals.

Chapter 5. Effective & Combined Trace Signal Selection 134

5.4.2 Layout-aware Trace Signal Selection

Existing signal selection techniques focus on optimizing parameters of restoration and/or

error detection without taking into consideration physical constraints like routing wire

length. Thakyal et al.[107] first developed a method to select signals taking into account

the routing wire length. When a signal is selected for tracing, that signal needs to be

routed to the trace buffers. Note that signal selection is generally performed at the

last stage of the design, when the design is synthesized and the connections between

different components of the circuit are generally fixed. Therefore, the routing of trace

signals needs to take care of the existing routing congestion. Although the authors

in [107] discussed about routing congestion, they did not take into consideration the

congestion parameters while selecting signals. Their signal selection algorithms are based

on reducing the half-perimeter wire length, measured using Manhattan distance, which

is agnostic of the existing routing congestion. Moreover, the congestion caused by the

initial trace signal routing was not considered in [107, 153] for the purpose of trace

signal selection. In various experiments, we observed that there is a wide variation in

Euclidean distance between trace buffers and the candidate trace signals [116].12 A

trace signal selection that is only restoration-aware is not really helpful from the routing

perspective [107]. Thus, a combined trace signal selection can assist in selecting routing-

aware signals having significantly high restoration and error localization. Additionally,

such a technique ensures collision/congestion avoidance while routing of the trace signals.

Some other techniques [154, 155] in the literature have utilized layout-awareness for

different purposes such as scan stitching or timing characterization.

Consider the illustration of Fig. 5.5 which has been drawn in a manner similar to

the example used in [107]. We have divided the entire layout area (Gr) into smaller

grids, with the restriction that at most two wires can pass through each grid. The

congestion areas are shaded. Let us assume that A and B are the first two signals to

be traced. These two signals are traced without any difficulty in routing. Suppose, it

12The actual routing of signals happen through wire length similar to Manhattan distance. Hence,
Euclidean distance is not a proper measure for the routing impact estimation as done in [116].

Chapter 5. Effective & Combined Trace Signal Selection 135

Figure 5.5: Trace signal routing conditions illustration

is given that the choice for the next trace signal is either C or D (they have the same

value for other parameter of signal selection: restorability or error detection). As can be

seen from Fig. 5.5, the Manhattan distance of C is lower than D. However, due to the

congestion introduced by wires A and B, the wire length required to route signal C is

more than that of D. Therefore, merely assuming the magnitude of Manhattan distance

for routing impact estimation of trace signals is not very useful. The proposed approach

of routing-aware decision making regarding choice of trace signals is shown in Figure 5.6.

We consider a larger number of trace signals in the proposed combined signal selection

methodology. Suppose, the trace buffer width is 32, we apply the approach in Figure 5.6

to a pool having more than 32 trace signals because some of the candidate signals could

not be routed owing to the routing considerations.

Synthesized Design
Netlist

SoCEncounter/
ICCompiler

Co-ordinates of all
trace signals(P & R) Routing of trace signal

possible/not?(successive routing)

Wirelength budget

Trace Signals

Figure 5.6: Overall flow of proposed approach

5.4.3 Heuristics for Accounting Error Propagation

In the proposed trace signal selection methodology, ranking of candidate trace signals

is done through a simpler topological analysis of the circuit. The utility of the selected

trace signals can be linked with the error propagation by these signals (flip-flops), which

Chapter 5. Effective & Combined Trace Signal Selection 136

in turn depends on the error transmission by combinational paths between them. An

exact analysis of all these combinational paths for the purpose of error propagation is

not very effective as explained in Section 5.4.1. Furthermore, to save on to the computa-

tional cost involved in this analysis, it is beneficial to employ approximations to account

for error transmission by these combinational paths. Therefore, we utilize some heuris-

tics to account for error propagation to the candidate trace signals, two of which are

explained below. Note that these heuristics are capable of estimation of only static error

transmission and are fairly inaccurate. Nevertheless, the combined trace signal selection

(which is the main contribution of this chapter) can be attempted with the technique

of conditional probability-based error propagation method as well for higher accuracy.

Note that signal selection aimed at consideration of circuit graph centrality (the kind of

which have been explored in Chapter 4) and [142] may also serve as ideal candidates for

approximate accounting of error propagation to trace signals.

5.4.3.1 Heuristic-1: Error Transmission Through Incoming Paths

One method13 to consider error transmission is to construct a S-graph from the netlist

and count the number of incoming paths to each candidate trace signal. Consider the

S-graph shown in Fig. 5.7 where the nodes represent different candidate trace signals

(flip-flops) and the edges between them represent various combinational paths between

them. Since there can be more than one combinational path between flip-flops, the weight

of edges between different nodes is more than 1. The nodes which have the highest sum

of all the corresponding incoming paths are to be selected as trace signals. The score of

each flip-flop is given by following equation (where total denotes the maximum number

of in-coming edges to that particular node i.e., flip-flop which is a candidate trace signal):

13This is similar to the topology-based score calculation of trace signals as illustrated in Section 5.2.1.
However, we consider the incoming edges only for devising the heuristics.

Chapter 5. Effective & Combined Trace Signal Selection 137

scoreff =
i=total−1∑

i=0

(weight on in-coming edgei) (5.4)

Let’s consider the shown below S-graph, which is a modified version of ISCAS’89

benchmark, s208 circuit (and has been earlier discussed in Chapter 4 and in Section

5.2.3 of this chapter). For this case, FF7 and FF8 are to be selected as these two flip-

Figure 5.7: S-graph for illustrating Heuristic-1

flops have the highest scoreff .14 This heuristic, however ignores the gates present on

the combinational paths between flip-flops. Therefore, we consider another heuristic to

account for the error transmission by gates on paths between flip-flops.

5.4.3.2 Heuristic-2: Error Transmission Through Combinational Gates on

Incoming Paths

An estimation of the error transmission by each gate can be related to the number of

inputs to the gate. For instance, a NOT gate always transmits the error coming at its

input. However, a 2-input AND gate has its error transmission capability dependent on

its inputs. This is true for different types of gates like OR, NAND, NOR etc., and with

higher number of inputs.15 The contribution of error propagation along each path is the

product of the sum of error transmission score of all the gates and the number of gates

14We have considered the trace buffer width, TBw (i.e., the number of signals available for tracing)
as 2 for this example.

15For accounting error propagation, the formulation in [116] generalizes contribution of each gate by
1/Ninputs where Ninputs is the number of inputs of the gate.

Chapter 5. Effective & Combined Trace Signal Selection 138

along each path. For calculating error propagation score of each flip-flop, the score of each

path is added in a manner similar to Heuristic-1. Testability measures such as SCOAP

rules [156], which assign score to each kind of gate for the ease of ATPG also perform

score calculations. This scoring is more accurate than proposed heuristics as it accounts

for controllability on the different signal lines according to the gate type. For paths

involving re-convergence, we treat each path separately without considering the inter-

dependence. If the inputs (other than that propagating the error) of a particular gate are

held at the corresponding non-controlling values, the error transmission of the gate can

be approximately computed. Consider the case of a 3-input AND gate (with its inputs

marked as i1, i2, i3). For the propagation of error arriving at i1 to output, the other

two inputs need to be held at logic value of 1. So, out of the 8 possible combinations (for

i1, i2 and i3), there are two favorable combinations for error propagation: 011 and 111.

Similarly, for any n-input gate, its n-1 inputs are to be held at the corresponding non-

controlling values. The following terms are defined for the analysis of error propagation

as per proposed Heuristic-2:

• gscore: contribution of each gate on the combinational path towards error trans-

mission between flip-flops (where n is number of inputs to gate) is given by

gscore = P(error is propagated by the gate) =
2

2n
(5.5)

• pscore: contribution of each path towards error transmission from one flip-flop to

another is given by

pscore =
∏

gscore =
∏ 1

2n−1
(5.6)

• scoreff : error propagation to each flip-flop is given by (total is the maximum

Chapter 5. Effective & Combined Trace Signal Selection 139

number of in-coming paths)

scoreff =
i=total−1∑

i=0

pscore =
i=total−1∑

i=0

(
∏ 1

2n−1
) (5.7)

Consider the two paths (marked as path1 and path2) between FF A and FF B in Fig.

5.8. For this case, individual scores, pscore (computed by accounting for contribution

Figure 5.8: Combinational paths for illustrating scoring as per Heuristic-2

of the gates on these paths: 1-input gate = 1, 2-input gate = 1/2, 3-input gate = 1/4

and so on) is given as below:

• pscore (path1)= 1*1/4 = 1/4

• pscore (path2)= 1*1/2*1/4 = 1/8

Continuing in this manner, scoreff of all the flip-flops (candidate trace signals) are

computed and ranking is done. For gates such as XOR and XNOR which have excellent

error transmission capability (comparable to that of NOT gate), their gscore is assigned

the maximum value of unity. This modification may not be accurate in all cases. It is

represented in Algorithm 9 by checking if type of gate equals to “XG”. Converting these

gates into basic ones (such as like OR, AND, NAND etc.) worsens the complexity as

number of paths (after conversion) increases. This limits the accuracy of the heuristic

severely as the paths (inside XOR gate) are re-convergent. Inability to accurately handle

re-convergent paths is one of the limitations of this heuristic. Since inputs arriving at re-

convergent nodes are inter dependent, the proposed heuristic fails to capture the effect of

re-convergent nodes accurately. For re-convergent structures, the methodology proposed

Chapter 5. Effective & Combined Trace Signal Selection 140

in [157] can be utilized to transform them into simpler structures (this transformation is

only to estimate error propagation for ranking/scoring purpose). This technique involves

converting a larger gate into a supergate structure and then performing its partitioning

and subsequent logical cone clustering.

We present the algorithm to obtain trace signals by Heuristic-2 here as Algorithm

9. Signals corresponding to Heuristic-1 can be derived easily from this algorithm by ap-

propriately omitting the additional steps (needed for Heuristic-2). The combined signal

selection methodology (Algorithm 10) creates a group of signals capable of maximum

error detection (Sed) and combines these signals with the group of signals having highest

restoration ratio (Sres) according to a partitioning factor. Note that the signals of Sres

can be obtained by one of the restorability maximization techniques [1, 9, 102, 141] or

any other such trace signal selection technique. The total flip-flops (candidate trace sig-

nals) are denoted by FFlist in this algorithm. As explained earlier, Algorithm 1 checks

for the type of gate on paths between different flip-flops, if the gates are of XOR/XNOR

(denoted by XG), these are assigned a gscore of unity, otherwise, scores are assigned as

per Heuristic-2. In the end, this algorithm selects the higher ranked TBw signals from

a ranked list of trace signals.

5.4.3.3 Algorithmic Complexity of Proposed Heuristics

Similar to Algorithm 6, the worst case time complexity of the proposed heuristics is

O(npath) where npath is the number of paths in the netlist. This is same for both the

proposed heuristics (H1 and H2). Thus, the computation of scores as per these heuris-

tics is scalable. Note that the conditional probability-based error propagation calcu-

lation is more accurate than the proposed heuristics. It is obvious that the proposed

heuristics require much lesser computations than that of conditional signal transition

probability-based accounting for error propagation. Further, we observed that the run-

time of the proposed heuristics is either comparable to or lesser than some of the restora-

bility maximization-based signal selection techniques ([1], [9]) for the largest benchmark

circuits in Table 4.4.

Chapter 5. Effective & Combined Trace Signal Selection 141

Algorithm 9: buildSed
Input: Design,TBw,FFlist
Output: Sed

1 FFlist ← all flip-flops (candidate signals) in Design;
2 for each flip-flop FFi in FFlist do
3 Pi ← all incoming paths to FFi;
4 for each path in Pi do
5 if gate type = XG then
6 scoreg ← 1;
7 end
8 else
9 n ← number of inputs for each gate;

10 scoreg ← 1
2n−1 ;

11 end
12 scorep ←

∏
scoreg;

13 end
14 scoreed ← Σ scorep;

15 end

16 Stemped ← sort each FF by its respective scoreed;

17 Sed ← TBw signals from Stemped ;

5.5 Proposed 2-Parameter Combined Selection Method-

ology

For the purpose of combined signal selection, the computation of a separate group of Sres

and Sed defined in Section 5.4 is straight forward. However, computation of Sra is not

trivial as the routing overhead (in terms of congestion and routing wire length) depends

strongly on other signals as the routing process proceeds. We overcome this difficulty

in an indirect manner through a two-step procedure. We propose a trace signal routing

methodology (Algorithm 11) that avoids routing congestion for a given set of signals.

Minimization of the routing wire length is aimed as the subsequent step in the proposed

signal selection methodology (Algorithm 12). We begin this section by describing first

the 2-parameter trace signal selection which is to be utilized in Algorithm 12.

Chapter 5. Effective & Combined Trace Signal Selection 142

5.5.1 Combining Error Detection and Restoration for Signal

Selection

To combine both the error detection and signal state restoration parameters for selection,

a methodology is presented as Algorithm 10. This methodology utilizes the output of

Algorithm 9 (which is a list of signals as per Heuristic-2) and then provides a combined

list of trace signals. However, as mentioned before with minor modifications, Algorithm

9 can provide signals as per Heuristic-1 also which can be utilized in Algorithm 10. Since

evaluation of signal state restorability (in terms of RR) of all the possible combinations

is cumbersome, we obtain few combinations and evaluate RR for each of them. This

Algorithm 10: CombSignalSelect

Input: Sed,Sres,np
Output: Scomb

1 initialize k such that 0 < k < 1;
2 current partition(cp) = 1;
3 while cp < np do
4 S1 ← k*Sres;
5 S2 ← (1-k)*Sed;
6 common ← S1 ∩ S2;
7 if common != ∅ then
8 remove common from S2;
9 add next element(s) from Sed to S2;

10 end
11 S ′ ← S1 ∪ S2;
12 Evaluate RR for S ′;
13 cp = cp + 1;
14 increment k by ε such that 0 < k + ε < 1;

15 end
16 Scomb ← S ′ for which RR is highest;

2-parameter signal selection methodology takes two inputs: np and k, which depend on

the level of granularity desired for selecting the final set of TBw trace signals. These

parameters can vary from one circuit to another and need to be fixed at the design stage.

The partitioning factor, k decides the number of signals from Sres and Sed to be included

in the final list of trace signals. For instance, if np = 5 and a successive increase of ε =

Chapter 5. Effective & Combined Trace Signal Selection 143

10% is chosen during each partition, then k (with an initial value of 0) has the value of

0.1, 0.2, 0.3, 0.4 and 0.5 corresponding to each partition. Initially, both the signal sets,

Sed and Sres have TBw elements (signals) each. Then, the signal selection algorithm

creates different partitions (by using partitioning factor, k) of the two groups (scoreed

and scoreres) such that always TBw signals are selected at each stage of partition and

Restoration Ratio (RR) is evaluated. Note that the parameter np decides how many

such partitions need to be created for the final trace signal selection.

If TBw trace signals are to be selected by the proposed 2-parameter selection method-

ology, N1 signals are chosen from Sres and N2 signals are chosen from Sed, leading to

TBw = N1 + N2. If N2 = 0, TBw = N1 and for N1 = 0, TBw = N2. Experimental

results for 2-parameter trace signal selection in the earlier version of this work [116] have

shown that as N1 increases, there is very less difference between restoration with restora-

bility maximized signal set and the signals obtained with this combination. This implies

that signal state restoration obtained from the combined signals achieves closer values

to that of restorability maximization signals. Beyond a certain partition of the sets (Sres

and Sed) either decrease in restoration becomes minuscule or it even increases. This is

primarily because of diminishing restoration ratio (RR) effect which means that as more

trace signals are selected, there is very small addition to the total signal restoration [96].

Additionally, note that signal restoration depends on various factors like inputs applied,

the ordering of signals in the trace signal list and the manner in which rules of logic

implication are applied. Finally, it is worth to mention that for proposed 3-parameter

signal selection (presented later in this chapter as Algorithm 12), a and b represent k

and 1-k respectively and c = 0.

5.5.2 Illustration of Combined Trace Signal Selection

To illustrate that signal state restoration and error detection can be simultaneously

analyzed for the purpose of signal selection, we consider the portion of a circuit shown

in Fig. 5.9. We exhaustively explore the possible options of trace signal selection given

that the trace buffer width is 2 for this circuit. Note that for brevity in illustration, only

Chapter 5. Effective & Combined Trace Signal Selection 144

some of the inputs of the gates are shown. For brevity, we assume here that these inputs

are connected to PIs (primary inputs) of the circuit.

Figure 5.9: Example Circuit for illustrating combined trace signal selection

With the help of scoring mechanism explained as per Heuristic-2 in the previous

subsection, the error-detection score (scoreff) can be computed as shown below:

1. scoreff(A) = 0

2. scoreff(B) = 1*1/2*1/4 + 1*1/4 = 0.37

3. scoreff(C) = 1*1/2*1/2 + 1/2*1/2 = 0.50

4. scoreff(D) = 1*1/4 + 1/2*1/4 + 1/2*1/4 = 0.50

5. scoreff(E) = 1*1/2*1/8 + 1/2*1/4*1/8 + 1/8 = 0.20

For the ranking of trace signals as per above scoreff , decreasing order of the can-

didate trace signal in the set Sed is given by {C,D,B,E,A}. Next, we check RR for each

possible combination of trace signals for TBw (trace buffer width) as 2. As we have five

signals (flip-flops), there are a total of ten combinations which are candidates for selec-

tion. Table 5.3 shows the different trace signal combinations (TSC), the corresponding

RR obtained, the scoreff of the two signals (i.e., scoreff(1), scoreff(2)) and the sum

of scoreff of this combination of trace signals. The RR values are obtained with simu-

lation with random inputs for 100 cycles. The parameter (Σscoreff) is an indication of

Chapter 5. Effective & Combined Trace Signal Selection 145

the error detection/localization with the help of the respective trace signal selection. As

Table 5.3: Illustration of possible TSC (with Heuristic-2)

Sl. TSC(1, 2) RR scoreff(1), scoreff(2) Σscoreff

1 C,B 1.08 0.50, 0.37 0.87

2 C,A 1.68 0.50, 0 0.50

3 E,A 1.66 0.20, 0 0.20

4 E,C 1.25 0.20, 0.50 0.70

5 B,D 1.63 0.37, 0.50 0.87

6 E,B 1.58 0.20, 0.37 0.57

7 C,D 1.80 0.50, 0.50 1.00

8 A,D 1.90 0, 0.50 0.50

9 B,A 1.81 0.37, 0 0.37

10 E,D 1.46 0.20, 0.50 0.70

is evident from Table 5.3, TSC with maximum RR does not have the highest Σscoreff ,

suggesting the need of a combined trace signal selection methodology. Therefore, for the

different signal combinations presented in this table, the choice of {C,D}, which has the

highest Σscoreff is the most profitable as its restoration ability (indicated by RR) is

also higher than most of the other trace signal combinations.

5.6 Proposed Congestion-aware Routing Algorithm

and Wire Length Measurement Technique

5.6.1 Basic Ideas

The proposed layout wire length measurement technique takes into consideration the

routing congestion introduced by the successive signals getting routed. The proposed

trace signal routing wire length measurement technique is based on Lee’s algorithm

[158]. Before routing the signals, the current congestion criteria of the design is updated

(i.e., layout regions unavailable for routing are recorded and tracked). We route the trace

signals serially in order of their importance based on restoration and error detection.
The location of the trace signal is considered the start point and the trace buffer

location is considered the end point. As can be seen from Fig. 5.10, the smaller grids

Chapter 5. Effective & Combined Trace Signal Selection 146

Figure 5.10: Routing conditions for signal C

adjacent to the signals are numbered 1 and the values are incremented with each adjacent

grid till the end point is reached. For simplicity, the total wire length is measured as the

maximum number of grids covered from start point to end point. The routing conditions

of trace signal C (of scenario depicted in Fig. 5.5) are shown in Fig. 5.10. It can be seen

that the wire length required to route C is 11 units. On the other hand, if we want to

route D, the wire length required is 9 units as seen in Fig. 5.11. Further, note that after

a trace signal is routed, the congestion criteria is updated with the newly laid wires (i.e.,

connections to the trace buffers) due to the routing completed so far.

Figure 5.11: Routing conditions for signal D

To avoid routing congestion, we consider a factor Wlimit (typically as 3 or 4) as the

maximum lines allowable through the smaller rectangular grids in Gr (which represents

the complete layout area). Collision detection is done by checking if a (smaller rectan-

gular) grid, g16 on its path has Gr[g] equal to Wlimit. In cases where Wlimit has been

already reached, the algorithm attempts rerouting by moving it up/down and sideways.

16In our implementation, size of such grid is 1 micron by 1 micron.

Chapter 5. Effective & Combined Trace Signal Selection 147

For example, if the grid [3,4] is filled, attempt is made to route through [3,3], then move

right and so on.

5.6.2 Description of the Routing Algorithm

Consider the distance of any trace signal from the trace buffer (TB) as dn and Max(dn)

is the Maximum Manhattan Distance of all the candidate trace signals. Consequently,

for each candidate trace signal, a function Froute can be defined as below since it is

not beneficial to route chains (which are the connections from the signal to the trace

buffer) with length more than the maximum Manhattan distance, Max(dn). In the

proposed methodology, this function ensures that the trace signals are getting routed by

Manhattan distance when there is no congestion.17 In the proposed algorithm (shown

here as Algorithm 11), congestion avoidance takes place only when there is routing

congestion and thus Manhattan distance-based routing wire length can not be allowed

in this case.

Froute =

1 if dn<Max(dn)

0 if dn>Max(dn)

The proposed approach of trace signal routing from a wider pool of trace signal

candidates is shown in Figure 5.12. It is a graphical representation of the steps outlined

in Algorithm 11.

5.7 Proposed 3-Parameter Trace Signal Selection

Consider the three parameters- a, b and c which represent the weightage for restoration

parameter (RR), error detection parameter (ED) and layout-easiness parameter (LW)

respectively as explained before. For devising a trace signal selection methodology based

17In practice, dn equals Manhattan distance when there is no congestion.

Chapter 5. Effective & Combined Trace Signal Selection 148

Algorithm 11: TrSignalRouting

Input: placedCoord,MaxX,MaxY ,Wlimit,Str
Output: routedConn,Wlength

1 Gr ← grid of MaxX by MaxY dimension (consists of a set of smaller grids);
2 Initialize all the entries of Gr[g] to 0;
3 Str ← list of trace signals;
4 placedCoord ← coordinates of FF’s;
5 tbx, tby ← coordinates of trace buffer;
6 Wlimit ← maximum number of wires routed through each smaller grid;
7 maxlength ← maximum distance available for routing across the complete grid

Gr;
8 for each trace signal ffi in Str do
9 ffx, ffy ← coordinates of ffi from placed Coord;

10 V alue=Froute(ffi);
11 If V alue=1, proceed below else skip to next signal;
12 For each grid g belonging to Gr that has a wire routed through it, Gr[g] =

Gr[g]+1;
13 Across Gr, move above, below, sideways (from east to west and then from

north to south) and check for Wlimit in each direction;
14 Obtain wire length(wl) from ffx, ffy and tbx, tby;
15 if Gr[g] != Wlimit && wl < maxlength then
16 Signal can be routed to trace buffer;
17 Update Gr[g] for smaller grids in this path to TB;

18 end
19 else
20 Signal can not be routed to trace buffer;
21 end
22 Wlength ← wl of routed signal;

23 end
24 routedConn ← routed connections of trace signals;

on the enhancement of all the three parameters, we define the following score function:

scoreFunction = a ∗RR + b ∗ ED + c ∗ LW (5.8)

However, deciding trace signals based on this score function is not easy as these three

factors have conflicting preferences. It is desirable that RR and ED are as high as possible

whereas LW (wire length required for routing particular signal to trace buffer) be as low

Chapter 5. Effective & Combined Trace Signal Selection 149

Consider each candidate
trace signalTrace Signals

Signal Co-ordinates
(.def file)

Wire limit

Maxlength

Moving from
trace signal

in
any of four directions

possible?

wl < Maxlength ?

yes

Routing is possible

yes

Checking for Wire limit

find
wirelength(wl) for

routing it to TB

Figure 5.12: Proposed algorithm for routing of trace signals

as possible. Hence, additive combination of all these three parameters is not straight-

forward. Furthermore, the computation of routing congestion is possible only when

successive signals are routed and checked for overhead (say, wire length constraints for a

given budget). As explained before, we propose a two step signal selection methodology

to overcome this problem. The proposed 3-parameter trace signal selection methodology

is described below as Algorithm 12.18

The first step of signal selection is done by picking from three lists- Sres, Sed and a

sorted list of trace signals based on Manhattan distance (from the trace buffer) of each

one of them. Thus, the third list serves as a measure of wire length for Sra in Eqn. 5.3.

However, actual routing length of the signals would not be same as their Manhattan

distance. So, the final selection should be based on route length which can be decided

only when routing of signal proceeds as the congestion resulting due to subsequent routing

of each signal needs to be accounted for. We consider an initial number of signals as

18Algorithm 11 implements Manhattan distance-based checking + congestion-checking. Whereas, in
Algorithm 12, Manhattan distance-based checking is not needed as already a sorted list of trace signals
(in Sra) is input to it.

Chapter 5. Effective & Combined Trace Signal Selection 150

Algorithm 12: SelectF inalTrSignals

Input: a,b,c,TBw,Sres,placedCoord,tbx,tby,Sed
Output: TrSignals

1 q, r ← 0;
2 for each trace signal ffi in FFlist do
3 Mhdi ← Calculate Manhattan distance (MD) from placedCoord and tbx,

tby;
4 LW ← Mhdi;

5 end
6 Sra ← Sort all signals as per their LW values;
7 TrSignals′ ← 2*TBw signals from Sres, Sed and Sra by using choices of a, b & c;
8 route 1st signal from TrSignals′ by Algorithm 11;
9 compute route length (RL) for 1st signal;

10 tempi=1, index=tempi;
11 while tempi != TBw do
12 index=index+1;
13 if RL of sig[index] < MD of sig[index + 1] then
14 Keep this signal in TrSignals;
15 tempi=tempi+1;
16 if this signal is from Sres or Sed then
17 increment q or r accordingly
18 end

19 end
20 else
21 route sig[index + 1] to trace buffer;
22 swap positions of these 2 signals in TrSignals′ to move less profitable

signals downwards;

23 end

24 end
25 if q and r are not comparable to a*TBw and b*TBw respectively then
26 Need to change wire length budget(maxlength);
27 Call Algorithm 11 with new wire length budget and start again from step 8

of this algorithm;

28 end
29 TrSignals ← finally selected and routed trace signals;

twice the trace buffer width (TBw) in the list TrSignals′. In practice, a list of n*TBw

signals is needed where n>1. For simplicity, we chose n as 2 here. This is because if some

signals in top TBw signals can not be routed as per the routing constraints, low ranked

signals can be included in the final trace list to select TBw signals. Thus, initially the

Chapter 5. Effective & Combined Trace Signal Selection 151

total number of signals chosen from Sres, Sed and Sra equals 2*TBw as per the respective

choices of a, b and c.

One of the unfavorable scenarios occurs when all the signals from the groups Sres

and Sed can not be routed. Under such a scenario, a higher wire length budget is to

be accommodated. This is a preferable approach compared to a sorting of signals of

Sres and Sed and then creating an initial group out of them. It can lead to undesirable

signals from the perspective of state visibility enhancement and error localization causing

severe degradation of these important factors. Hence, we introduce an approximate check

condition for such cases in Algorithm 12. The algorithm begins routing for the first signal

with LW parameter (in Eqn. 5.8) for it as Manhattan distance (MD). After this signal

is routed, we obtain its routing length (RL) as wire length avoided due to collision (if

any). This length is compared with Manhattan distance of the next trace signal. If RL

of previous signal is less than MD of next signal, this signal is selected as final signal

otherwise the positions of signals (flip-flops) in the list TrSignals′ are swapped. This

swapping and incremental selection ensures that we are not missing out important signals

from the point of restorability/error detection and simultaneously choose signals which

are layout-friendly. This process is iterated till the trace buffer width (TBw) is reached.

This is the second step of signal selection to get the final list of trace signals, TrSignals.

One of the minor differences between the 2-parameter signal selection described in

earlier part of this section and the proposed 3-parameter signal selection algorithm de-

scribed above is that fine-grained divisions of the individual signal sets are not accounted

in the latter. However, a fine-grained partitioning based on input parameters (a, b and

c) can be easily done on all the three signal sets involved here and then accordingly

incorporated in SelectF inalTrSignals methodology. Moreover, the common elements

(i.e., trace signals) between various signal sets, if present in Sfinal (which is obtained

from the methodology in Algorithm 12) can be removed similar to the 2-parameter trace

signal selection (Algorithm 10) described earlier.

Chapter 5. Effective & Combined Trace Signal Selection 152

5.8 Proposed Error Localization Methodology

We analyze the restored and traced signal states for the purpose of gate-level error local-

ization. After application of signal state restoration technique, a significant amount of

the unknown signal states are discovered. The partially reconstructed (traced+restored)

flip-flop signatures are compared with golden signal states which can be obtained from

a high level reference design description. In the experimental section, we report error

localization results for signal selected with the proposed methodology and compare with

restorability maximization-based signal selection techniques. We perform a topological

connection-based analysis of the injected error location (errori) and identify the actual

suspect flip-flops that can be infected by errori. The randomly injected design error (at

gate-level) falls into the logical cone of few flip-flops (suspectactual). With the help of

the traced and restored flip-flop values, we can localize to suspectactual either exactly or

obtain a list of probable candidates. This is illustrated in detail in Section 5.9.3. If the

suspect flip-flops (suspectff) obtained by the analysis of the debug data matches with

suspectactual, we can localize the error(s) easily to a smaller region.

Typically, silicon debug is done in multiple sessions19 [159]. For example- consider

a debug scenario with two successive runs. After the first run finishes, at T th clock

cycle, contents of all the flip-flops can be known through the scan chains. In the next

run/session, due to an execution of 1024 clock cycles (which is the trace buffer depth),

the data from T + 1st to T + 1024th clock cycles needs to be taken out of the trace

buffer and analyzed for the debugging purpose. We have considered T as 1000 for all

the circuits during the experiments. The full state of the design at T th cycle is known

through the help of scan chains. The last completely known design state (corresponding

to the previous execution) is shown by lcs in Algorithm 13. As we perform off-line

dumping of the complete state corresponding to T th cycle for debugging analysis, we can

feed this state (lcs) back into the chip through the same scan chains, to make sure that

during the session from T + 1st to T + 1024th clock cycles, the chip state remains same

19The methodology in Chapter 7 is also based on this technique.

Chapter 5. Effective & Combined Trace Signal Selection 153

as that at the end of first session. However, lcs may not be fully correct as it has been

obtained from a buggy design execution.

Algorithm 13: SigStatesBasedDebug

Input: GFFsignature,TracedSignalStates,lcs,FFlist
Output: suspectff

1 lcs ← last known complete design state;
2 Datain ← TracedSignalStates;
3 Apply signal state restoration technique on Datainc using lcs, Datain and design

description;
4 Dataexp ← expanded debug data;
5 GFFsignature ← flip-flop signature of Dtb cycles;
6 for each flip-flop (ffi) of FFlist do
7 Compare GFFsignature and Dataexp;
8 for each clock cycle do
9 f ← signal state of ffi in Dataexp;

10 f ′ ← signal state of ffi in GFFsignature;
11 suspectvalffi=0;
12 if f == X or f == f ′ then
13 suspectvalffi=0;
14 end
15 else
16 suspectvalffi=suspectvalffi+1;
17 end

18 end

19 end
20 Rank all FFs by suspectvalffi ;
21 suspectff ← Top ranked FFs;

With different trace signal selection techniques, expanded visibility (Dataexp) varies

significantly. This variation has impacts on the efficacy of error localization process.

Note that an increase in Dataexp does not lead to a better localization if the traced

signals are not effective from the point of error localization. As stated before, we assume

that GFFsignature is available from the simulation of a high level abstraction of the design

which is fully verified. This is very difficult to obtain in practice. For the purpose of

experiments, simulation of a non-buggy version of the design is treated as the golden

circuit response. This is one of the limitations of the proposed debugging methodology

since most of the subtle bugs can take days or weeks for excitation [159].

Chapter 5. Effective & Combined Trace Signal Selection 154

Note that the signal state restoration is applied on the buggy netlist and the traced

signal states of the buggy design. This ensures that the restored signal states are indeed

correct and assist in ruling out the possibility of false positives in the list of suspect can-

didates during the debug process. To obtain lcs, we utilize the scan chains as explained

before. With the assumption of repeatable behavior of bugs, the scan dumping can

be achieved easily and can be performed immediately after the trace data is offloaded.

However, the proposed methodology requires stalling of the chip execution to facilitate

the dumping of the scan and trace data. This is definitely an undesirable aspect of the

proposed debug methodology as it leads to intrusiveness inside the design execution.

While a complete elimination of these execution stalls is very difficult, efforts can be

envisaged to minimize the number of such stalls by methods of compression of traced

data or summarizer-based gathering of trace data [160]. Finally, it is worth to note that

the proposed methodology presented in Algorithm 13 assumes the complete knowledge of

lcs which can not be extracted in some of the debug scenarios even if the corresponding

bug behavior is repeatable.

5.9 Experimental Results and Discussions

5.9.1 Experimental Setup

We selected a variety of benchmark circuits for experiments- ISCAS’89, ITC’99 and

Opencore [143] suites. The characteristics of these benchmark circuits are noted in

Table 4.4. For the purpose of routing, the benchmark circuits were first synthesized

using Synopsys Design Compiler and Synopsys 32 nm educational generic standard cell

library. Floorplanning and placement were performed by Synopsys IC Compiler tool

with the cell libraries (in the SAED 32nm distribution) as per multiple metal layers.

In all the experiments, we have considered the trace buffer width, TBw as 32 and the

trace buffer depth, Dtb as 1024. We define the following metric20 to quantify the amount

20Because of change in inputs, Statesresto varies with each experiment targeting error localization.
The results in Table 5.4 indicate the value of the metric which is observed maximum times out of
experiments involving a total of 100 iterations.

Chapter 5. Effective & Combined Trace Signal Selection 155

of signal states reconstructed with a given set of trace signals:

Restored fraction,Rf(list) =
Statesresto(list)

Dtb ∗ Ftot
(5.9)

5.9.2 Comparative Evaluation of Signal State Restoration

The signal restoration calculation of different signal selections are reported in Table 5.4.

Note that Ftot represents the total signals (flip-flops) in the design). We consider here

trace signal selected by Heuristic-1 and Heuristic-2 as S(H1) and S(H2) respectively.

Additionally, following methods of restorability maximization from literature are consid-

ered for comparison:21

• greedy heuristic of region-based selection, utilizing structural relationships of the

design netlist [1]-M1

• simulation-based selection using ILP (Integer Linear Programming) to discover

most effective signals [9]-M2

• multi-mode hybrid signal selection, based on analysis of circuit into various modes

due to control signals [141]-M3

The signal restoration results in terms of Rf 22 values are presented in Table 5.4 for

all the five trace signal lists (which are obtained from H1, H2, [1], [9] and [141]). For the

latter three cases (i.e., [1], [9] and [141]), they are shown by M1, M2 and M3 respectively

for identical representation. Throughout the rest of this chapter, these methods are often

referred to as restorability maximization-based signal selection techniques.

Note that in Equation 5.9, Statesresto(list) is inclusive of the traced signal states. For

some of the benchmark circuits, there is a wide disparity between signal state restoration

computation of signals obtained with the proposed Heuristic-1 or Heuristic-2 and the

restorability maximization-based signal selection methods [1],[9],[141]. However, signals

21We specifically consider these three signal selection techniques for comparison as the respective
authors have publicly released their tools.

22Compared to RR, Rf serves as a direct metric for accounting error localization as fraction of total
signal states known to us (either through signal restoration or tracing) is computed in the latter metric.

Chapter 5. Effective & Combined Trace Signal Selection 156

Table 5.4: Restored fraction, Rf(%) for different signal selections

Name S(H1) S(H2) S(M1) S(M2) S(M3)

b17 4.02 5.56 14.40 15.63 8.89

b21 13.26 10.14 11.34 24.87 25.13

p16c5x 12.70 13.72 19.68 17.59 17.80

mips 81.93 81.93 96.71 96.59 42.87

usb 7.08 5.43 45.08 32.38 35.79

s5378 48.20 41.40 59.28 51.16 62.39

s9234 23.72 42.42 28.62 66.68 82.76

s13207 50.34 52.26 42.58 29.50 79.80

s15850 13.50 12.05 25.27 65.03 85.09

s35932 7.39 7.22 53.35 84.67 81.19

s38417 2.55 2.55 5.95 16.08 20.87

s38584 72.15 70.69 70.07 81.76 82.97

with proposed heuristics (H1 and H2) could not achieve comparable restoration to these

techniques for some of the benchmark circuits. Thus, we expect to benefit from the

point of signal reconstruction when we perform a combined signal selection (i.e., mixing

of signals selected for various preferences as the internal visibility can be enhanced by

combination). Note that the sum of traced and restored signal states reported in Table

5.4 are obtained by applying user-defined inputs unlike random inputs as is done in [116].

As is evident for some of the benchmark circuits, two different set of trace signals may

have the same magnitude of Restored fraction (Rf). For mips circuit, trace signals

obtained with proposed heuristics (H1 and H2) achieved higher signal state restoration

than trace signals obtained from the technique described in [141].

5.9.3 Design Error Localization

5.9.3.1 Chosen Design Error Models

For electrical bugs, their behavior can be modeled as bit-flips [24, 34, 161]. However,

it is widely acknowledged that modeling design bugs at the post-silicon level is difficult

and can not be generalized [55, 116]. In spite of this limitation, certain gate-level errors

can reasonably represent design errors with in complex digital blocks of the design [43],

[50], [162],[163],[164]. Four such error models [51, 55, 116] which are utilized throughout

Chapter 5. Effective & Combined Trace Signal Selection 157

this thesis are shown in Table 5.5. Their corresponding RTL equivalents can be easily

derived [93]. However, the inherent assumption is that their detection at the pre-silicon

verification may not be very easy because either the particular test-case is missing in the

test bench or the specific sequence to excite (sensitize) this kind of error is lengthy or

very complicated [24, 51, 55, 165].

Table 5.5: Gate-level design bug/error models

Name Meaning

e1 wire exchange one wire gets exchanged by another

e2 extra inverter an unintended inverter gets added

e3 input shorts inputs of a gate get shorted

e4 random gate replacement a gate gets replaced by another gate

Out of the four bug models mentioned in Table 5.5, we illustrate the first two cases.

The wire exchange scenario is shown in Fig. 5.13. Suppose wires marked as s and t

are exchanged. Consequently, the error propagates to F2, F3 and F4 (all shown in red).

With the help of discovered (restored) and known (traced) signal states, if we are able to

localize to all or one of them, in subsequent debug steps we can reach to the exchanged

wires with least effort. The second bug scenario, e2 (extra inverter insertion) is depicted

Figure 5.13: Design error-1 (e1) illustration

in Fig. 5.14. The inverter (circled) is added to the netlist because of a design bug and

its effects reaches to F1 and F2 through combinational gates (which are shown in red in

addition to the affected flip-flops). For an effective localization, the debug data should

assist in arriving at F1 or F2 or both (but not F3).

Chapter 5. Effective & Combined Trace Signal Selection 158

Figure 5.14: Design error-2 (e2) illustration

5.9.3.2 Error Localization Metric Definition

Typically, error detection-aware selection algorithms employ a metric which measures the

number of erroneous signature bits when compared to golden signature bits [116, 148].

However, such a metric can not be directly related with error localization. Thus, we define

a localization function (Zloc) described in Table 5.6. We performed 25 iterations of each

type of error injection scenario (mentioned in Table 5.5) for each benchmark circuit. In

each iteration of the error injection, a set of the infected flip-flops (suspectactual) are

obtained and then this set constituents are matched with elements of suspectff set.

This matching leads to an exact root-cause discovery and the corresponding bugs/errors

in the RTL description can be identified and some fixes or correction measures can be

attempted in a relatively quicker manner.

Table 5.6: Localization metric definition

fn. Value Condition Remark

Zloc 1 suspectff = suspectactual effectively localized

Zloc 1 suspectff ⊂ suspectactual localized

Zloc 0 suspectff 6⊂ suspectactual not localized

5.9.3.3 Comparative Evaluation of Design Error Localization

Zloc values for all the four scenario (e1, e2, e3 and e4) are reported in Table 5.7 in an

averaged manner. For each type of error, the error injection experiment is carried out K

times; Zloc has a maximum value of K and a minimum value of zero. We performed K

(= 25) iterations of each type of error (wire exchange, extra inverter, input shorts, gate

Chapter 5. Effective & Combined Trace Signal Selection 159

replacement) injection for each benchmark circuit, totaling into 100.23

As it is seen in Table 5.7, the signals with proposed H2 achieve better error local-

ization than the restorability maximization methods [1, 9, 141] except for s35932 and

s38417 circuits. Additionally, trace signals corresponding to H2 perform better than H1

because of improved error propagation through gates on the combinational paths. How-

ever, this difference is not large because of inaccurate estimation with H2 which can be

improved further. For s15850 circuit, signals from H1 perform better error localization

than that of H2. We observed similar trends when we repeated the error injection and the

subsequent localization experiments for fifty iterations of each error model corresponding

to each circuit. From Table 5.7, it is clear that an increased internal visibility does not

Table 5.7: Localization results (Zloc values out of 100)

Name S(H1) S(H2) S(M1) S(M2) S(M3)

b17 54 59 50 49 45

b21 59 62 53 47 46

p16c5x 57 65 49 46 35

mips 67 57 53 49 43

usb 50 55 49 47 52

s5378 58 56 45 43 54

s9234 55 57 43 46 46

s13207 59 60 44 42 49

s15850 58 56 49 52 47

s35932 40 42 47 50 46

s38417 33 35 42 43 46

s38584 57 62 54 47 51

monotonically translate to an enhanced error localization.24 Note that restorability max-

imization techniques are generally out-performed. One of the reasons is that structural

relationships are helpful in identifying signals capable of higher error detection. The

other metric to evaluate error localization is the number of common elements between

suspectactual and obtained suspectff for each iteration of error injection. We observed

23Thus, the averaged Zloc values (corresponding to the four error scenarios, e1, e2, e3 and e4 shown
in Table 5.5) also have a maximum value of K (= 25). In [33], these values were reported for a total of
80 iterations for each benchmark circuit.

24Increasing the number of error injection experiments to 200, we observe the same trend for the
signal selections as shown in Table 5.7.

Chapter 5. Effective & Combined Trace Signal Selection 160

that the number of such common elements are substantially higher in the case of S(H1)

and S(H2) as compared to the restorability maximization techniques [1, 9, 141]. Across

the benchmark circuits and different error models, the least value of Zloc obtained by

H1, H2, [1], [9] and [141] vary in the range of six to seventeen out of the maximum value

of twenty-five among the individual error models.2526 Some of the trace signals perform

better for some of the error models with varying nature from one circuit to another. The

lower values of Zloc indicate the difficulty in error localization with a restricted visibility

of the internal signal states of the design.

We performed the above experiments with the trace signals from topology-based

selection [51] which is explained earlier in this chapter. The error localization (Zloc

values) are comparable to that of the trace signals obtained with H1 or H2. For the

sake of completion, we also implemented the methodology in [111] where in the analysis of

error propagation by conditional probability is done. We observed that error localization

with the trace signals obtained from the technique in [111] provide comparable results to

that of the trace signals obtained with H1 or H2 in most cases, while slight improvement

is achieved in few cases.

Note that inspite of lower values of Rf , we succeed in error localization as this metric

includes traced signal states along with the restored ones. Traced signal states play an

important role in localizing the error. For the error injection experiments in which Zloc

value turns out to be zero (i.e., there is no exact match between the sets suspectactual and

suspectff), it is required to closely inspect the signals obtained in the suspectff set.

The flip-flops in the vicinity of the elements in suspectff set can lead to the signals in

suspectactual set. Achieving exact error localization (i.e, the particular gate or wire/net)

25For any one error model, Zloc has a maximum value of 25, in total across all four models, the
maximum value of Zloc is 100 for any benchmark circuit.

26It is definitely true that the error localization results would vary with the type and location of
error injection. We observed that gate replacement type of error injection requires a larger number of
gates to be replaced for obtaining a buggy netlist which shows difference in the signal state of flip-flops.
Typically, to obtain 25 iterations of such netlist, we require going through 40 to 70 iterations of error
injection in which few lead to difference in the signal state of flip-flops while others show the same value
as the golden signal states. Such iterations are required for other error scenarios also. Additionally, we
observed that a gate replacement type error requires many gates in the netlist to be replaced to reflect
difference in the signal states of flip-flops.

Chapter 5. Effective & Combined Trace Signal Selection 161

for all the design error scenarios is our future work. Note that error localization strongly

depends on the injected error location. If it lies in the vicinity of trace buffer (TB),

it can be easily localized. From Zloc values in Table 5.7, it is clear that higher signal

state reconstruction/restoration does not necessarily assist in localizing the chosen design

bugs. However, expanded internal visibility becomes useful for localizing electrical bugs

(modeled like bit-flips) or non-reproducible errors. Thus, it is desirable that higher signal

state restoration be also considered as a goal for the combined trace signal selection along

with the objectives of efficient error localization and routing-awareness.

5.9.4 Routing and Wire Length Measurement Results

In the beginning, a floor-plan is created as per the circuit size and area budget and then

only the placement of all the circuit components (including the trace buffer) is done

by the commercial tool to obtain the placement co-ordinates of all the candidate trace

signals. Afterwards, all the circuit components (except trace signals) are routed which

gives the routing congestion scenario. Then, the proposed routing and selection algo-

rithm comes into play. The algorithm, SelectF inalTrSignals selects the trace signals

and subsequently their routing (to the trace buffers) is done. For a seamless integra-

tion and implementation, the proposed algorithm can be internally incorporated in any

commercial tool. The trace buffers are placed at the end of the chip boundary so that

off-chip dumping is quick because of the mismatch between chip execution speed and the

dumping of the internal signals (flip-flops).

We have considered a regular arrangement of the trace buffers. However, there can

be distributed trace buffers also in the design. The routing methodology remains same

with slight adaptation for the distributed case. Table 5.9 shows the routing wire length

(with the proposed congestion-aware algorithm, TrSignalRouting i.e., Algorithm 11)

for signal sets with TBw as 32. As expected, there is a wide variation between wire

length of various set of signals for different benchmark circuits. The minimum routing

wire length does not necessarily occur for any particular set of trace signals for all the

circuits. Note that the wire route length of all the benchmark circuits appear to be in

Chapter 5. Effective & Combined Trace Signal Selection 162

the same range. The P&R tool (Synopsys IC Compiler) automatically chooses the die

area as per the size of the circuits. We observed that the actual chip boundary (in which

the routing and placement occurs) varies with the size of the benchmark circuits (for ten

circuits, the co-ordinates are reported in Table 5.8 which act as end-points of the grid

considering starting point as (0,0)).

We performed a second set of experiments with a higher area configuration to let the

P&R tool choose a larger chip boundary for each circuit according to its size. However,

due to the relative scaling of the wire length needed to route all the components (and

accordingly the trace signals), the trend of variation of different signal selection tech-

niques on route wire length remains same. We observed that there is no change in the

relative routing congestion with different signal selection techniques when a larger layout

area (and higher grid size) is adopted. When a larger size circuit size is placed in a size

suitable for smaller ISCAS’89 circuits, the minimum wire length is in range of hundreds

of microns. The wire length to route different trace signal (to the trace buffers) shows a

variation from 1X to 3.4X from the minimum value.

Table 5.8: Grid co-ordinates after placement

Circuit X co-ordinate Y co-ordinate

s5378 62288 61832

s9234 68672 68520

s13207 135728 135272

s15850 137096 136944

b21 128408 127040

p16c5x 109864 108648

s38417 157440 157136

s38584 166560 165496

s35932 158808 158808

usb 164128 163824

In Table 5.9, entries in braces indicate the number of trace signals which can not

be routed with in a given Wlength budget. Thus, for b17 circuit, when signals selected

as per technique in [1] are routed with the proposed algorithm, one out of 32 signals

can not be routed with the given chip (grid, Gr) configuration. In this case, the wire

length of remaining 31 signals is found to be 7524 units. All the distances are in microns.

Chapter 5. Effective & Combined Trace Signal Selection 163

Table 5.9: Total wire length (of original trace signal list)

Name S(H1) S(H2) S(M1) S(M2) S(M3)

b17 7569 8276 7524(1) 8230 9579

b21 9865 9315 9758 9105 8460

p16c5x 9518(1) 9612(1) 9339 9572 8360(1)

mips 8478 7890 7988 6987 8956

usb 8445 6430 7585 6407 8450

s5378 9118(2) 10269 10320 10109 9583(1)

s9234 10196 9878 9203(2) 9679 9704

s13207 9016 9495 9739 9314 9034

s15850 9035 9497 8940 9190 9160

s35932 7719 8384 6927(7) 8341(1) 9616

s38417 8637 8628 9675 8417 8542

s38584 8893 8892 8405 8402 8782

Interestingly, for the case of s35932 circuit, for trace signals obtained from [1], as many

as 7 of them can not be routed. We then perform the routing as per the complete signal

selection algorithm, SelectF inalTrSignals which takes as input signals twice the trace

buffer width (2*TBw). It then performs an iterative search for signals to be routed from

a sorted list (as per Manhattan distance) of 2*TBw trace signals.

For analyzing variation in routing wire length with the modified approach as com-

pared to TrSignalRouting algorithm, we consider an initial list of 64 (twice the trace

buffer width) signals from each of the five trace signal methodologies: H1, H2, [1], [9]

and [141]. As is shown in Table 5.10, the wire route length decreases because of the

iterative search (in a successive manner) to discover profitable signals for minimizing the

routing overhead. For some circuits, signal selections (having trace signals which could

not be routed), the corresponding values in Table 5.10 are higher as now, all the signals

are being routed leading to an increase in the total wire length. This can be seen in the

case of [9] for s35932 circuit where total wire length increases from 8341 to 8378.

We repeated the routing experiments by deploying the trace buffers in the middle of

the circuit for different trace signal lists. Under this scenario, as expected, the total wire

length reduces because of lesser skew on the input trace signals. However, the routing

congestion worsens when the trace buffers are placed in the center. We observed that

regardless of the signal selection technique, some trace signals can not be routed to the

Chapter 5. Effective & Combined Trace Signal Selection 164

Table 5.10: Total wire length (proposed routing & selection technique)

Name S(H1) S(H2) S(M1) S(M2) S(M3)

b17 7336 8264 7415 8184 9517

b21 9743 9227 9552 9002 8429

p16c5x 9473 9560 9311 9572 8909

mips 8402 7877 7889 6884 8887

usb 8432 6367 7098 6399 8354

s5378 9675 9867 10116 9728 9690

s9234 9990 9711 9852 9540 9629

s13207 9007 9483 9729 9309 9018

s15850 8453 9407 8910 9076 9020

s35932 7668 8289 8088 8378 9094

s38417 8607 8597 9061 8398 8535

s38584 8852 8852 8294 8402 8291

trace buffer even when initially 2*TBw signals are selected for routing. The number of

signals which can not be routed to trace buffer varies from one to eleven in the case of

proposed heuristics and restorability maximization techniques. The worst case scenario

occurs for s35932 circuit when as many as 19 signals (for trace buffer width of 32) can

not be routed for the signals obtained from technique in [1]. This observation justifies

placing the trace buffer at the periphery. It is worth to mention that we performed

static timing analysis (STA) of the final netlist (after the insertion of trace buffer and

subsequent routing) to assess the impact on circuit performance. We observed that the

targeted clock frequency can be met for the final netlist. This shows that the design

performance is unaffected by the proposed routing methodology. However, minimization

of critical length and congestion-aware routing of trace signals to the trace buffers can

be considered in future for simultaneous optimization.

5.9.5 Combined Trace Signal Selection Results and Analysis

5.9.5.1 Obtaining a Signal List by Combining Individual Signal Sets

As per SelectF inalTrSignals algorithm, a combination of signals with input values

of a, b and c needs to be created depending on user preferences. For the purpose of

illustration of this combination, we chose a simple scenario with a = 0.3, b = 0.5 and c =

Chapter 5. Effective & Combined Trace Signal Selection 165

0.2. This particular choice of a, b and c is meant for achieving better error localization.27

Accordingly, these signals are stored in TrSignals′ list from where the final trace signals,

TrSignals (Sfinal) are selected. Some signals which are selected with c = 0.2 are common

with signals selected from 0.5 fraction of Sed and 0.3 fraction of Sres.
28 Note that for

the purpose of combined signal selection, we chose Sres which has maximum restored

signal states out of signals with [1],[9] and [141]. For Sed, we chose set of signals selected

with Heuristic-2 as they are observed to be slightly better in localization compared to

signals selected with Heuristic-1. We first perform the routing of the candidate trace

signals (TrSignals′) and based on the routing overhead minimization, the final trace

signals (TrSignals) are obtained. Restorability calculations are then done on signals in

TrSignals′ (32 in number) for 1024 clock cycles (which is the trace buffer depth here).

Note that we begin with a list of 64 (2*TBw) signals and end up with the routing of 32

signals only to meet the target trace buffer width (TBw = 32).29

5.9.5.2 Results of Combined Signal Selection

For the combined list of trace signals, Restored fraction(%) values are reported in the

second column of Table 5.11 and the corresponding maximum Rf (out of the five signal

lists) are reported in 3rd column denoted bymax. Since the final list (Sfinal) is constituted

with some signals from either of [1],[9] or [141] and S(H2), the Wlength (sum total of

actual length of wires routed to the trace buffer) lies between minimum and maximum

of the corresponding values of these lists. For each circuit, the maximum Wlength (out

of the five signal lists) computed from values in Table 5.10 are reported in 5th column of

Table 5.11. For most of the circuits, we achieved substantially higher Restored fraction

values as compared to the signals as per the proposed heuristics (S(H1) or S(H2)).

27Signal sets for such choices of a, b and c can be obtained by the iterative partitioning of the individual
set of signals as presented in Algorithm 10.

28Essentially, for many circuits, this choice resembles choices of a = 0.5, b = 0.5 or a = 0.4, b = 0.6
and a = 0.4, b = 0.5, c = 0.1.

29The final results of this combined signal selection depend on the manner in which the trace signals
are arranged in the combined pool of signals. Signals corresponding to the choice of a, b and c can be
arranged in six different ways. We report the results when signals are arranged in the order: first signals
of Sres, signals of Sed and then signals of Sra.

Chapter 5. Effective & Combined Trace Signal Selection 166

Further reduction in Wlength can be obtained by increasing the value of c; however, this

may severely impact the signal state restoration and the subsequent error localization.

Table 5.11: Results for combination, Sfinal(S) with a = 0.3, b = 0.5, c = 0.2

Name Rf(S) Rf(max.) Wl(S) Wl(max.) Zloc(S)

b17 11.04 15.63 8306 9517 68

b21 23.04 25.13 8640 9743 63

p16c5x 16.71 19.68 9552 9572 67

mips 86.14 96.71 8456 8887 67

usb 42.87 45.08 8255 8432 59

s5378 58.57 62.39 9788 10116 63

s9234 73.71 82.76 9924 9990 60

s13207 72.63 79.80 9160 9729 62

s15850 79.17 85.09 9356 9407 61

s35932 57.43 84.67 8573 9094 51

s38417 5.31 12.87 8652 9061 45

s38584 78.82 82.97 8416 8852 66

As can be seen from Table 5.11, for some circuits, we achieved quite close Rf to their

maximum values (out of the five trace signal lists). This is essentially because greedy

selection (like [1]) suffers from diminishing restoration ratio (RR) effect as explained

earlier. Thus, the main contribution to restoration is because of some signals only. If

they are included in the final list (Sfinal), signal restoration can be significantly high as

compared to the signals with H1 or H2 methods. To examine the utility of the combined

signal set towards error localization, we injected the same errors corresponding to e1, e2,

e3 and e4 scenarios (each having twenty-five iterations totaling 100 iterations for each

circuit) as reported in Table 5.7. We attempted localization of these errors with the set

of signals in Sfinal as per the proposed debug methodology. Zloc values are reported in

the last column of Table 5.11. These values are higher than that of Table 5.7 because the

inter-mixing of signals from different signal sets assists in localizing the errors which may

have been missed out even by all the signals from the same set (list). Interestingly, we

observed similar trend when the final signal selection is carried out by combining with

signals obtained from H1. We also observed that the final results of error localization

vary significantly with the combination of trace signals (parameters a, b and c). We

could not achieve complete error localization (i.e., Zloc values as < 100 in Table 5.11)

Chapter 5. Effective & Combined Trace Signal Selection 167

which shows that the chosen values of combination parameters (a, b and c) is definitely

not the best for error localization purpose.

5.9.6 Different Perspectives on Trace Signal Selection

5.9.6.1 Varied Utility of Trace Signal Selection Methodologies

The proposed approach of signal selection can be utilized for on-line error detection

in addition to post-silicon validation. The scheme outlined in [8] requires a selection

of signals for on-line design error detection for processors. For error detection in SoCs,

selection of signals of various models based on the proposed methodology can be adopted.

Even though we attempted design bug localization only, Iwata et al. have shown that the

proposed approach of error detection aware trace signal selection is helpful for localizing

bit-flips to a significant extent [24].

5.9.6.2 Path Diversity in Topological Ranking of Signals

We have proposed a signal selection algorithm which analyzes common gates on the

paths between various flip-flops and refines assignment of error transmission capabilities

of these flip-flops in [119]. We observed that this method becomes computationally

intensive without yielding much impact on error localization for design errors. Similar

to the heuristic utilized in [119], we experimented with ranking of signals by considering

various S-graph related factors like those of graph centrality. These refinements have

very little impact on end results in the debug process.

5.9.6.3 Alternatives to Conventional State Restoration Technique

The basic principles of signal state restoration techniques need to be investigated to

achieve higher restoration since mere application of forward propagation and backward

justification rules are not sufficient for the maximization of signal state restoration [166].

Furthermore, except exhaustive simulations, there is no method to quantify the max-

imum restoration available from a given set of trace signals. Thus, the absolute prof-

itability of a set of trace signals for the purpose of restoration maximization can not be

Chapter 5. Effective & Combined Trace Signal Selection 168

ascertained. We observed the dependence of ordering of trace signals in the signal list

during our experiments on several circuits. Some of the previous work have considered

the order in which signals are present in the trace signal list [167],[141, 165] for signal

state restoration maximization. Investigating the ordering of trace signals on other as-

pects like error localization is a promising goal in this direction. A new approach has

been proposed by Cheng et al. [168] in which groups of flip-flops (which are referred to

as clusters) in the design are identified. Based on the logical relation between the cluster

elements (flip-flops) and the inputs to the cluster, signal states of all the untraced clus-

ter flip-flops can be known. However, the methodology involves the tracing of the initial

values of the flip-flops in the cluster, following which the signal states can be restored

for any number of clock cycles.

5.10 Conclusion

This chapter proposed a topology based signal selection which is directed towards identi-

fying signals useful for early and maximum error detection. The proposed methodology

of topology-based signal selection is refined by incorporation of two heuristics aimed at

error detection. These heuristics are combined together with the metric of signal state

restoration to obtain an enlarged view of internal visibility and achieving enhanced error

localization. Additionally, the proposed signal selection algorithm is routing congestion-

aware and hence incurs minimal routing overhead. The combined selection of trace

signals from different sets improves the effectiveness of the selected signals. Since, we

could not achieve error localization in all the iterations (of error injection) during our

localization experiments, we explore learning-based techniques in the next chapter.

− ∗ − ∗ −

Chapter 6

Learning-assisted Gate-level Error

Localization Techniques

6.1 Introduction

An efficient bug localization process at the post-silicon stage helps significantly in avoid-

ing re-spins of the design. However, in the present era of designs with tremendous

complexity, the limited accessibility of internal signals of design is the one of major ob-

stacles in quick bug localization. Machine learning strategies hold promise of assisting

us in revealing subtle intricacies of correlation between different components of the de-

bug data. We explore some aspects of such learning strategies for effective design error

localization inspite of restricted observability.

We present an alternative methodology for enhancement of the observability of inter-

nal signals at the post-silicon stage through the usage of a learning algorithm. Based on

mock simulation of the designs, a nearest neighbor model is developed which is indepen-

dent of the characteristics of the particular design. This model (i.e., learning strategy

and no. of neighbors) can then be utilized for finding out nearest neighbors of flip-flops

of any arbitrary design given the traced and restored data corresponding to a post-silicon

test execution. This ensures full scalability of the proposed technique to industrial-sized

large circuits. The basic premise of the proposed methodology lies in the fact that the

169

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 170

unknown signal states can be decided based on the signal state of its neighbors. To the

best of our knowledge, this is the first approach which targets the discovery of complete

set of signal states and achieves the expanded observability with reasonable accuracy.

We propose an error localization methodology at the gate-level to assist the debug

engineer in analyzing the root-cause of failures at the post-silicon stage. We syntheti-

cally inject errors into the netlist and based on the circuit response (i.e., signal states

of flip-flops of the design), a classification model is developed for analysis. The basic

principle of this approach is to classify a smaller region of the netlist into buggy or

non-buggy based on the developed model. One of the intended bug injection methods

is random gate replacement technique [55, 163] which acts as a representative of many

logic bugs. Considering the large number of gates in modern designs, replacement of

each gate with a random one would turn out to be highly exhaustive. Therefore, we it-

eratively perform error injection into very small portions of the design (netlist) and then

apply the classification analysis for building the model. The localization experiments are

performed by utilizing responses (i.e., flip-flop state values) gathered from the on-chip

trace buffers. We obtain a list of flip-flops (corresponding to erroneous netlist regions)

infected by the error (injected during testing) which are ranked based on a pre-defined

scoring mechanism.

The remainder of the chapter is organized as follows. Section 6.2 summarizes related

work on post-silicon error localization techniques at different abstraction levels of de-

sign and the application of machine learning in error localization. Section 6.3 presents

our proposed methodology of learning-based complete visibility expansion and different

terminologies associated with it. Section 6.4 explains the proposed gate-level error lo-

calization methodology based on the expanded signal states. Section 6.5 presents the

results of observability expansion and error localization by using the proposed technique.

Section 6.6 describes our methodology of design response-based model building in de-

tail. Section 6.7 explains our testing methodology for a given erroneous design based on

design response model building. Section 6.8 finally concludes the chapter.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 171

6.2 Post-silicon Observability and Error Localization

with Learning Techniques

6.2.1 Maximal Post-silicon Observability Expansion

Previously proposed techniques of state restoration (i.e., the discovery of unknown signal

states based on the traced signal states) attempt to solve this through analysis of the

design netlist and decide values of untraced signal states with the help of structural de-

pendencies [1, 115, 169]. However, a very important aspect of this process is the choice of

trace signals as the technique of backward justification or forward propagation can reveal

the untraced signal values only if appropriate hints (in the form of values of structurally

related signals) are supplied. Therefore, attempts have been made to filter out best

possible set of trace signal candidates through heuristics based on design/netlist anal-

ysis [22, 104, 109, 115, 170]. However, attempting only state restoration for expanding

the observability is not sufficient. This is because we have observed in our experiments

that almost (or more than) 60-70% of the internal signal values are always unknown for

large circuits even though a highly effective signal selection technique is utilized.1 This

necessitates observability expansion after the application of signal state restoration. We

noticed that the objective of design observability expansion can be regarded as a vari-

ant of data mining problem. In this regard, clustering algorithms like nearest neighbors

can assist in deciding the values of unknown signals (which are either untraced or not

restored) as they capture the correlation between data values. We exploit this fact to

achieve maximal (i.e., full with reasonable accuracy) internal visibility.

6.2.2 Relevance of Learning Techniques in Post-silicon Error

Localization

Techniques such as Instruction Footprint Recording and Analysis (IFRA) [69] or Reversi

[65] assist in error detection in processor systems using low cost on-chip recorders as an

1This can be observed from the results in Table 5.4 of Chapter 5.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 172

observability mechanism or inversion-based program instrumentation respectively. The

authors in [70] perform program analysis after constructing bug localization graphs for

error localization to a block-level granularity. However, typically an architectural block

in a processor may contain thousands of gates. This makes it very difficult to debug

at the gate-level and necessitates devising other techniques of low-level localization. In

the recent years, machine learning techniques have been explored for the purpose of bug

triaging or error localization at both the pre-silicon and post-silicon stage (gate-level

granularity). Since during post-silicon validation, a large number of tests can be applied,

the amount of logs collected can become very large. Therefore, machine learning tech-

niques like clustering, regression analysis etc., can be suitably deployed to extract hints

for bug/error localization from the obtained test response logs. Furthermore, because of

the limited accessibility of internal signals at the post-silicon stage, the extracted signal

dumps (even if they are corresponding to larger execution cycles) may be incomplete

in nature. DeOrio et al. [90] proposed a post-silicon bug diagnosis methodology based

on data collection from failing tests and then applying a clustering technique to form

different signal groups. A mechanism to detect root-cause signals by identifying “anoma-

lous” signals from post-silicon tests and iterative selection of signals to be monitored has

been proposed by Bertacco et al. [91] on lines similar to that of [90]. For post-silicon

bugs that manifest inconsistently over repeated executions of the same test and have

non-deterministic behavior, Khudia et al. [92] have classified total internal signals into

passing groups and failing groups for error localization. Using big data techniques, the

author in [171] attempt error localization from post-silicon signal dumps without resort-

ing to the requirement of golden responses. They utilize structural dependencies from

RTL descriptions to group the failing post-silicon traces into different groups which are

then individually analyzed for the purpose of localization. Machine learning techniques

like clustering have also been applied for dynamic trace signal selection to enhance fault

detection with the help of information obtained from trace buffers by Zhu et al. [172]

with further optimization by using linear programming. Apart from post-silicon error

localization, a lot of work has been done in the last decade for the application of learning

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 173

techniques for the analysis of yield failures during manufacturing test [173–176].

6.3 Proposed Methodology of Visibility Expansion

6.3.1 Methodology Illustration

As outlined in Section-6.1, limited observability is one of the main obstacles in the

process of post-silicon error localization. This becomes more challenging at the gate-

level or at the granularity of flip-flops since the usage of observability enhancement

mechanisms provides the states of very few flip-flops. This large mismatch between the

number of internal signal values available to us during simulation phase and post-silicon

phase makes the debug process difficult. To cope up with this wide disparity of internal

signal values, method of matrix completion (completing a partially-filled matrix) is used

[177]. We formulate the observability expansion as a machine learning based clustering

(particularly, nearest neighbors) problem. The k-nearest neighbors (kNN) technique is a

supervised machine learning algorithm, where k depicts the number of neighbors. This

algorithm assists in obtaining signal states similar to the known (i.e., traced or restored)

flip-flop values. Once the neighbors of a particular signal are identified, the state of that

particular flip-flop can be obtained. The state (either 0/1) of a particular flip-flop in any

clock cycle is assigned the value most common among states (which are known either

through restoration/tracing) of its k-nearest neighbors. Continuing in this manner, the

state of all the flip-flops for all clock cycles can be obtained, leading to full internal

observability. The NN algorithm decides the closely related neighbors (in this case flip-

flops) based on some information pertaining to the design. It can be either related to

the structure of the design or simulation values. For the sake of illustration, we consider

the circuit shown in Figure 6.1 where six flip-flops are depicted as A, B, C, D, E and

F. The procedure of neighbor-finding and subsequent signal prediction can be applied to

netlists in which synthetic design bug(s) have been injected. Note that simulation values

of bug injected netlist are not a necessity for the success of this method. However, signal

values of a buggy netlist provide more useful behavior compared to the original netlist as

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 174

the logic inconsistencies are pin-pointed. Without any loss, pre-silicon signatures (i.e.,

signal states of flip-flops) of fully correct netlist can also be utilized for the purpose of

neighbor finding (which constitutes the learning/training step).

Nearest neighbor algorithm works on discovering some kind of metric (distance) be-

tween the targets. One such metric is the Euclidean distance2 which is the measure of

dissimilarity between different data points. Consider that after simulation of the netlist

illustrated in Figure 6.1, we obtain the Euclidean distance between all of these flip-flops

is shown in Table 6.1. The lower the Euclidean distance, closer the neighbor is to a

particular signal (flip-flop). With nearest neighbor algorithm, 4 neighbors obtained for

each flip-flop are shown in Table 6.2. If the flip-flops of last column are removed from the

above set, we obtain the set of 3 neighbors. Depending on the state of these neighbors,

the X values can be determined. This is essentially done by a majority vote of the known

values of neighbors at the particular instant. For instance- if 2 neighbors of a flip-flop

have “1” and the third has value “0”, the target flip-flop is assigned a value of “1”. In

cases of a tie-up between neighbor values, we assume “1” as the default value. Note that

the signal state of neighbors of a target flip-flop is dynamically updated as the discovery

of values progresses. The difference in the distances of the neighbors (Table 6.1) justifies

the choice of nearest neighbors (abbreviated as “nbr”) that are depicted in Table 6.2.

Figure 6.1: Example circuit for illustrating methodology

As stated earlier, based on the mock simulations of the netlist at the pre-silicon stage,

the neighbors are to be identified. Let’s assume that for a certain input sequence, we

2computed by
√∑

(x− y)2 where x and y are data points. In our case, x corresponds to the signal
states of one flip-flop while y corresponds to the signal states of a different flip-flop.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 175

obtain the states of all signals (flip-flops) of design (i.e., netlist) shown in Figure 6.1

for a fixed number of clock cycles.3 Thereafter, Euclidean distance between different

signals leads to the values shown in Table 6.1. These values can also be computed by

averaging for a fixed number of iterations (say, 100) of mock simulations of the design

(with changing the inputs in each iteration of the mock simulations).

Table 6.1: Euclidean distance between different signals for circuit in Figure 6.1

FF↓→ A B C D E F

A 0 1.42 2.65 2.65 1.42 2.65

B 1.42 0 2.24 2.4 0 2.24

C 2.65 2.24 0 0 2.24 0

D 2.65 2.24 0 0 2.24 0

E 1.42 0 2.24 2.24 0 2.24

F 2.65 2.24 0 0 2.24 0

Table 6.2: Obtained nearest neighbors for example circuit

FF↓ nbr1 nbr2 nbr3 nbr4

A B E C D

B A E C D

C D F B E

D C F B E

E B A C D

F C D B E

We performed a simulation of this netlist (Figure 6.1) for 10 cycles under different

inputs.4 Table 6.3 shows states of six flip-flops for these ten clock-cycles.5 Flip-flop A &

C were traced and their states are known for all ten cycles. Through the usage of state

restoration technique [115], some states of other flip-flops can be computed. The state

of many flip-flops can not be discovered. Those states are depicted as X. Note that it

3For brevity, we do not show here the signal state of the flip-flops for different clock cycles.
4This is done for the purpose of illustration only. In real application, the tracing would be done with

a buggy netlist (i.e., a design bug injected in Figure 6.1). In results shown later in this chapter (Figures
6.3,6.4,6.5), we have performed tracing on a synthetically bug injected (through wire exchange) netlist
for each benchmark circuit.

5Note that it is difficult to fully showcase the merit of this method through a miniature example
because here many signal states have already been reconstructed through signal state restoration.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 176

is a common assumption in silicon debug to not trace the inputs because of excessive

storage requirements due to run-time ranging from hours to days [178].

Table 6.3: Restored and traced states for illustration

FF→ A B C D E F

c1 0 X X 0 X X

c2 0 X X 0 X X

c3 1 1 X 1 1 1

c4 0 X X 0 X 1

c5 0 X X 0 1 1

c6 0 1 1 1 1 1

c7 0 X X 0 1 1

c8 0 X X 0 1 1

c9 0 1 1 1 1 1

c10 0 X X 0 1 1

The completely expanded (fully known) states are shown in Table 6.4, done with a

choice of 3 nearest neighbors for each of the flip-flop (signal). However, as expected, the

derived signal states are different from the actual ones in few cases. These cases may

vary with the choice of number of neighbors. For instance, in 2nd clock cycle, state of

FF-C is different from the actual signal state when the expansion is done either with the

help of 3-neighbors (or 4-neighbors). We obtained “0” (which is shown in braces) in this

case whereas the actual value is “1”. Note that the accuracy in predicting signal states

depends significantly on the traced and restored signal states.

Table 6.4: Completely expanded internal signal states

FF→ A B C D E F

c1 0 0 0 0 0 0

c2 0 0 1(0) 0 1(0) 1(0)

c3 1 1 1 1 1 1

c4 0 0 0 0 0 1

c5 0 0 1 0 1 1

c6 0 1 1 1 1 1

c7 0 0 1 0 1 1

c8 0 0 1 0 1 1

c9 0 1 1 1 1 1

c10 0 0 1 0 1 1

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 177

It is imperative that the inaccuracy in prediction (i.e., the number of derived signal

states which are different from the actual ones) would vary from one circuit to another

apart from the choice of neighbors. This is definitely a drawback of this technique

of visibility expansion. However, we observed in our experiments that the expanded

visibility is indeed useful for the purpose of error localization.

6.3.2 Algorithmic Description of Visibility Expansion

The terminology utilized for formally explaining the proposed methodology is presented

in Table 6.5. In the proposed methodology, we develop a model, Mnbr by two training

methods presented Algorithms 14 and 15. For the first method, we utilize the error

Table 6.5: Notations and their meaning

Term Meaning

Mnbr k-NN learning model

TBw width of trace buffer

Dtb depth of trace buffer

Li ith Nearest Neighbor technique

K no. of iterations of learning

φj numbers of nearest neighbors in Mnbr

Cyiter number of cycles in each iteration of learning

Ftot number of flip-flops in design (netlist)

FFe error signature of design

ξi features of the design(netlist)

FFt flip-flop signature(s) used for testing

GFFt reference/golden flip-flop(s) signature

signature obtained from the chip (netlist). In the second method, we employ structural

relationships to obtain nearest neighbors. Observability expansion can be achieved by

either of these methods. Based on the traced signal states (which assists in obtaining

restored signal values) and the obtained neighbors, states of all the flip-flops can be

discovered. An very important consideration is to figure out the optimum number of

nearest neighbors. Therefore, we iterate the neighbor finding exercise for certain number

of times taking the minimum no. of neighbors as 10 and maximum as 1400 for different

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 178

benchmark circuits. The procedures shown in Learning1 and Learning2 expand the ob-

servability of internal states and measure the difference between the expanded signature

and the reference complete signature (i.e., golden signal states).

There can be many methodologies to derive nearest neighbors based on the specific

implementations. For the purpose of finding nearest neighbors, we utilize Scikit-learn

[179] library. We have implemented 3 types of nearest neighbor algorithms:6 (K-D

Tree, Ball Tree and Brute Force). By normalizing values of specific parameters in these

algorithms their variants are obtained. These are denoted by Li in both these procedures.

For each of the NN algorithm-variants, we perform training on 8 or 9 configuration as

no. of neighbors (denoted by φj) as 10, 20, 50, 75, 100, 200, 250, 275 and 300 for some

circuits while 50, 100, 200, 250, 300, 400, 500 and 600 for other circuits. We take Cyiter

as 1024 which is the typical trace buffer depth (Dtb).
7

Algorithm 14: Learning1

Input: FFe,K
Output: Mnbr

1 Mnbr ← ∅;
2 I ← incomplete states (restored and traced ones) for Cyiter cycles;
3 FFe ← state of Ftot flip-flops for Cyiter cycles;
4 scoreφj ,Li

← 0;
5 for each Li do
6 for z = NN (φj) do
7 for w =1 to K do
8 nbrs ← NNmodel(FFe,Li);
9 fullval ← fillvalues(nbrs,I);

10 score ← fullval - FFe;

11 end
12 scoreφj ,Li

←
∑

score;

13 end

14 end
15 nbrscore = minimum(scoreφj ,Li

);
16 Mnbr ← NN(φj, Li);

6In particular, these refers to the manner in which data points are internally organized and partitioned
for the purpose of distance calculation. It is apparent that with varying manner of distance computation,
the computation of neighbors significantly varies.

7Cyiter could be different from Dtb as well.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 179

As it is seen in the procedure Learning1, finding out the nearest neighbors depends

on the complete error signature of chip, FFe (derived from a reference simulation) and

the particular learning method (Li).
8 The After particular neighbors (corresponding

to specific (φj)) are identified, the incomplete signal states of the signature (restored

+ traced) can be predicted leading to maximal expansion of internal observability. The

best configuration is the combination of φj and Li for which the lowest difference between

the expanded signature and the reference complete erroneous signature (FFe). nbrscore

is the sum of variation between actual and discovered states for this particular choice of

φj and Li.

We propose a second procedure to develop the model (Mnbr) utilizing only the netlist

and thus, independent of error signatures. Essentially, only static features of the design

description are accounted for in this case. To capture the structural characteristics of

any flip-flop ffi, we define following features on the lines of [170]. For each flip-flop ffi,

a set of traits which are called as features is shown in Table 6.6.

Table 6.6: Features and their meaning

ξ1(fan-in)
number of different flip-flops
connected to ffi in its fan-in

ξ2(fan-out)
number of different flip-flops

connected to ffi in its fan-out

ξ3(gate count)
number of gates in connection to
ffi in its fan-in and fan-out cone

ξ4(2nd level connectivity)
average of number of different flip-flops in

second level fan-in and second level fan-out

ξ5(ed score)
∑p=P

p=0 (
∏n=Total
n=0 (score of each gate))

While majority of the features listed above are fairly straightforward and can be

easily computed, the last feature is taken from our work9 in [116] which approximately

calculates the error propagation score of each flip-flop. An estimation of the error trans-

mission through each gate can be given by 1/Ninputs, where, Ninputs is the number of

8As stated before, the three methods of learning which we attempted are K-D Tree, Ball Tree and
Brute Force available in Scikit-learn[179] library. The details of these specific implementations can be
obtained from [180–182].

9This work of ours is a precursor to Algorithm 9 of Chapter 5.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 180

inputs of the gate. Once the score of each gate is calculated, by counting all the incom-

ing paths to different flip-flops, we can approximately find ed score. Further, we need

to consider the score of each gate in a multiplicative manner (no. of gates represented

by Total) and sum these scores along all the incoming paths (no. of paths generalized

by P) to get the rough estimate of error transmission ability of each flip-flop. As it is

Algorithm 15: Learning2

Input: Netlist,K,Ftot
Output: Mnbr

1 Mnbr ← ∅;
2 Feature space ← ∅;
3 I ← incomplete states (restored and traced ones) for Cyiter cycles;
4 FFe ← state of Ftot flip-flops for Cyiter cycles;
5 scoreφj ,Li

← 0;
6 for flip-flop 1st to Ftot do
7 Calculate all features (ξ1,ξ2,ξ3,ξ4,ξ5);
8 Feature space ← features of flip-flop;

9 end
10 for each Li do
11 for z = NN (φj) do
12 for w = 1 to K do
13 nbrs ← NNmodel(Feature space,Li);
14 fullval ← fillvalues(nbrs,I);
15 score ← fullval - FFe;

16 end
17 scoreφj ,Li

←
∑

score;

18 end

19 end
20 nbrscore = minimum(scoreφj ,Li

);
21 Mnbr ← NN(φj, Li);

seen in Learning2, finding out the nearest neighbors depends on the computed features

(depicted by Feature space) from the netlist and the particular learning method (Li).

Thus, unlike Learning1 procedure, closely related neighbors are discovered statically

without resorting to the analysis of data (i.e., error signatures) from simulation. Intu-

itively, it appears that Learning2 would provide better accuracy in the prediction of

unknown signal states. However, we observed in our experiments that Learning2 fails

to achieve so because of the inaccurate learning in this approach.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 181

In our experiments, we reached 100% internal visibility expansion with varying accu-

racy. This allows us to have better visibility of internal signals and thus better debugging

of errors. Assuming that we have a “golden” reference model constructed out of a com-

pletely verified higher level abstraction of the design-under-validation, we can exactly

localize the design bug/error. The overall methodology for error localization with the

complete signal visibility shown in Figure 6.2.

Buggy design

Traced signal states

Restored signal states

Prediction

Complete visibility (signal states)

Golden signal states

Suspect
candidates

Figure 6.2: Error localization with expanded visibility

6.4 Coarse-grained Error Localization Methodology

Localizing at gate-level is difficult due to the restricted visibility of internal states of

the chip. Therefore, with the expanded observability by the proposed method, we aim

to achieve error localization at the granularity of flip-flops. The debug methodology is

formally expressed10 as Algorithm 16.11 The basic principle of the debug methodology

is to catch the difference between the reference signature and the expanded signature.

Since, the unknown signal values (either untraced or non-restored) have been resolved,

the differences can be more clearly pin-pointed now. For localizing to smaller portion of

the design, we divide the complete error signature (consisting of Ftot flip-flops and Dtb

cycles) into certain number of blocks (which are decided by a factor termed as bfactor).

Based on the dissimilarity between chunks of flip-flop values (denoted by data block), we

10This is similar to Algorithm 13 of Chapter 5.
11Here, diff function simply calculates the difference in signal states.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 182

Algorithm 16: CompleteV isibDebug

Input: FFt,GFFt,bfactor
Output: Error blocks

1 FFt ← flip-flop signature used for testing;
2 FF ′t ← completed FFt by Learning1 or Learning2;
3 Nt ← length of FFt;
4 nffblocks ← Nt/bfactor;
5 {block data1,block data2} ← ∅;
6 GFFt ← state of Ftot flip-flops for Cyiter cycles;
7 for ffblock 1st to nffblocks do
8 block data1 ← portion of FFt;
9 block data2 ← portion of FF ′t ;

10 scoreffblock = diff(block data1,block data2);
11 {block data1,block data2} ← ∅;
12 end
13 Rank ffblocks in decreasing order of scoreffblock;
14 Error blocks ← Top ranked ffblock;

can localize to a smaller region of the netlist. This comparison leads to a ranking of all

the ffblocks out of which we choose the top ranked ffblock. Because of the inaccurate

signal state prediction, some flip-flops which are not among the actual suspects may also

appear as candidate suspects. This elongates the debug process and degrades the quality

of error localization.

6.5 Observability Expansion Formulation & Results

6.5.1 Experimental Setup

As mentioned earlier, Scikit-learn [179] library has been used for implementing the pro-

posed methodology. We chose circuits from ISCAS’89, ITC’99 and Opencore benchmark

suite shown in Table 4.4 of Chapter 4. We performed 100 iterations of learning on the

circuits to select the appropriate no. of neighbors (φj) and type of learning (Li).
12 We

12The training (i.e., building the model, Mnbr) was done with the simulation of circuits for inputs
which are not used in the error localization stage. Additionally, we performed the neighbor finding
exercise with the help of correct netlists and netlists with synthetically injected errors (wire exchange).
The latter is intended to bring out more differentiating circuit responses which can assist better in
neighbor discovery.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 183

chose our configuration as TBw as 32 and Dtb as 1024.

6.5.2 Internal Observability Expansion Results

After achieving observability expansion, we validate the obtained signal states by compar-

ing with the reference complete signature in each iteration of the learning experiment.

We report the dissimilarity in the actual and expanded signal states obtained by the

method Learning1 in Figures 6.3 and 6.4. The maximum accuracy occurs for a partic-

ular number of neighbors. When we choose very less number of neighbors like 5 or 10

in Mnbr, accuracy is very poor. Similarly, if very large number of neighbors like 500 is

chosen, the accuracy again falls.13 Therefore, for most circuits, there is a non-monotonic

variation in accuracy with the number of neighbors. As expected, there is a continual

increase in the time (measured in seconds) spent in unknown signal state discovery as

the number of neighbors increases. However, the increase in time spent in signal state

prediction is linear with the increase in the number of neighbors in Mnbr.

Let us consider that the traced and restored signal states are represented by T and

R respectively. Even after restoration, the signal states which are left unknown are

represented by U . It is obvious that total signal states (S) are given by T + R + U .

Also, suppose that signal states incorrectly predicted (or, mispredicted) by the discovery

process are represented by I (representing incorrect). With this terminology, the inac-

curacy can be given by I
S

. However, the inaccuracy can be more suitably calculated as

I
U

which can tell us the fraction of unknown signal states which are wrongly predicted

by the proposed technique of visibility expansion. The results of this metric are shown

in Figures 6.3 and 6.4. It is obvious that lower the values of this parameter (I
U

), better

is the prediction of unknown signal states. For smaller circuits, we consider variation of

number of neighbors (nbrs) from 10 to 300 in certain random steps. Similarly, for large

circuits, we consider variation of number of neighbors (nbrs) from 50 to 600. To further

confirm non-monotonicity with the increase in number of neighbors, we computed I
U

(in

%) taking nbrs as 750, 800, 900, 1200 and 1250 for s38584, s38417 and usb circuits. This

13In Scikit-learn implementation, the best accuracy is achieved with K-D Tree learning choice.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 184

variation is shown in Table 6.7 for the three large benchmark circuits. The inaccuracy

in these cases are lower than that of the respective percentages shown in Figure 6.4.

 0

 10

 20

 30

 40

 50

s13207 b21 softusb s15850

M
is

p
re

d
ic

te
d

/U
n

kn
o

w
n

 (
%

)

nbr=10
nbr=20
nbr=50
nbr=75

nbr=100
nbr=200
nbr=250
nbr=275
nbr=300

Figure 6.3: Inaccuracy (IU in %) with Learning1 (nbrs: 10 to 300)

Table 6.7: I
U

(in %) with increased neighbors (nbrs > 600)

circuit 750 800 900 1200 1250

s38417 21.58 22.21 21.61 23.15 23.18

s38584 36.85 37.51 38.78 41.04 41.10

usb 17.88 17.93 17.88 17.88 17.94

We observed a poorer accuracy with Learning2 as compared to Learning1. From the

variation of inaccuracy with neighbors (nbrs) shown in Figure 6.5, a non-monotonic rela-

tionship can be observed, however with a higher inaccuracy as compared to Learning1.

For s38417, we evaluated the inaccuracy for neighbors up to 1400. The metric I
U

(in

%) for 750, 800, 860, 900, 1200, 1250, 1300 and 1400 evaluates to 27.9, 27.8, 27.7, 27.4,

26.2, 26.3, 26.3 and 26.7 respectively. However, the lowest value of 26.2% inaccuracy is

lower than 20% which is obtained with Learning1. For s38584 circuit, the metric I
U

(in

%) for 950, 1200, 1250, 1300 and 1400 evaluates to 41.37, 41.22, 41.22, 41.20 and 41.19

respectively. These values are lower than that of the respective percentages shown in

Figure 6.4 for Learning1 showing continual decrease with increase in nbrs.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 185

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

b17 usb s38584 s38417 p16c5x

M
is

p
re

d
ic

te
d

/U
n

kn
o

w
n

 (
%

)
nbr=50

nbr=100
nbr=200
nbr=250
nbr=300
nbr=400
nbr=500
nbr=600

Figure 6.4: Inaccuracy (IU in %) with Learning1 (nbrs: 50 to 600)

The higher inaccuracy with Learning2 means that this method leads to poorer es-

timation of neighbor proximity through structural feature computation. It can be un-

derstood that many of these features can have similar values for different pair(s) of

flip-flops even though there is no correlation between them. For the sake of completion,

we attempted random filling of the unknown signal states (after traced + restored sig-

nal states). This essentially means that we attempt prediction of the unknown signal

states (which are denoted as X in Table 6.3) through filling by either 1 or 0 in a random

manner. Table 6.8 shows the best (i.e., lowest) values of the parameter, I
U

(in %) out

of a total of 20 iterations of random filling for seven of the benchmark circuits. For the

purpose of comparison, we also report the minimum I
U

in % (i.e., the best possible case)

for Learning1 and Learning2 in Table 6.8.

Note that except for b17 circuit, the above values of I
U

are comparatively higher

than that of Learning2 technique (Figure 6.5) meaning that the latter (Learning2)

provides good accuracy in prediction of unknown signal states compared to random

filing. However, for all circuits, the values obtained with random filling are higher than

I
U

(in %) obtained for Learning1 (Figure 6.4 and 6.3). This reinforces our claim that

Learning1 technique is quite useful in prediction of the unknown signal states (and

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 186

 0

 20

 40

 60

 80

 100

b17 s38584 s38417 usb

M
is

p
re

d
ic

te
d

/U
n

kn
o

w
n

 (
%

)
nbr=10
nbr=50

nbr=100
nbr=150
nbr=200
nbr=250
nbr=300
nbr=350
nbr=400
nbr=500
nbr=550
nbr=600
nbr=650
nbr=700

Figure 6.5: Inaccuracy (IU in %) with Learning2 (nbrs: 10 to 700)

Table 6.8: Comparative results (I
U

in %) with random filling

circuit min. I
U (random) min. I

U (Learning1) min. I
U (Learning2)

s38417 33.49 20.00 28.60

s38584 45.68 33.10 41.56

usb 44.21 17.80 36.20

b21 21.67 0.99 18.67

b17 38.14 7.30 53.10

s15850 37.07 18.21 28.61

s13207 46.71 16.23 34.27

thereby it can assist in completely expanding the internal visibility).

6.5.3 Defining Error Localization Metric

We perform a topological connection based analysis of the injected error location. The

errors injected at granularity level of nets/gates in the netlist can be localized if the error

is detected by flip-flops in the immediate vicinity. So, it is meaningful to analyze the

efficacy in the following terms:

• The infected flip-flops obtained (fobtained) are among the suspect candidates (factual).

• The proposed method provides lesser but the important suspect candidates. This

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 187

can reduce the debug effort significantly.

Note that flip-flops in fobtained are derived from Error blocks obtained from Algorithm

16. We define a localization function (gloc) in Table 6.9 to quantify the efficacy of gate-

level error localization with the proposed debug methodology. If the error injection

and subsequent localization experiment is carried out K times, the function gloc has the

maximum value of K. We report gloc values for the two training methods (Learning1 and

Learning2) and different error injection scenarios (design error1 and design error2 are

depicted by Random-Wire and Random-Invert respectively) in Figure 6.2. The number

of Error blocks are fixed as top 10% of the total.14 Because of the incorrect prediction

of signal states, we expect some false positives. However, during our experiments, we

observed that they are quite less in number.

Table 6.9: Localization metric definition
fn. Value Condition

gloc 1 fobtained = factual
gloc 1 fobtained ⊂ factual
gloc 0 fobtained 6⊂ factual

6.5.4 Error Localization Results with Complete Visibility

The error injection experiments were iterated for 100 times for both design error1 (e1)

and design error2 (e2) cases (totaling into 200 iterations for each circuit). Table 6.9

shows the values of the localization function,15 gloc obtained in the experiments. From

the observability expansions, we find out the number of neighbors which provides the

best possible accuracy (i.e., lowest value of I
U

) and then utilize it to obtain the completely

expanded visibility and carry out the error localization procedure. Note that because of

coarse-grained error localization (i.e., in terms of a group of flip-flops), the accuracy is

not explicitly related to the success in error localization. However, the better accuracy

14Compared to Algorithm 16, Algorithm 13 of Chapter 5 chooses top ranked certain flip-flops typically,
10, 20 or 30 in number, depending on the size of circuit.

15This is identical to Zloc metric introduced in Chapter 5.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 188

helps in giving the least number of suspects (i.e., fobtained = factual). Additionally, we

believe that better accuracy would be very useful in localizing bit-flip kind of errors with

the proposed methodology.

 0

 20

 40

 60

 80

 100

softusb b17 b21 p16c5x usb s13207 s38417 s38584

E
rr

o
r

lo
ca

liz
a

tio
n

 r
e

su
lts

Random−Wire
Random−Invert

Figure 6.6: Error localization results (out of 100) with Mnbr from Learning1

It is worth to note that the above results are significantly better compared to the

localization results shown in Table 5.7 of Chapter 5. Although the specific netlist errors

considered above are different16 from that of the evaluation in Chapter 5, the nature of

errors remain similar. Therefore, the learning methods assist in better error localization.

Similar inference can be deduced from the results (Figures 6.10 and 6.11) obtained by

the second methodology proposed in this chapter.

Lesser flip-flops in fobtained is expected to assist in quick debug as the intersection of

logic-cones of each flip-flop provides the exchanged nets/wires. We obtained maximum

value of gloc for one circuit (i.e., softusb). There is minor variation in the individual

localization results for different error models (e1 and e2). Similarly, we observed minor

differences in gloc values when the number of neighbors or the type of learning method in

the built nearest neighbor model, Mnbr are changed. On similar lines, we also attempted

16In each experiment, we inject random errors so that bias towards error injection is avoided.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 189

bug localization by signal states discovered with the help of Learning2 technique. Bug

localization results are slightly lower than that of Figure 6.6 with a larger number of un-

wanted suspects during the debug analysis. The proposed methodology of observability

expansion and localization can also be applied in a similar fashion for any large design.

The work most closely related to ours is that of [183] where the authors have identified

clusters (of flip-flops) in the design and based on the logical relation between the cluster

elements and the inputs to the cluster, signal states of flip-flops can be known. This

also requires the knowledge of the initial values of the elements of the cluster which

is available through tracing. They achieve significant improvement in state restoration

ratio; however, our goal is to obtain all the unknown signal states which can lead to a

completely enhanced internal visibility of the design. In the next section, we propose

a different approach which does not require complete expansion of internal visibility.

This technique utilizes a model building approach [176] to obtain a list of suspects with

ranking of their suitability of being the actual culprit.

6.6 Error localization with Design Response Model

Building Approach

We develop a methodology which assists in localizing the infected flip-flop(s), which

in turn hint towards buggy gate(s) in a erroneous design. The proposed methodology

includes two phases: training and testing. The training phase includes building a model17

which consists of a relationship between smaller region of circuit (in which bugs are

injected synthetically) and the corresponding circuit responses which, in turn are to be

utilized for identifying the buggy gates given an erroneous netlist. During the testing

phase, given a certain circuit response (which essentially means the signal states of all

17In the conference version[184] of this work, the methodology was named as regression analysis.
The notion of regression is not perfectly suitable to the proposed technique as output variables take
continuous values in the regression analysis. Contrary to this, in the proposed technique, we predict a
discrete (and unordered) class output. Hence, this usage of model building can be more aptly referred
to as a classification problem.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 190

Design Netlist

small region 1 Signal states of all flip-flops

small region n Signal states of all flip-flops

Error injection

 Model(M)

............

............
.............

............

............
.............

Chip Execution

Traced (or, traced+restored)
signal states

affected
small region(s)

with score

Figure 6.7: Design response model (M) building methodology

flip-flops), the proposed methodology classifies it as one of the labels (which are the

smaller regions in the netlist of the design) present in the design response model. In this

manner, the localization upto a small region (each consisting of only one flip-flop and

few gates) can be achieved.

The design response model (M) is developed through a large number of iterations,

where in each iteration one error is injected into the design description and the complete

error signature (state of all the flip-flops of the design for a fixed number of cycles) are

used in the training phase. During the testing phase, for localizing the error location in

a buggy netlist based on the partial bug signature (state of certain number of flip-flops of

the design) obtained through on-chip trace buffers. The overall flow of the methodology

is shown in Figure 6.7.18

While the localization ability of the proposed model depends on the training of the

model, error localization to a small portion of the design depends on the post-silicon

observability available through the trace buffers. The proposed methodology makes use

of the advantage of indirect expansion of visibility through state restoration technique

[1, 9, 102]. Since restoration of untraced signal states varies with the trace signal selection

methodology, variation in localization results is expected with each technique up to some

18In practice, building this model is quite difficult if the correct netlist (i.e., which corresponds to the
reference/golden implementation may not be available.) However, even if a correct netlist is available,
the process of localization tends to become tedious. The proposed approach aims to ease the process of
localization to a smaller portion of the design netlist in those debug scenarios.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 191

extent. Table 6.10 introduces the terminology for various parameters to be used.

Table 6.10: Notations and their meaning

Term Meaning

M training design response model

TBw width of trace buffer

Dtb depth of trace buffer

ffZk any flip-flop zone of the circuit

K no. of iterations of training

Slei signature used for training

Cyiter no. of cycles in each iteration of training

FFj error signature of jth flip-flop for training

Ste signature used for testing

rankj rank of jth flip-flop

ffj error signature of jth flip-flop for testing

6.6.1 Finding Smaller Zones in Circuit

The first step in the training phase is the introduction of bug/error in smaller portion

of the netlist for the purpose of training. The circuit description is divided into a fixed

partitions, termed as flip-flop zones (ffZ) meaning a collection of gates connected to one

particular flip-flop. Under this step, a particular ffZ can have gates connected in certain

levels (generally one to six). If the circuit has Ftot flip-flops, there can be a maximum of

Ftot flip-flop zones. The idea behind ffZ finding approach is that once we are able to

locate any ffZ, the individual erroneous gate(s) can be identified with the help of that

information. Figure 6.8 illustrates ffZ identified from a design netlist. The portion

outlined (with solid line) comprising of one flip-flop and six gates is ffZ corresponding

to FF1. The other region (outlined with dashed line) depicts ffZ corresponding to

second flip-flop (FF2).

The error propagation to a flip-flop depends on the conditional probabilities of signal

transitions at different inputs of gates following on the path leading to it. Therefore, for

developing M , we take one ffZ and inject error into it and then obtain a bug(error)

signature. During the next iteration, we select (in random fashion) another ffZ and

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 192

Figure 6.8: Circuit for illustrating ffZ identification

repeat the same procedure. Note that it is possible that some gate(s) may be common

between two flip-flop zones of the design. During testing phase of the proposed method-

ology, error localization up to either one ffZ or a small list of ffZ is achieved with the

help of statistical analysis.

6.6.2 Error Injection in Smaller Zones

At each iteration of training, we inject error by the method of random gate replacement,

where one gate is randomly replaced by another [55, 163]. This model resembles mani-

festations of many kinds of mutations at RTL after the synthesis step. For some cases,

this model can serve as a representative of electrical errors also. For example, the OR

gate from which a flip-flop in design derives its input gets replaced by XOR gate and in

some cycle the content of this flip-flop is “1”. When both inputs to the new gate become

“1”, its outputs become “0” causing a bit-flip at the concerned flip-flop.

Note that any other error model can also be utilized for the purpose of generating

buggy signatures to develop the classification model (M). We introduce random error to

remove any bias towards any specific region in the circuit during training phase. Figure

6.9 shows an example ffZ where one AND gate (shown in the left side) is replaced by

one OR gate (shown in red color in the right side).

Figure 6.9: Circuit portion for illustrating error injection

It is likely that during any iteration of the training phase, error is not injected due

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 193

to nature of the selected ffZ in this iteration. For instance - if ffZ contains only

“NOT” gates, error injection can not proceed. Another likely scenario is that during

some iterations (out of total K) of training, same ffZ is selected for error injection

since this selection is done in random manner. However if during (i + 1)th iteration,

selected ffZ is same as that of ith iteration, the error injected is likely to be different

giving a different error signature. The error signature generated during each iteration

of this phase is related with the infected flip-flop zone(ffZ) and over a large number of

iterations, a classification model is developed between the two parameters. Thus, error

signature, Slei (in each iteration) leads to a training vector, Trvi in the model M which

can be related with the corresponding ffZ.

6.6.3 Building the Classification Model

For analyzing the relationship between the injected error (in ffZ) and respective FFi

(error signature), the steps described above is iterated K times (depending on number

of flip-flops of the netlist and is presented here as Algorithm 17). The error signature

consists of states of all flips of the design for Cyiter cycles. Two possible methods to

compute error signature (FFi) are given as follows:

• T1 : Recording only the erroneous states of all the flip-flops, assuming no golden

(error-free) signature.

• T2 : Assuming that a golden signature is available, computing XOR values of the

golden and erroneous signature.

Corresponding to these two training methods, difference is expected between error

localization ability of the resultant model. The steps of developing the classification

model (M) are summarized as Algorithm 17.

Each training vector (Trvi) comprises of a matrix of Ftot x Cyiter state bits (flip-

flop responses). For K iterations of training, M contains K labels where label ffZ1

correspond to Trv1, label ffZ2 correspond to Trv2 and so on.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 194

Algorithm 17: buildModel

Input: Netlist,K,choice,Ftot
Output: M

1 M ← ∅;
2 goldensignature ← state of Ftot flip-flops for Cyiter cycles;
3 for i=1 to K do
4 find flip-flop zones from Netlist;
5 S(ffZ) ← flip-flop zones from Netlist;
6 ffZk ← randomly selected one ffZ from S(ffZ);
7 inject random error in ffZk;
8 for each of Ftot flip-flops for Cyiter cycles do
9 FFjp ← state of jth flip-flop in pth cycle;

10 errorsignature ← state of all FFjp’s;
11 if choice = T1 then
12 I ← {ffZk,errorsignature};
13 end
14 if choice = T2 then
15 XORsignature ← XOR(goldensignature,errorsignature);
16 I ← {ffZk,XORsignature};
17 end

18 end
19 M ← I ∪ M ;
20 S(ffZ)← ∅, I ← ∅;
21 end

6.6.4 Evaluating the Classification Model

6.6.4.1 Defining Objective Function

During testing phase, signature (Ste) generated from trace buffers is the testing vector,

Ttv. From this testing vector, an Objective function(Objfn) is computed for each label

(ffZ) which denotes the deviation of each flip-flop , ffj (of Ttv) fromM . For T1 training

method, Objfn is calculated as per Equation 6.1, where FFj denotes corresponding

flip-flops in the training vector(s). For each ffZ, Objective function is depicted by

ObjfnT1(ffZ) when T1 training method is adopted.

For the second training method, Objective function is given by Equation 6.2, where

the only difference is that FFj and ffj are replaced by XOR values of their golden and

erroneous signature values. In both the equations, p denotes the cycle of jth flip-flop.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 195

This factor measures distance as the cycle-by-cycle computation(Objfn) of all flip-flops

(beginning from the first flip-flop) proceeds.

ObjfnT1(ffZ) =

j=n∑
j=1

p=Cyiter∑
p=1

(FFjp − ffjp)2 (6.1)

ObjfnT2(ffZ) =

j=n∑
j=1

p=Cyiter∑
p=1

(FF ′jp − ff ′jp)2 (6.2)

where, we have

• FF ′j given by XOR(golden FFj, erroneous FFj)

• ff ′j given by XOR(golden ffj, erroneous ffj)

For an effective localization, Objfn must be minimized justifying that localization

happens based on the model (M) if Ttv is similar to any one of the Trvi. Thus, Objfn

captures the dissimilarity between all Trv and Ttv for each ffZ. In above Equation,

FF ′j (training vector components) and ff ′j (testing vector components) are compared

only in those clock cycles where there is a difference between the two.

It is worth to note that the model M contains K labels corresponding to K iterations,

where each label correspond to a ffZ (which consists of one flip-flop with some gates).

From the perspective of a classification model, the label which corresponds to best error

localization in M is represented by Equation 6.3 where a1, a2 aK are constants and

ffZ1, ffZ2 ffZK are the corresponding labels (ffZ).

ffZk = a1ffZ1 + ..aiffZi + ..+ aKffZK (6.3)

The actual erroneous ffZk is any one ffZi (the constant ai corresponding to that is 1,

while all others are 0). This ffZk corresponds to the minimum value of either ObjfnT1

or ObjfnT2 as per the respective training method (T1 or T2).

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 196

6.6.4.2 Analysis of Profitability of Training Methods

For T1 method, flip-flop state values in testing vector are to be compared with those in

training vectors of M , while in T2 only XOR values of golden and erroneous in testing

vector are compared with XOR values in training vector. Thus, in T2 we have a refined

data (Objfn values) for the purpose of comparison. This is because we have comparison

points (Objfn values) in T2 case only when bit values of XOR between golden and

erroneous signature are “1”.

The computation of Objfn (in Equations 6.1 and 6.2) proceeds differently with the

post-silicon observability available through on-chip trace buffers. This is because the

amount of known bits (0 or 1) and don’t care bits (X) varies whether restoration tech-

nique is applied (or not). After utilizing restoration, ObservationWindow(ObsW) which

denotes the number of flip-flop states visible/observable changes. To account for this

variation, a factor (1/ObsW) may be introduced in Objfn computation. Note that for

restoration, we can estimate ObsW as restored and traced states (rts), calculated by

sum of traced states (= TBw*Dtb) and restored states whereas for non-restoration, we

can estimate ObsW as traced states (ts) only. It is obvious that ts < rts whenever we

achieve non-zero restoration using the traced signal states.

For the same injected error (of random nature, either wire exchange or gate replace-

ment), if we do not apply restoration, number of state bits in the test vector error

signature are less. However, in case of restoration (obtained from trace signals selected

by any restorability maximization technique [1, 9, 102]) number of unknown signal bits

are reduced. Because of this, we obtain lesser values of Objfn with restorability tech-

nique as compared to non-restoration. However, note that the classification of ffZ and

the suspect identification (by ranking based on Objfn values) is to be done among the

probable candidates separately in the case of restoration or non-restoration.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 197

6.7 Experimental Formulation and Results of Local-

ization with Model-based Classification

6.7.1 Experimental Setup

We have chosen seven benchmark circuits (ISCAS-89, ITC-99 and OpenCore) for testing

the localization efficiency of the proposed analysis model. For building the classification

model, we selected value of K (which can be variable for each benchmark circuit) between

1000 to 2000.19 Note that random input test vectors have been used during the testing

phase. For the training phase also, random inputs were applied. So, the input vectors for

both phases (of training and testing) are different. For experiments, TBw is chosen as 32

and Dtb as 1024 for trace buffers. Thus, for testing an erroneous design netlist, we have

the error signature (comprising of these 32 flip-flops for 1024 cycles (Cy)). We inject

error into the design netlist by 2 methods [55, 163] separately (during each experiment):

random gate replacement and wire exchange.

6.7.2 Formulation for Identifying False Positives

During testing phase, based on the error signature, we obtain the suspect ffZ (i.e.,

corresponding flip-flops in ffZ). One important issue is to verify the suspect ffZ

obtained from M . As is possible with any statistical process, there are chances of false

positives i.e., cases when some ffZ are not affected but during testing, the model M

gives these flip-flop zones as suspects(S). To verify that no false positives are provided

during testing phase, we perform a topological connection based analysis of the injected

error location(errori) and identify the flip-flops (i.e., few ffZ) that can be infected by

errori. Through this topological analysis, we obtain a parameter n(Scon), whereas from

the classification model M , we obtain another parameter n(S). Let n(Scon) represent

number of flip-flops (or, ffZ regions) directly connected to the location of errori (in

19We observed that higher the value of K, better is the error localization. For circuits of larger sizes,
value of K should be set up in between 2000-5000.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 198

the forward logical-cone) and n(S) represent number of suspects (ffZ) obtained during

testing. For efficient localization, we want n(S) to have the least possible value (i.e.,

1). However during testing, when we have multiple suspect ffZ, these probable ffZ

are ordered by rankj as per their respective Objfn values. The model, M must abide

by the following two conditions while being evaluated on any testing vector for error

localization:

• n(Scon) ≥ n(S)

• n(S) ⊆ n(Scon), for occurrence of no false positives

During the testing phase, with M , we can classify every ffZ as buggy region/non-

buggy region with a score (based on Objfn values). Taking top scores20 out of them,

we can obtain the error localization results. It is worth to note that in every iteration

of testing phase, a separate error is introduced for the purpose of testing. The error

injection is purely random in nature. We choose Ntesting as 100 in our experiments.

During our experiments we observed n(S) as 1 in many iterations for all the benchmark

circuits, signifying that the proposed methodology is able to identify the actual suspect

ffZ. It is worth to note that the values of n(Scon) vary from a range of 1X-6X to that

of n(S). For all the testing experiments, we obtained that n(S) ⊆ n(Scon) depicting that

the proposed analysis avoids the occurrence of false positives.

6.7.3 Results on Error Localization with Classification Model

We performed 100 iterations (denoted by Ntesting = 100) of wire exchange error and the

results2122 with restoration and non-restoration is shown in Figure 6.10 for T2 method-

20This can vary as 10 or 20 similar to Algorithm 13 of Chapter 5.
21Alternatively, the metric, gloc mentioned earlier in this chapter can also be used here.
22In the conference publication of this work [184], we defined the following parameter to measure the

quality of error localization. Lower the value of elmetric, better is the error localization.

elmetric =

∑j=Ntesting

j=1 n(S)

Ntesting
(6.4)

However, this metric fails to differentiate between the number of iterations in which the error localization
succeeds and iterations in which localization fails. So, in many cases, this metric can be misleading as
those iterations are not accounted in which n(S) = 0.

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 199

 0

 20

 40

 60

 80

 100

softusb b17 b21 p16c5x usb s13207 s38417 s38584

E
rr

o
r

lo
c
a
li
z
a
ti
o
n
 r

e
s
u
lt
s

restoration
non−restoration

Figure 6.10: Error localization success (out of 100) for wire exchange error

ology. We consider the metric Zloc defined in Section 5.9.3.2 of Chapter 5 to obtain the

error localization results.

 0

 20

 40

 60

 80

 100

softusb b17 b21 p16c5x usb s15850 s38417 s38584

E
rr

o
r

lo
c
a
li
z
a
ti
o
n
 r

e
s
u
lt
s

restoration
non−restoration

Figure 6.11: Error localization success (out of 100) for gate replacement error

We also performed experiments for gate replacement error with the design response

model, M for T2 methodology. The Zloc values are shown in Figure 6.11. These values

show similar trend as observed in Figure 6.10. For few circuits, the localization values

are lower than that observed for wire exchange error. An increase in ease of localization

is obtained by using state restoration technique as we observe lesser n(S) values with

this technique. In 10-20% of the iterations, we obtained n(S) as only one. There is minor

Chapter 6. Learning-assisted Gate-level Error Localization Techniques 200

variation in Zloc values when the trace signal selection technique is varied.

As expected, when M is build with T1 methodology, the error localization is infe-

rior (i.e., Zloc values are lower) than that of Figures 6.10 and 6.11. However, the major

takeaway from these results is that model building approach succeeds in gate-level local-

ization (in relative comparison of localizing with only traced and restored signal states as

was done in Chapter 5). Additionally, we observed in our experiments that this approach

is less sensitive to the trace signal selection technique.

6.8 Conclusion

This chapter proposed a methodology of gate-level error localization based on the observ-

ability expansion of the limited debug data available through on-chip trace buffers. By

discovering nearest neighbors, unknown signal states can be discovered with the help of

decision making based on the traced and restored signal states. The proposed method-

ology reconstructs signal states with reasonable accuracy in comparison to the actual

signal states. Two different methodologies were proposed for finding the neighbors for

any particular signal of the design. The first methodology involves neighbor finding by

distance calculations from simulation values. The second methodology involves netlist

structure-based analysis for computing a set of features which decide the neighbors of

any particular signal (flip-flop). With the expanded visibility, design error localization

improves significantly. Using learning analysis, a model of design responses (signal states

of all flip-flops) was developed by training for a large number of iterations. This trained

model was used to test an erroneous design to obtain probable suspects with a ranking

scheme. With the model building approach, better gate-level design error localization

can be achieved. We believe that standard outlier detection algorithms from machine

learning field need to be employed to achieve finer error localization.

− ∗ − ∗ −

Chapter 7

Debug Architectures with On-chip

Compression

7.1 Introduction

Due to the limited tracing options available and irreproducible behavior of failures, the

difficulty of the post-silicon validation problem increases and is a severe hindrance in

achieving time-to-market (TTM) targets [33, 185, 185–189]. Even if the errors are of re-

producible nature, localizing them takes a large amount of time because of the restricted

internal visibility. Typically, silicon debug needs to be performed via a mix of on-chip

debug data collection and off-line processing methodologies. To facilitate this debug pro-

cess, some amount of on-chip storage (in the form of trace buffers) is present [185, 190].

However, because of different overheads and subtle performance issues, the amount of

on-chip debug data storage is limited which must be judiciously utilized. This can be

done via on-chip data compression mechanisms and then subsequent off-chip analysis

[123, 124, 160]. The type of compression employed has implications on the granularity of

error localization and the overall debug time[122]. Under this scenario, we need to deploy

lossless compression so as to avoid the aliasing of debug data. The process of post-silicon

validation and debug is typically carried out in multiple sessions[160, 187, 190–192] for

repeatable error scenarios. The number of sessions and the time spent in each session

201

Chapter 7. Debug Architectures with On-chip Compression 202

are indicators of the total debug time. Techniques proposed by Yang et al. [187] and

others[188, 191, 193] involve multi-session based debug approaches to efficiently utilize

the on-chip storage and minimize the subsequent debug time. The motive is to utilize

the on-chip storage only for collecting the useful portion from the debug data and dis-

carding the remaining. In this chapter, we propose an improved version of two-session

data capture methodology that employs a modified debug infrastructure aimed at the

efficient usage of the on-chip storage. We also propose a methodology for the segrega-

tion of debug data to achieve finer temporal visibility expansion leading to quick error

localization. The proposed technique achieves a significant improvement upon the vis-

ibility window expansion results reported in [187] and the proposed debug architecture

is complementary to that of [185, 188, 189, 191].

In this chapter, we also present a reconfigurability-directed solution to counter the

limited observability during post-silicon debug. The approach is to reuse the existing

DFT infrastructure in a similar direction as in the case of serial scan architecture [194].

Our approach uses progressive random access scan architecture [14], a variant of random

access scan. The key contributions of our approach of reusing random access scan-based

architecture are as: (a) a debug methodology is proposed which utilizes progressive

random access scan (PRAS), and (b) a mechanism of reconfigurable observability en-

hancement without any steering logic so as to enable debugging in an effective manner

is proposed.

The rest of the chapter is organized as follows. Section 7.2 discusses the preliminaries

involved in the two session-based debug approach. Section 7.3 presents our proposed de-

bug architecture and explains its operation in detail. Section 7.4 elaborates the proposed

methodology through an illustration. The methodology for generation of tag bits and

fine-grained spatial data collection is explained in this section. Section 7.5 elaborately

analyses the debug performance of the proposed architecture on various circuits for dif-

ferent error types. Section 7.6 explains the proposed PRAS-based scheme with details of

the architecture and the methodology. Experimental result is discussed in Section 7.7.

Section 7.8 presents an elaborate discussion on the merits of the proposed session-based

Chapter 7. Debug Architectures with On-chip Compression 203

debug architecture and puts it in contrast to other silicon debug techniques reported in

the recent literature. Finally, the chapter is concluded in Section 7.9.

7.2 Background behind Session-based Silicon Debug

As stated previously, the amount of debug data to be offloaded needs to be restricted

owing to the limited off-chip dumping speed. Additionally, due to area overhead, we can

only accommodate limited on-chip storage (commonly referred to as trace buffers) [160].

Further, because of faster execution speed of the circuit (or, core)-under-debug (CUD),

the debug data in trace buffers can be over-written unless a successive run-and-halt

mechanism is followed. One way of mitigating this is on-chip debug data compression so

that the amount of required storage is minimized [123, 124, 127]. On-chip compression

allows the debug procedure to be performed in more than one session [124, 187, 188, 191].

The overall flow of the proposed two session debug methodology is shown in Figure 7.1.

The off-chip steps are shown in the left hand side and the on-chip steps are outlined on

right hand side of Figure 7.1 (details of each step are explained in the later sections of

this chapter).

Calculate tag bits
(TBits)

and byte positions

Perform comparison with
golden signatures &

compute intersection of
clock cycles

Final error localization
analysis

Tag bits register

Run debug experiment on CUD

Capture
debug signatures

into TB

Capture selective (fine-grained)
debug data into TB

Session 1

Session 2

offload

offload

upload

Off-chip On-chip

Figure 7.1: Overall flow of 2 session-based debug

To explain the multi-session debug problem in more detail, we adopt the terminology

in Table 7.1.

Chapter 7. Debug Architectures with On-chip Compression 204

Table 7.1: Terms and their meaning
Term Meaning

CUD Circuit (or, core)-under-debug

L Number of clock cycles of CUD execution

W Data-word (signature) width

TBw Trace buffer (TB) width

Dtb Trace buffer (TB) depth

Si ith debug session

Bits CUD data to be stored in TB

TBits Tag bits (for clock cycles) to be stored

Cy Set of debug data cycles to be stored in TB

|Cy| Number of debug data cycles to be stored in TB

ER Error rate in CUD execution

Let’s consider that CUD data1 is to be observed for L clock cycles, the total storage

required is L data-words. With compression by a MISR of length W1, this reduces to

bL/W1c signal dumps (or, signatures) which should be stored in trace buffer (TB) and

then offloaded with a fixed JTAG frequency (fJTAG). Clearly, the dimensions (TBw*Dtb)

of TB determine how much of L can be accommodated in both the Si sessions (i.e, S1

and S2). Further, all of the bL/W1c signal dumps may not necessarily differ from

the golden data (i.e., each one of them may not capture the error). Under the multi-

session debug scheme, in first session, the compressed MISR signatures are offloaded

for analysis. By comparison with the respective golden signatures, the erroneous clock-

cycles can be computed. These clock cycles are then utilized for the identification of the

respective MISR signal dumps which need to be actually stored in TB. Therefore, three

requirements emerge for effective multi-session debug:

• the number of identified suspect clock cycles (|Cy|), at end of first session should

be as small as possible

• the amount of debug data (Bits) to be stored in TB should be least, allowing TB

1We assume that internal signals to be observed are given. As is clear from previous chapters, there
is a large body of work in the recent literature which addresses the signal selection problem. Specifically,
the methodology of multi-session silicon debug discussed in this chapter can be applied to any set of
trace signals. These signals can be obtained either through methods introduced in Chapter 5 or the set
of signals provided by the design engineers based on their expertise.

Chapter 7. Debug Architectures with On-chip Compression 205

to be effectively used

• the amount of tag bits (Bits) to be stored for facilitating selective data capture

should be also minimum

If the first requirement is fulfilled, then the temporal observation window (L1) can be

enlarged leading to a reduction in the total number of debug iterations. Henceforth, if

earlier bL/L1c iterations were to be done, with the effective usage of on-chip storage,

this number becomes significantly lesser than bL/L1c because of temporal expansion in

the individual iteration of sessions in the debug experiment. The maximum time taken

to offload the contents from TB is given by:

Toffload = TBw ∗Dtb ∗
1

fJTAG
(7.1)

Since we can not optimize Toffload much because of its dependence on fJTAG, we can

attempt reducing the number of times offloading needs to be done through better uti-

lization of TB. In an uncompressed debugging scheme, the observation window is limited

to Dtb (which may be equal to a fixed CUD execution length, L). With the compression

enabled debugging, the achievable temporal expansion can be given by

TExpansion =
L

|Cy|
(7.2)

Note that if |Cy| = L, TExpansion is one which is its minimum value. The lower

the value of |Cy|, the higher TExpansion can be obtained. Because of this higher

temporal expansion, the overall debug time can be reduced significantly. The proposed

debug scheme assumes that the correct CUD response signatures (i.e., golden data)

can be computed off-chip by a sufficiently verified behavioral reference model. This

assumption has also been considered in similar methodologies [123, 185, 187, 188, 191] in

the literature. Nevertheless, obtaining a fully verified reference model is itself an equally

challenging problem.

Chapter 7. Debug Architectures with On-chip Compression 206

7.3 Proposed Multi-session Debug Architecture

7.3.1 Brief Overview

The proposed debug architecture is shown in Figure 7.2. The same on-chip storage (i.e.,

trace buffer) is utilized for storing compressed debug data signatures (which are to be

offloaded for Cy identification) in the first session and storing tag bits along with the

debug data corresponding to suspect clock cycles (Cy) in the second session (S2).

The total time (Tuo) spent in uploading and offloading of different contents in a debug

experiment can be given as follows:

Tuo = S1.Toffload + S2.Tupload + S2.Toffload (7.3)

We target reducing the amount of debug information needed to be offloaded and

uploaded so that the individual components in the right hand side of above equation are

reduced. S1.Toffload denotes the offloading of compressed signatures, S2.Tupload depicts

the time spent in uploading of tag bits for facilitating the selective data capture in

S2. S2.Toffload represents the offloading of fine-grained debug data for the final error

localization analysis.

7.3.2 Debug Architecture Operation

The techniques in [187, 193] employ a combination of MISR and cycling register (which

is basically an arrangement of XOR gates and is abbreviated as CR) for the purpose of

debug data compression. These methodologies compute suspect erroneous clock cycles

(Cy) from the intersection of MISR and CR failing signatures (Signfailing) as below:

Cy = MISR Signfailing ∩ CR Signfailing (7.4)

It is obvious from above that as the amount of intersection of clock cycles (correspond-

ing to failing signatures) increase, Cy size decreases and we move closer to the actual

Chapter 7. Debug Architectures with On-chip Compression 207

erroneous cycles (Cye). For exact error localization, we desire Cy to be equal to Cye.

Figure 7.2: Proposed multi-session debug architecture

However, Cy may be significantly larger than Cye. For a successful debug experiment,

we require that Cye ⊆ Cy. The difference (Cy-Cye) serves as the overhead for which

data needs to be stored in TB in addition to data corresponding to Cye cycles. One of

the methods to obtain higher data compaction is to employ a larger number of cycling

registers. However, apart from additional area overhead, chances of aliasing of cycling

register signatures also increase. Therefore, we fix the number of cycling registers as two

and utilize other techniques to minimize the difference (Cy-Cye).

In the first debug session (shown in Figures 7.2 and 7.3), signatures of the CUD

execution are computed by a MISR and two cycling registers (CR1 and CR2) and then

these are stored into the trace buffer. For the MISR, each signature compacts the CUD

execution data depth by k. A cycling register of m1 length compacts the CUD data at

every mth
1 data-word.2 In total, m1 signatures are produced by the first cycling register

(CR1) while m2 signatures are generated by the second CR (i.e., CR2). Under the

proposed methodology, Cy is calculated by taking the intersection of the debug data

2A data-word essentially means a CUD execution data of length W bits.

Chapter 7. Debug Architectures with On-chip Compression 208

signatures as follows:

Cy = (Cy.MS ∩ Cy.CR1) ∩ (Cy.MS ∩ Cy.CR2) (7.5)

In the above, Cy.MS denotes the clock cycles for which MISR signatures mismatch

with the corresponding golden signatures. Similarly, Cy.CR1 and Cy.CR2 denote the

clock cycles for which their debug signatures are different from the respective golden

data. Intersection of these clock cycles provides us the suspect erroneous cycles (Cy)

for which data must be stored in TB. The detailed operation of the debug architecture3

is shown in Figure 7.3. After the intersection of the mismatched signatures of the first

Figure 7.3: Session-1 operation in multi-session debug

session is calculated, tag bits are generated for facilitating the capture of debug data

(in the form of signatures) corresponding to suspect clock cycles. This data is stored

(i.e., uploaded onto the chip via JTAG mechanism) on the trace buffers before starting

the second session. The authors in [187] have proposed the usage of a parity scheme

in their first session to estimate error rate (ER) in the debug data. This facilitates the

computation of the temporal observation window length for the subsequent second and

third sessions. In the proposed architecture, the compressed debug data is loaded into

the on-chip storage (TB) in the first session for the off-line comparison with the golden

3The register in Fig. 7.2 is merely for facilitating transmission of the same debug data to the MISR
and the two CRs for data compression.

Chapter 7. Debug Architectures with On-chip Compression 209

signatures. The final debug data capturing occurs in the second session. One of the

major differences between [187] and the proposed scheme is that the former requires

three sessions while the latter requires only two sessions. The argument behind this is

that in the proposed scheme, the amount of debug data compression is relatively higher

which allows a serialized observation window in S2. However, the number of iterations of

S1 may be higher as the observation window is to be determined based on the dimensions

of the trace buffer.4 Note that if the golden debug data can be stored on-chip as suggested

in [188, 191], the comparison and debug data capturing can be done simultaneously in a

single session itself.

The proposed tag bit generation method is different from the techniques described

in [187, 193] and is elaborately described in Section 7.4.2. The proposed approach gives

assurance that minimum tag bits are required which lead to storage of debug data corre-

sponding to lesser number of additional clock cycles (i.e., the suspect clock cycles which

are not erroneous and not present in Cy set). Storage of debug data corresponding to

these extra clock cycles acts as overhead and the number of these additional clock cycles

(for which unnecessary data gets dumped in TB) must be minimized.

In the first session, the control signals enable the 2-D (i.e., both temporal and spatial)

compaction by allowing debug data compression through MISR and Cycling registers

and generated signatures are stored in the trace buffer as previously stated. Generally,

MISR signatures require more space, so trace buffer size is accordingly divided. If we

choose cycling register (CR1, CR2) sizes as prime numbers, then there is an appreciable

chance of getting lesser amount of the intersection with MISR signatures leading to a

reduced number of suspect clock cycles (Cy). Essentially, CR1 and CR2 consist of

these individual registers and the respective XOR gates as shown in Fig. 7.2. In the

first session, three control blocks (shown as Cntrl-1, Cntrl-2 and Cntrl-3 in Fig. 7.2)

are active. The first control block (Cntrl-1) is associated with MISR and it ensures the

4The combined time for parity-based session and then intersection finding session in [187] would be
comparable to the time taken for multiple iterations of S1 (because of serialization-based partition of
the total observation window) in the proposed methodology. However, with the removal of parity-based
session, we get rid of the requirement of off-line dumping at the end of it.

Chapter 7. Debug Architectures with On-chip Compression 210

resetting of MISR after the MISR signatures are stored in the trace buffer. The second

and third control blocks are associated with the cycling registers. Once the trace buffer

is full, signatures will be offloaded for further analysis. The scheme for the second session

is shown in Fig. 7.4 (where tag bits are stored in the location shown as Tag Bits part of

TB). Typically, the selection hardware consists of a tag bit register with a down counter

Figure 7.4: Session-2 operation in multi-session debug

aimed at capturing the data in the suspect clock cycles. The down counter is loaded with

the tag bit register value (i.e., suspect clock cycle number) and starts counting in the

downward direction. When zero (in the down counter) is reached, one flag is generated,

and the debug data gets stored on the trace buffer, and a new value from tag bit register

will be loaded for the down counter. As the tag data is read out of the trace buffer, it

can be overwritten in the trace buffer by the captured data. During design of the debug

infrastructure, enough slack has to be provided such that the captured data never tries

to overwrite any unread tag bit data.

7.3.3 Design Choices in Proposed Architecture

As mentioned in previous section, there are three important parameters which decide

the amount of on-chip compression: k, m1, m2. To avoid aliasing, the length of MISR

should be kept high and preferably matching with W . If k is kept high, we can obtain

spatial compression along with the temporal compression (i.e., in a number of clock

cycles) provided by MISR. However, to avert the subsequent complex decoding of the

Chapter 7. Debug Architectures with On-chip Compression 211

signatures from the CUD execution data, we prefer to avoid spatial compression of data,

thereby fixing k as W . On-chip cycling registers assist us in achieving significant spatial

compression provided their lengths are chosen reasonably. From Equation 7.5, it can

be easily deduced that larger the length of cycling register (i.e., m1 or m2 value), the

number of intersections would be less because of higher compaction by it. However, since

the number of signatures generated by cycling register is dependent on its length, the

trace buffer depth also needs to be considered. Note that the amount of trace buffer

slots (of a fixed width) required by a cycling register is equal to the number of signatures

generated by it.

7.4 Details of Two Session-based Debug

7.4.1 Suspect Clock Cycle Determination in 1st Session

Two-dimensional (2-D) compaction is performed on the incoming CUD execution data in

the first session with the help of MISR and CR. As stated before, k locations of the trace

buffer are allocated to store the MISR signatures, thereby MISR signatures are stored

at every k cycles. Similar to the previous notation, m1 and m2 locations of the trace

buffer are allocated for cycling register. The cycling register signatures are generated

by XOR operation of the incoming data-word (i.e., debug data) with the data already

present (at one of the places in the trace buffer, marked as cycling register locations

in Fig. 7.3) pointed to by mod-m1 and mod-m2 address counters respectively. In this

manner, the cycling registers generate signatures which consist of the XOR of every mth
1

and mth
2 debug data-word respectively. We consider a scenario for 35 clock cycles (=L)

of debug data words with and k = 5, m1 = 7 and m2 = 5. Under this scenario, CR1 (or,

CR-1) compacts every 7th data-word and CR2 (or, CR-2) compacts every 5th data-word.

An example of 2-D compaction is shown in Figures 7.5 and 7.6. Each MISR signature

compacts a consecutive sequence of debug data words by k. MS1 represents the MISR

signature and C1 denotes the data in 1st clock cycle. MISR compacts data through 1st

to 5th clock cycles, represented by {C1, C2, C3, C4, C5}, then 6th to 10th clock cycles,

Chapter 7. Debug Architectures with On-chip Compression 212

represented by {C6, C7, C8, C9, C10} and so on. So, MS1 denotes the compaction of

1st to 5th cycles. The first signature in the first cycling register (i.e., CR1) is represented

by CR1 1 which represents the debug data corresponding to clock cycles {C1, C8, C15,

C22, C29}. Similarly, CR2 1 represents the debug data corresponding to clock cycles

{C1, C6, C11, C16, C21, C26, C31} of first signature of the second cycling register (i.e.,

CR2). For CR1 and the MISR, we have seven signatures while for CR2, we have five

signatures. The failing signatures of MISR and CR1 are shown as shaded in Figure 7.55

Figure 7.5: Intersection of debug signatures of MISR & CR1

Let’s assume that there is an error in the debug data for C6, C11 and C23 clock cycles.

After the comparison of the MISR signatures and that of cycling register (failing MSi

with failing CR1 j and CR2 k i, j ∈ {1,2....7} and k ∈ {1,2....5}) with the respective

golden response signatures, we obtain the clock cycles corresponding to the mismatch

of these signatures. The clock cycles for the mismatch signatures are highlighted (in

Figure 7.6: Intersection of debug signatures of MISR & CR2

red color) in Figures 7.5 and 7.6. For the MISR, failing signatures are MS2, MS3 and

5Similarly, the failing signatures of MISR and CR2 are shown as shaded in Figure 7.6

Chapter 7. Debug Architectures with On-chip Compression 213

MS5. For cycling registers (CR1 and CR2), the failing signatures are CR1 2, CR1 4,

CR1 6 and CR2 1, CR2 3 respectively. The intersection between debug data signatures

proceeds as given below:

• Intersection of MISR and CR1 signatures provide suspect candidates as {C6, C9,

C11, C13, C23, C25}

• Intersection of MISR and CR2 signatures provide suspect candidates as {C6, C8,

C11, C13, C21, C23}

• Intersection of the above clock cycles yield suspect clock cycles (Cy) as {C6, C11,

C13, C23}.

As per the approach of [187], when only one cycling register (i.e., CR1) is considered, the

intersection of mismatching signatures of MISR and CR1 yields suspected clock cycles

(Cy) as {C6, C9, C11, C13, C23, C25}. Note that with the proposed approach, we

obtain length of Cy as only 4.

The probability of aliasing for MISR is very low, i.e., 2−K where K is the size of

the MISR. Typically, we utilize 32 or 64-bit MISR, so aliasing probability is negligible

for MISR. Aliasing in a cycling register (CR) signature occurs when errors occur for an

even number of bit in the same bit position in CUD execution data. The probability of

aliasing in a cycling register is also depends on the error rate[187]. During our detailed

debug experiments on various designs, we observed that aliasing in either of CR1 and

CR2 does not have any significant impact on the error localization process.

7.4.2 Tag Bits (TBits) Generation for 2nd Session

As stated earlier, in the second session (S2), the trace buffer is used to store the suspect

clock cycles (Cy). The triggering action for storing the debug data corresponding to these

cycles from a stream of CUD execution is performed using tag bits (TBits). Before the

onset of S2, we store TBits on the trace buffer to capture the selective debug data. Let’s

consider that without any compression, L clock cycles can be observed and traced in S1.

Chapter 7. Debug Architectures with On-chip Compression 214

Hence, the temporal observation window for S2 is also given as L. With compression,

this observation window is expanded by a factor (say, f) to f*L. This factor, f also

depends on TBits because the latter decides the start-points and end-points for the

selective debug data capture in S2.

One of the simplest ways to generate tag bit (or, storage triggers) is to have either

a single bit for each cycle in L. However, the tag bit storage in this manner can incur

significant overhead. For instance, Let’s consider that Cy (which consists of {C6, C9,

C11, C13,C23, C25} as per the technique of [187]) length is 6 and hence the tag bits are

35 in number (00000100101010000000001010000000000). The technique in [187] suggests

putting a single tag bit for every two bits of the actual debug data. Hence, for L to be

35, we need a maximum of 18 tag bits. For the Cy set considered above, the tag bits

would be 001011100001100000. Using this approach, debug data corresponding to 12

clock cycles is needed to be stored in trace buffer. Since the suspect cycle candidates

are only six, an overhead of storing another 6 (i.e., {C5, C10, C12, C14, C24, C26})

cycles is incurred. We propose a difference-based TBits generation methodology (shown

in Algorithm 18). We compute the difference between the successive entries of Cy and

store these differences instead of the original clock cycles. With this, the amount of tag

bits to be stored is altered and the overhead for storing the unnecessary clock cycles (i.e.,

clock cycles absent in suspect cycle set, Cy) is reduced.

From the discussion in the previous sub-section, with the proposed technique, we

have Cy as {C6, C11, C13, C23}. The difference (considering the first entry to be same

as the original) between successive entries is {6, 5, 2, 10} i.e., {0110, 0101, 0010, 1010}.

If we use 4 bit for every position, then we need 16 tag bits without any overhead of extra

cycles. This is because if the position 6 is known, based on the successive differences all

other clock cycles can be exactly identified. For instance- adding 5 to position 6 leads to

11th clock cycle. However, if we consider 3 bits for storing the successive differences, the

scenario changes slightly. Under this case, we need to store the differences as {6, 5, 2, 7,

3} i.e., {110, 101, 010, 111, 011}. Here, we need to store clock cycle C20 as an overhead

(since it is not present in Cy set). Thus, with reduced length for storing each successive

Chapter 7. Debug Architectures with On-chip Compression 215

difference, there can be overhead of storing additional cycles (debug data corresponding

to which are not erroneous). However, these additional cycles are significantly lower than

the tag bit compression technique proposed in [187].

Algorithm 18: TBitsGeneration
Input: Cy, TagRegister Size
Output: TBits

1 diffset ← Cy[0];
2 t = 0;
3 trs = TagRegister Size;
4 while t < length(Cy) do
5 diff = Cy[t+1] - Cy[t];
6 diffset ← diffset ∪ diff ;

7 end
8 mdiff = maximum of diffset;
9 if mdiff < (2trs-1) then

10 TBits ← Boolean encoding of all u in diffset;
11 else
12 exdiff = mdiff - maxb;
13 diffset ← diffset ∪ exdiff ;
14 TBits ← Boolean encoding of all u in diffset;

15 end

16 end

7.4.3 Fine-grained Spatial Visibility in 2nd Session

7.4.3.1 Illustration and Description

We propose a mechanism to achieve fine-grained spatial error localization through effec-

tive debug data segregation (i.e., the segregation of the individual debug data-word/debug

signature). Note that since data-word width is same as signature width, the segregation

of both the signature and actual data-word follows the same pattern. Once suspect clock

cycles (Cy) are identified, across each of these clock cycles, complete data-word (consist-

ing of W length) needs to be stored in the trace buffer. However, the error may be only

in certain positions of that data-word. The proposed methodology (shown in Algorithm

19) segregates the debug data into groups (i.e., bytes).

Chapter 7. Debug Architectures with On-chip Compression 216

With segregation, the signatures consisting of data-words of W length translates to

W/q chunks of debug data where q is the length of each chunk. We assume W as 32 and

fix q as 8 leading to 4 (= W/8) bytes of debug data termed as W0, W1, W2 and W3. This

allows selective data capture among these 8 bytes instead of the complete data-word of

length W during S2 session. Along with storing successive difference of Cy entries, we

need to store these byte positions also. The following example provides an illustration

of the data segregation. For the error positions (in terms of clock cycles) shown in Fig.

7.5 and 7.6, we assume that clock cycle C6 has error in the 1st byte in the respective

data-word (of length 32 bits); C11 has error in the 3rd byte and C23 has error in the

2nd byte. The intersection between different segregated debug data signatures proceeds

as follows: (format adopted here is {v: {Cq, Cr,..}} meaning that for clock cycles Cq

and Cr, vth byte of the signature data-word is erroneous and so on.)

• Intersection between MISR and CR1 signatures (specifically6 MS2 and CR1 6, MS2

and CR2 1) leads to: {1: {C6, C13}}; {2: {C9, C23}}; {3: {C11, C25}}

• Intersection between MISR and CR2 signatures (MS3 and CR1 4, MS3 and CR2 3)

leads to: {{1: {C6, C11, C21}; {2: {C8, C13, C23}; {3: {C6, C11, C21}}

• Final intersection signatures (MS5 and CR1 2, MS5 and CR2 1) leads to: {1 :

C6} {2 : C23} {3 : C11}

Since Cy is {C6, C11, C23}, we obtain the successive difference as (6, 5, 12). Therefore,

TBits (assuming 4 bits for each position) required are 0110 0001 0101 0100 1100 0010.

Here, the bold part represents byte selection (with one-hot encoding7 leading to 3rd byte

position for C11 encoded as 0100) resulting into 24 bits storage in TB in total. With

data segregation, Cy has only 3 entries and as their byte-positions are also known, we

require only 3*8=24 bits to be stored in TB during second session (S2). These 24 bits

involve data-word byte corresponding to the exact erroneous clock cycles only, thereby

6Since these signatures are the failing ones, data-words of these signatures for each cycle should be
intersected byte-wise among each other.

7Any other encoding is also possible like the way we encode cycle positions. The corresponding
decoder can be similar to a counter.

Chapter 7. Debug Architectures with On-chip Compression 217

avoiding additional (i.e., debug data corresponding to the non-erroneous clock cycles)

storage in TB. This procedure is shown in Algorithm 19.

Algorithm 19: DataSegregation
Input: CUD Data Sig, Golden Data Sig, Cy
Output: DByte

1 Dbyte Cy ← φ;
2 DByte ← φ;
3 w = W/8 (Since 8bits=1byte);
4 for r in Cy do
5 D ← CUD Data Sig for Cy[r] ;
6 DG ← Golden Data Sig for Cy[r] ;
7 for z in 0 to w-1 do
8 if D[z] 6= DG[z] then
9 Dbyte Cy[r] ← z;

10 end

11 end
12 DByte ← DByte ∪ Dbyte Cy[r] ;

13 end

For the particular debug scenario considered above (i.e., Figures 7.5 and 7.6 where

Cy length is 6 with 1 MISR and 1 CR as elaborated in Section 7.4.1), Table 7.2 shows

the comparison of the required tag bits (TBits) and the number of bits (Bits) to be

stored in the trace buffer (TB) for the proposed methods and the technique proposed

in [187]. M1 represents our methodology based on two-step signature intersection (via

1 MISR & 2 CR) elaborated in Section 7.4.1 and 7.4.2. M2 represents the fine-grained

spatial error localization explained in this section. Corresponding to all these methods,

tag bits (TBits) form varies and the amount of TBits also varies. From hereafter, Cy

length is denoted by |Cy|. Note that TBits increases in M2 because of the additional

encoding of byte-positions along with the cycle (Cy) positions. The counter (4-bit) is

similar to that shown in Fig. 7.4. As illustrated before, the length of this counter may

vary from one debug experiment to another. However, its optimal size can be empirically

decided based on the initial observation window (L).

Chapter 7. Debug Architectures with On-chip Compression 218

Table 7.2: Tag bit size & on-chip storage calculation
Compression |Cy| TBits form TBits Bits

[187] MISR, 1 CR 6
1 bit for
1 cycle

35 6*32 = 192

[187] MISR, 1 CR 6
1 bit for
2 cycles

18 12*32 = 384

M1 MISR, 2 CR 4
4-bit counter,

diff.-based
16 4*32 = 128

M2
MISR, 2 CR,

byte-wise
3

4-bit counter,
diff.-based +

byte-tags
24 3*8 = 24

7.4.3.2 Implementation of Segregation-based Storage in TB

Due to the partially specified data-words in M2 method, we need to ensure the storage of

Bits in TB in a manner so that the byte-positions of the debug data bits do not overlap.

To facilitate this, we propose a minor modification in the scheme shown in Figure 7.2.

This arrangement ensures that the writing of partially specified data-words into TB is

Figure 7.7: Storage of fine-grained debug data

serialized via two registers i.e., Reg1 and Reg2 (Reg1 dumps its contents first into TB,

then Reg2), each having a length of W controlled by a multiplexer as shown in Figure

7.7. Therefore, the incoming debug data in the segregated form is stored into TB via

Reg1 and Reg2. Note that the control logic in Fig. 7.7 ensures that different debug bits

are dumped into Reg1 and Reg2, one at a time. The multiplexer ensures the selection

of Reg1 for writing into TB while the incoming debug data arriving at that time, is

stored into Reg2. Table 7.3 shows these control values for different conditions. Once the

Chapter 7. Debug Architectures with On-chip Compression 219

Table 7.3: Different conditions of fine-grained storage
Reg1 condition Reg2 condition Select Enable

partially empty partially empty X 0

full partially empty 0 1

partially empty full 1 1

contents of Reg1 is completely written into TB, the multiplexer in Fig. 7.7 selects Reg2

for writing into TB. The enable signal in the multiplexer ensures dumping of register

contents into TB only when it is completely full (i.e., 4 bytes of data are stored either

from single clock cycle or multiple clock cycle of the Cy set).

7.4.3.3 Decoding TB Contents during Off-chip Analysis

Consider that L is eight clock cycles numbered A0 to A7. With this set-up, we have

Cy as 4 clock cycles (A2, A3, A5 and A7) and their suspect byte positions are W2, W0,

W2 and W3 respectively. Since TBw is considered as 32, its one location gets filled up

with these byte positions. While offloading TB contents, as we know the suspect clock

cycles (through TBits), we can easily understand the debug data during detailed off-line

error localization process after the second session. Note that we store the byte positions

(i.e., W0, W1, W2, W3) also in TBits which assist in determining the correspondence of

a particular byte to a suspect clock cycle.

7.4.3.4 Fine-grained Error Localization

With the method in M2, we store the byte-wise partitioned debug data signatures in TB

in S1 session. After the end of S2 session, once these segregated signatures are offloaded,

in the second session, the errors can be localized to a resolution of the particular byte (4

bits) in data-words (of total length 32 bits). Considering the debug scenario in previous

subsection for 4 clock cycles (A2, A3, A5 and A7). With byte-wise segregation, we can

conclude that the error belongs to either of the W2, W0, W2 and W3 portion of the data-

word for the respective clock cycles instead of the complete data words (i.e., all of Wi, i

∈ {0,1,2,3}) of these four suspect clock cycles.

Chapter 7. Debug Architectures with On-chip Compression 220

7.5 Experimental Setup, Results and Analysis

7.5.1 Experimental Setup

We performed error injection experiments on a wide range of circuits- 2 from ISCAS’89

suite [145] (s38417, s38584), three are processor cores (p16c5x, or1200, msp430) from

Opencores [143]. We injected errors randomly (i.e., bit-flipping in the traced signals) at

different error rates (ER) and a varying L, W across these designs. Either constrained-

random testbenches or applications written in C language (after compilation through

respective tool-chains) are utilized for the design simulation. We injected errors in the

data-words (of total length as 32, 40 or 64 bits) in 4 different ways for all the designs:

a) single cycle, single bit error in a randomly chosen data-word (SCSB), b) single cycle,

multiple bits (SCMB) generally 2 to 5 bits of the data-word, c) multiple cycle, multiple

bits (MCMB), and d) multiple cycle, single bit (MCSB) ranging from 2 to 10 clock

cycles. All error injection experiments (i.e., a single row in the Tables 7.4 to 7.8) are

repeated for 200 iterations resulting into a total of 3200 iterations for s38417 circuit and

4000 iterations for each of the other four circuits (p16c5x, msp430, s38584, or1200).

Therefore, across all the four different error types, the reported results in Tables 7.4 to

7.8 have been obtained after averaging for 200 iterations for each ER. In accordance

with the terminology adopted in [187],[188],[189] error rate (ER) is defined by:

ER =
|Cye|
L

(7.6)

where |Cye| is denotes the number of clock cycles in which the actual error is present.

In Tables 7.4 to 7.8, for 3 methods (i.e., M1, M2 and [187]), we report the averaged

debug data storage in S2 (i.e., Bits) and the averaged number of suspect clock cycles

(i.e., |Cy|) for various designs.8

Across the designs, L and W are varied to assess the impact of aliasing and the

8From hereafter, |Cy| refers to the averaged number of suspect clock cycles computed across multiple
iterations of debug experiments.

Chapter 7. Debug Architectures with On-chip Compression 221

debug data storage under different error types. Consider the case of uncompressed on-

chip debug data collection, then we need to store L*W bits. For instance- in results of

s38417 circuit (Table 7.4) with L as 512 and W as 32, we need to store 512*32 bits during

uncompressed debug data acquisition. Under an on-chip debug data compression scheme,

if the suspect clock cycle(s) can identified (out of total 512 cycles), we need to store only

32 bits (corresponding to the signature of only that clock cycle). This illustration shows

that with debug data compression, a significant reduction in the on-chip storage can be

achieved (which is shown as Bits in the three columns of Tables 7.4 to 7.8). Aliasing

situations generally occur for MCSB error type. Although these occurrences are low in

number, efforts should be made to decrease them to zero. We believe that the length of

cycling registers is important for containing the aliasing in signatures.

 0

 10

 20

 30

 40

 50

 60

M1.MCMB Yang.MCMB M2.MCMB M1.MCSB Yang.MCSB M2.MCSB

C
yc

le
s(

|C
y|

) t
o

st
or

e
in

 T
B

ER=0.2%
ER=0.3%
ER=0.4%
ER=0.5%
ER=0.6%
ER=0.7%
ER=0.8%
ER=0.9%
ER=1.0%

Figure 7.8: Variation of Cy with ER of p16c5x circuit

The results from Table 7.5 are shown in Figure 7.8 for better visualization. As it

can be observed, with the proposed methodologies (M1 and M2) provide lower values

of |Cy| than that of Yang et al. [187]. We define on-chip storage utilization metric as

below (for the sake of brevity, we do not show this metric in results of Tables 7.4 to 7.8):

Util =
Bits

TBw ∗ TBd
(7.7)

Given the capacity of TB as TBw*Dtb, if Bits are to be stored in S2 in the successive

debug experiments, available TB space decreases as Util in the second session increases.

Increase in Util happens if Bits increases. However, Bits should be low as possible.

Chapter 7. Debug Architectures with On-chip Compression 222

Therefore, better utilization of TB essentially means a low value of the metric in Equation

7.7. Here, we assume that a total of p debug experiments9 can be done when no debug

data compression has been employed. The first experiment runs from 1st to Lth clock

cycle, the second one runs from (L+ 1)th to (2L)th cycle10 and so on.

During the second session (S2) of this debug experiment, the observation window

can be effectively elongated to TExpansion*L1. Consider TBw as 32 and Dtb as 1024

and the total length of CUD execution is 32768 (= 215) cycles, in the first session,

observation window is 1024 only. After the intersection of signatures, if |Cy| is obtained

as 28, we obtain an TExpansion of 36.57 (putting 1024 in numerator of the expression

for TExpansion in Equation 7.2. Consequently, in the second session, the temporal

observation window is expanded to 37449 cycles which is more than 32768 cycles allowing

the complete CUD execution to be stored in only one iteration of S2 in the debug

experiment compared to the scenario of five such sessions (i.e., p = 5). Let’s assume

that in this scenario we obtain Bits as 1794 which leads to Util as 0.054 meaning

that approximately 0.946 of TB space is available for other S2 sessions in the debug

experiment. In other words, when no compression is performed, we must have 5 S2

sessions (each covering 1024 clock cycles) for capturing the debug data and TB gets

filled up in each of these iterations. With compression, we succeed in finishing this in a

single S2 iteration.

7.5.2 Metrics for Comparative Evaluation

For comparative estimation of the usage of on-chip storage (which reflects the temporal

visibility expansion) with the proposed methodology, we define two metrics (ObsvCo and

ObsvCoBy) in Equations 7.8 and 7.9.

ObsvCo =
Bits.(MISR, One CR)

Bits.(MISR, Two CR)
(7.8)

9So, we can have maximum of p number of first and second sessions.
10We assume that the second temporal observation window remains same as initial observation win-

dow, L1. In reality, this may also vary.

Chapter 7. Debug Architectures with On-chip Compression 223

The denominator in Equation 7.8 indicates Bits (i.e., the compressed debug data) to be

stored in TB in S2, obtained by compression with the proposed method which involves

MISR and two CR (i.e., M1). The numerator denotes amount of Bits to be stored

in TB, achieved with MISR and one CR (the denominator shows Bits obtained with

the technique proposed in [187]). As stated previously, the proposed method requires

lower amount of on-chip storage. Thus, the denominator attains lower values than the

numerator yielding always a value of ObsvCo greater than unity. It is obvious that higher

the values of ObsvCo metric, better is the utilization of on-chip storage.

ObsvCoBy =
Bits.(MISR, One CR)

Bits.(MISR, Two CR, segbyte.)
(7.9)

A similar terminology is valid for the second metric, ObsvCoBy with the only difference

that the denominator encompasses the proposed methodology with data segregation (i.e.,

M2) represented here as segbyte. (segregation of bytes). It is obvious that for ObsvCoBy

metric, the denominator has a lower value than that of ObsvCo metric. Because of this,

ObsvCoBy attains a higher value than that of ObsvCo.

7.5.3 Comparative Evaluation Results

In Tables 7.4 to 7.8, 10th column (Exact) represents the exact number of bits in which

errors have been injected and 11th column (Alia.) shows the number of iterations in which

we encountered aliasing of debug data signatures. Since we observed lower number of

such iterations, it can be concluded that aliasing of signatures (due to either MISR or

CR) is tolerable under the proposed scheme. Note that the authors in [187] compute

the efficiency of their method through temporal observability expansion (in terms of

Cy), however, our metrics (ObsvCo and ObsvCoBy) are aimed at the maximization of

on-chip storage (i.e., TB) utility. From Tables 7.4 to 7.8, it can be observed that |Cy|

for M1 is lower than |Cy| for [187] for all error rates and different error configurations.

For SCMB and MCMB configuration, |Cy| for M2 is slightly higher than that of [187]

and M1. In cases of these errors, because of segregation, the same |Cy| is counted

Chapter 7. Debug Architectures with On-chip Compression 224

more than once (as multiple data-words may contain the error) resulting in the overall

increase in values of |Cy|. At other error rates, there is significant decrease in Cy of

M2 than that of [187], resulting in fine-grained visibility. Subsequently, the number of

debug experiments is also brought down because with compression, a larger observation

window (L) is accommodated within a single session iteration.

For s38417 circuit (Table 7.4), under MCMB error type configuration, when exper-

iments are performed with ER of 0.78% i.e., error is in 4 cycles, the technique in [187]

provides an averaged Cy as 12.6, whereas we obtain averaged Cy as 4.285 and 10.44 for

M1 and M2 respectively. Therefore, for L of 512 clock cycles, we need to store debug

data corresponding to 4.285, 12.6 and 10.44 clock cycles for the technique in M1, [187]

and M2 respectively. Note that with data segregation feature (i.e., M2) we get lower

Bits (= 83.52) as compared to Bits (= 137) for ER of 0.78% in MCMB error type

configuration of s38417 circuit (Table 7.4). Typically, the realistic design/electrical error

scenarios (i.e., gate replacement, wire exchange, bit-flip etc.) can correspond to any of

the four error scenarios considered above. Figure 7.9 shows the average number of clock

cycles (|Cy|) for which data is to be stored in TB under different approaches (M1, M2

and [187]) for MCSB type error injection. Hereafter, the technique in [187] is denoted by

Yang. It can be observed from this figure that the proposed methodologies (M1, M2)

require storage of significantly lower number of clock cycles (Cy). A similar trend can be

observed for MCMB type error injection from Tables 7.4 to 7.8. The maximum values

 0

 20

 40

 60

 80

 100

c1M1 c1Yang c1M2 c2M1 c2Yang c2M2 c3M1 c3Yang c3M2 c4M1 c4Yang c4M2

C
yc

le
s(

|C
y|

) t
o

st
or

e
in

 T
B

c1−p16c5x, c2−or1200, c3−s38584, c4−msp430 ER=0.2%
ER=0.4%
ER=0.6%
ER=0.8%
ER=1.0%

Figure 7.9: Variation of |Cy| with ER of MCSB type for different circuits

of ObsvCo and ObsvCoBy typically belong to MCSB error type configuration. Further,

Chapter 7. Debug Architectures with On-chip Compression 225

we observed aliasing in the compressed debug signatures during a maximum of 6 itera-

tions out of a total of 200 error injection iterations. The maximum aliasing occurs for

s38417 and p16c5x for respective ER of 1.17% and 1.04% in MCSB error type configu-

ration. At lower values of ER and for configurations of SCSB, SCMB and MCMB, we

observed zero aliasing. For msp430 circuit, we observed the maximum value of ObsvCoBy

as 44.20 (at 0.9% in MCSB configuration) which means that compared to technique in

[187], the proposed method, M2 needs 44.20 times lower on-chip storage (i.e., storage in

TB). Thus, accordingly a much larger L (i.e., the temporal observation window) can be

accommodated with the proposed methodology in a debug experiment.

We show the variation in ObsvCoBy values with different error rates (ER) in Fig. 7.10.

There is a gradual increase in the ObsvCoBy values when ER is increased, which means

that the proposed method (M2) provides effective visibility expansion and utilization of

TB as compared to [187] even at higher ER.

Table 7.4: s38417 results for L=512, W=32
Type Error(%) |Cy| (M1) |Cy|[187] |Cy| (M2) Bits (M1) Bits[187] Bits (M2) Exact Alia. ObsvCo ObsvCoBy

SCSB 0.20 1 1 1 32 32 8 1 0 1.00 4.00
SCMB 0.20 1 1 2.49 32 32 19.92 1 0 1.00 1.61
MCMB 0.39 2 3.545 5.2211 64 113.4 41.77 2 0 1.77 2.72

0.59 3.12 7.42 7.77 99.8 237.4 62.16 3 0 2.38 3.82
0.78 4.285 12.6 10.44 137 403.2 83.52 4 0 2.94 4.83
0.98 5.885 18.49 14.305 188 591.7 114.4 5 0 3.14 5.17
1.17 7.425 25.21 17.51 238 806.7 140.1 6 0 3.40 5.76
1.37 9.6 33.025 21.81 307 1057 174.5 7 0 3.44 6.06
1.56 11.875 41.345 26.735 380 1323 213.9 8 0 3.48 6.19
1.76 14.69 50.25 32.45 470 1608 259.6 9 0 3.42 6.19
1.95 17.75 59.75 38.34 568 1912 306.7 10 1 3.37 6.23

MCSB 0.39 2 3.6 2 64 115.2 16 2 0 1.80 7.20
0.59 3.06 7.57 3.022 97.9 242.2 24.18 3 1 2.47 10.02
0.78 4.35 12.63 4.09 139 404.2 32.72 4 3 2.90 12.35
0.98 5.86 18.85 5.27 188 603.2 42.16 5 4 3.22 14.31
1.17 7.52 25.54 6.39 241 817.3 51.12 6 6 3.40 15.99

7.5.4 Experiments with Burst Errors

We performed burst error experiments (i.e., error occurs in bursts of 10 cycles) for dif-

ferent designs with 200 iterations done for each design. Fig. 7.11 shows the averaged

number of cycles (Cy) for which debug data is to be stored in TB under burst error

scenarios. It is obvious that for this error type, |CY e| equals 10. To maximally utilize

the on-chip storage, |Cy| should be as low as possible. M1 achieves lower |Cy| values

Chapter 7. Debug Architectures with On-chip Compression 226

Table 7.5: p16c5x results for L=960, W=32
Type Error(%) |Cy| (M1) |Cy|[187] |Cy| (M2) Bits (M1) Bits[187] Bits (M2) Exact Alia. ObsvCo ObsvCoBy

SCSB 0.104 1 1 1 32 32 8 1 0 1.00 4.00
SCMB 0.104 1 1 2.51 32 32 20.1 1 0 1.00 1.59
MCMB 0.208 2.015 3.565 5.03 64.5 114.1 40.2 2 0 1.77 2.83

0.312 3.175 7.77 7.78 102 248.6 62.2 3 0 2.45 3.99
0.416 4.625 13.02 11.215 148 416.6 89.7 4 0 2.82 4.64
0.52 6.655 20.02 15.13 213 640.6 121 5 1 3.01 5.29
0.624 9.07 28.12 20.18 290 899.8 161 6 0 3.10 5.57
0.728 11.92 36.575 25.92 381 1170 207 7 2 3.07 5.64
0.832 15.455 46.23 32.85 495 1479 263 8 0 2.99 5.63
0.936 19.625 57.015 41.485 628 1824 332 9 0 2.91 5.50
1.04 24.59 67.27 49.78 787 2153 398 10 0 2.74 5.41

MCSB 0.208 2.01 3.685 2.005 64.3 117.9 16 2 0 1.83 7.35
0.312 3.16 7.8592 3.03 101 251.5 24.2 3 1 2.49 10.38
0.416 4.67 13.35 4.17 149 427.2 33.4 4 1 2.86 12.81
0.52 6.59 19.69 5.45 211 630.1 43.6 5 1-2 2.99 14.45
0.624 8.83 27.79 6.85 283 889.3 54.8 6 1-2 3.15 16.23
0.728 11.97 36.25 8.4 383 1160 67.2 7 2-3 3.03 17.26
0.832 15.6 45.47 10.13 499 1455 81 8 2-3 2.91 17.95
0.936 19.86 57.93 12.31 636 1854 98.5 9 0 2.92 18.82
1.04 23.86 66.76 14.09 764 2136 113 10 2-6 2.80 18.95

Table 7.6: msp430 results for L=1000, W=40
Type Error(%) |Cy| (M1) |Cy|[187] |Cy| (M2) Bits (M1) Bits[187] Bits (M2) Exact Alia. ObsvCo ObsvCoBy

SCSB 0.1 1 1.17 1 40 46.8 8 1 0 1.17 5.85
SCMB 0.1 1 1.13 2.885 64 72.32 23.08 1 0 1.13 3.13
MCMB 0.2 2.06 4.33 5.53 131.5 277.1 44.24 2 0 2.11 6.26

0.3 3.36 9.28 8.645 215 593.9 69.16 3 0 2.76 8.59
0.4 4.94 16.1 12 316.2 1030 96 4 0 3.26 10.73
0.5 7.09 24.1 16.315 453.8 1542 130.5 5 0 3.40 11.81
0.6 10.2 33.6 22.355 655.4 2149 178.8 6 0 3.28 12.02
0.7 13.4 43.5 29.415 857 2787 235.3 7 0 3.25 11.84
0.8 17.5 56 36.625 1118 3586 293 8 0 3.21 12.24
0.9 22.3 67.5 44.592 1428 4322 356.7 9 0 3.03 12.12
1 28.2 82.2 55.805 1805 5263 446.4 10 0 2.91 11.79

MCSB 0.2 2.04 4.33 2.005 130.6 276.8 16.04 2 0 2.12 17.26
0.3 3.29 9.36 3.06 210.6 598.7 24.48 3 0 2.84 24.46
0.4 4.95 15.9 4.21 316.8 1017 33.68 4 1-2 3.21 30.19
0.5 7.21 24.1 5.39 461.5 1544 43.12 5 2-3 3.35 35.82
0.6 9.86 32.8 6.76 631 2100 54.08 6 3 3.33 38.84
0.7 13.2 44.4 8.38 844.2 2838 67.04 7 3 3.36 42.34
0.8 16.9 54.7 10.13 1082 3500 81.04 8 2 3.23 43.18
0.9 22.9 70.5 12.76 1463 4512 102.1 9 2 3.08 44.20
1 28 80.9 28.03 1794 5178 224.2 10 1 2.89 23.09

than compression with 1 CR, 1 MISR techniques (Yang’s approach [187]). Note that be-

cause of data segregation, M2 has significantly higher Cy values. However, the method

M2 achieves significantly lower Bits required to be stored in TB because of the byte

segregation from the incoming debug data. Figure 7.12 shows the averaged amount of

Bits required to be stored in TB for M1, Yang [187] and M2. For almost all the designs,

M1 method achieves lower amount of Bits than Yang [187], while method M2 provides

the lowest Bits for all the designs. Therefore, the increase in |Cy| values with M2 is

overshadowed by data segregation resulting in lower Bits values.

Chapter 7. Debug Architectures with On-chip Compression 227

Table 7.7: s38584 results for L=960, W=64
Type Error(%) |Cy| (M1) |Cy|[187] |Cy| (M2) Bits (M1) Bits[187] Bits (M2) Exact Alia. ObsvCo ObsvCoBy

SCSB 0.104 1 1.875 1 64 120 8 1 0 1.88 15.00
SCMB 0.104 1 1.845 2.89 64 118.1 23.1 1 0 1.84 5.11
MCMB 0.208 2.08 6.87 6.035 133.1 439.7 48.3 2 0 3.30 9.11

0.312 3.585 14.6 9.205 229.4 934.4 73.6 3 0 4.07 12.69
0.416 5.89 24.28 14.115 377 1554 113 4 0 4.12 13.76
0.52 8.775 36.105 19.49 561.6 2311 156 5 0 4.11 14.82
0.624 12.46 49.6 25.45 797.4 3174 204 6 0 3.98 15.59
0.728 17.65 65.31 33.32 1130 4180 267 7 0 3.70 15.68
0.832 23.73 82.8 42.245 1519 5299 338 8 0 3.49 15.68
0.936 29.88 97.96 52.27 1912 6269 418 9 0 3.28 14.99
1.04 38.38 116.14 65.585 2456 7433 525 10 0 3.03 14.17

MCSB 0.208 2.12 6.78 2.01 135.7 433.9 16.1 2 0 3.20 26.99
0.312 3.67 14.64 3.15 234.9 937.0 25.2 3 1 3.99 37.18
0.416 5.8 24.56 4.25 371.2 1572 34 4 1 4.23 46.23
0.52 8.89 37.46 5.53 569 2397 44.2 5 2 4.21 54.19
0.624 12.81 49.97 7.05 819.8 3198 56.4 6 2 3.90 56.70
0.728 17.47 64.25 8.15 1118 4112 65.2 7 0 3.68 63.07
0.832 22.92 81.54 10.46 1467 5219 83.7 8 3-4 3.56 62.36
0.936 29.05 96.85 12.21 1859 6198 97.7 9 2-3 3.33 63.46
1.04 37.22 115.14 14.06 2382 7369 112 10 3 3.09 65.52

Table 7.8: or1200 results for L=1000, W=40
Type Error(%) |Cy| (M1) |Cy|[187] |Cy| (M2) Bits (M1) Bits[187] Bits (M2) Exact Alia. ObsvCo ObsvCoBy

SCSB 0.1 1 1.095 1 40 43.8 8 1 0 1.09 5.47
SCMB 0.1 1 1.14 2.66 64 72.96 21.3 1 0 1.14 3.43
MCMB 0.2 2.03 4.24 5.49 129.9 271.4 43.9 2 0 2.09 6.18

0.3 3.32 9.195 8.525 212.5 588.5 68.2 3 0 2.77 8.63
0.4 4.95 15.96 12.07 316.8 1021 96.6 4 0 3.22 10.58
0.5 7.145 24.4 16.82 457.3 1562 135 5 0 3.41 11.61
0.6 9.885 34.23 21.775 632.6 2191 174 6 0 3.46 12.58
0.7 13.52 43.75 28.825 865.3 2800 231 7 0 3.24 12.14
0.8 17.79 55.36 36.66 1139 3543 293 8 0 3.11 12.08
0.9 23.01 68.12 46.305 1473 4360 370 9 0 2.96 11.77
1 28.57 81.11 56.24 1828 5191 450 10 0 2.84 11.54

MCSB 0.2 2.05 4.34 2 131.2 277.8 16 2 0 2.12 17.36
0.3 3.33 9.115 3.055 213.1 583.4 24.4 3 0 2.74 23.87
0.4 4.97 16.15 4.22 318.1 1034 33.8 4 0 3.25 30.62
0.5 7.2 24.33 5.41 460.8 1557 43.3 5 1 3.38 35.98
0.6 9.95 32.97 6.89 636.8 2110 55.1 6 2 3.31 38.28
0.7 13.77 44.44 8.48 881.3 2844 67.8 7 2 3.23 41.92
0.8 17.68 54.82 10.04 1132 3508 80.3 8 3 3.10 43.68
0.9 21.67 66.45 12.13 1387 4253 97 9 3 3.07 43.83
1 28.16 80.93 14.34 1802 5180 115 10 4 2.87 45.15

7.5.5 Variation of |Cy| and TBits with ER and Tag Sizes

In the proposed methodology, tag bit compression is an important feature and it depends

on the size of the tag bit register. To find the optimal size of tag bit register, we performed

a different set of error injection experiments with different tag register sizes (100 error

injection iterations for each size). The register sizes (trs) range from 2 to 13 bits across

all the designs. It is imperative that with change in trs, the amount of TBits varies. As

elaborated in previous illustration, with change in TBits, the number of cycles (|Cy|) for

which data is to be stored varies significantly. We show the variation in averaged |Cy|

and avg. tag bit (TBits) storage requirement with different tag sizes in Fig. 7.13 for

Chapter 7. Debug Architectures with On-chip Compression 228

 0

 10

 20

 30

 40

 50

 60

c1MCMB c1MCSB c2MCMB c2MCSB c3MCMB c3MCSB c4MCMB c4MCSB

O
bs

v C
oB

y v
al

ue
s

c1−p16c5x, c2−or1200, c3−s38584, c4−msp430

ER=0.3%
ER=0.4%
ER=0.5%
ER=0.6%
ER=0.7%
ER=0.8%
ER=0.9%

Figure 7.10: Variation of ObsvCoBy with ER for different error types

 0

 5

 10

 15

 20

 25

 30

 35

p16c5x or1200 s38417 s38584 msp430

C
yc

le
s(

|C
y|

) t
o

st
or

e
in

 T
B

fo
r b

ur
st

 e
rro

r

M1
[Yang]

M2

Figure 7.11: Comparison of |Cy| for burst error for different circuits

s38417 circuit. For the technique in [187] where in for every two clock cycles, 1 tag bit is

required, in we need 256 tag bits (for L = 512) in total. Therefore, upon increasing tag

register sizes (trs), Cy remains same for [187] as shown in Fig. 7.13 and 7.15. With an

increase in tag-register size (trs) upto a certain extent, |Cy| decreases with the proposed

method (shown here as Prop meaning 2 CR, 1 MISR for compression and successive

difference-based tag bit generation i.e., M1 with our tag generation technique). When

tag-register of length ten is chosen, we get cycle (|Cy|) reduction of 79.30%, 80% and 80%

for p16c5x, msp430 and or1200 respectively over the technique proposed in [187]. For

s38417 and s38584 designs, we get cycle (|Cy|) reduction of 80% and 79.50% respectively

over the technique proposed in [187] with tag-register lengths (trs) of six and nine.

Ideally, with increase in trs, |Cy| of Yang’s approach [187] should not vary for a design

because TBits generation in this approach is fixed as one bit for every two clock cycles

Chapter 7. Debug Architectures with On-chip Compression 229

 0

 200

 400

 600

 800

 1000

p16c5x or1200 s38417 s38584 msp430

B
its

 to
 s

to
re

 in
 T

B
 fo

r b
ur

st
 e

rr
or

M1
[Yang]

M2

Figure 7.12: Comparison of Bits for burst error for different circuits

 0

 50

 100

 150

 200

 250

|Cy|[Yang] |Cy|[Prop] TBits[Yang] TBits[Prop]

C
yc

le
s(

|C
y|

) a
nd

 T
Bi

ts
 to

 s
to

re
 in

 T
B

trs=2
trs=3
trs=4
trs=5
trs=6
trs=7
trs=8
trs=9

trs=10

Figure 7.13: Variation of |Cy|, TBits with trs for s38417 (L=512, W=32)

in L. However, since we perform random error injection experiments (100 in number) for

each value of trs, there is a slight difference in Cy values of Yang [187] in Figures 7.13

and 7.14 when trs is changed. For different circuits, we show the variation in averaged

|Cy| with variation in trs under our methodology in Fig. 7.14. For L of 512, a tag size of

5 or 6 is optimal, while for L as 1000 or 980, tag size of 9 or 10 is the most suitable one.

The variation in averaged TBits with variation in trs is shown in Fig. 7.15. When (trs)

is chosen as ten, we get tag bits (TBits) reduction of 49%, 43% and 44% for p16c5x,

msp430 and or1200 respectively over the tag generation technique proposed in [187].

For s38417 and s38584 designs, we get avg. tag bits (TBits) reduction of 51% and

21% respectively over the technique proposed in [187] with tag-register lengths of six

and nine. This variation in reduction percentage and tag-register length for these two

circuits is because we have chosen different L for both of them (960 for s38584, 512

Chapter 7. Debug Architectures with On-chip Compression 230

 0

 50

 100

 150

 200

c1Prop c1Yang c2Prop c2Yang c3Prop c3Yang c4Prop c4Yang

C
yc

le
s(

C
y)

 to
 s

to
re

 in
 T

B

c1−p16c5x, c2−or1200, c3−s38584, c4−msp430
trs=7
trs=8
trs=9

trs=10
trs=11
trs=12
trs=13

Figure 7.14: Variation of |Cy| with different trs for different circuits

for s38417). As stated before, Figures 7.14 and 7.15 show that the tag bits (TBits)

reduction (which in turn affects |Cy| reduction) is a function of the tag-register size (trs)

in the proposed methodology. Therefore, trs plays an important role in the expansion

of temporal visibility window in the proposed methodology.

 0

 100

 200

 300

 400

 500

 600

c1Prop c1Yang c2Prop c2Yang c3Prop c3Yang c4Prop c4Yang

Ta
g

bi
ts

(T
B

its
) t

o
st

or
e

in
 T

B

c1−p16c5x, c2−or1200, c3−s38584, c4−msp430
trs=7
trs=8
trs=9

trs=10
trs=11
trs=12
trs=13

Figure 7.15: Variation of TBits with different trs for different circuits

7.5.6 Overhead analysis

We implemented the proposed debug infrastructure (scheme shown in Fig. 7.2) and the

architecture proposed in [187] in RTL and synthesized using Synopsys Design Compiler

with 32 nm educational standard cell library (provided by Synopsys). Across all the

designs, we observed a respective increase of 0.6% and 1.025% in area overhead for M1

and M2 over the scheme of [187]. The relative increase in power overhead was 1.6%

and 3.4% respectively for M1 and M2 over [187]. The relatively high overheads for M2

Chapter 7. Debug Architectures with On-chip Compression 231

can be attributed to the serialized writing mechanism for the segregated data. However,

the benefits in on-chip storage utilization for M2 are definitely much important for the

additional 1.8% overhead compared to M1. The proposed method (M2) has a possible

demerit of including minuscule routing overhead in a local region in the vicinity of the

trace buffer. However, there is no impact on global routing because the control logic for

segregation works on registers (similar to the register shown in Figure 7.3) with help of

the tag bits without causing any changes in routing of signals inside CUD.

In the next section, we explore the reuse of Design-for-Test (DfT) architectures for

the purpose of silicon debug. As explained in the earlier chapters, scan chains (which

are the most popular and widely used DfT feature in the designs) are not sufficient for

silicon debug. We analyze their limitations in detail and present arguments for utilizing

a DfT feature for the purpose of debug data acquisition.

7.6 Proposed Progressive Random Access Scan (PRAS)-

based Debug Architecture

The usage of scan chains suffers from a major obstacle as the process of dumping out the

scan values tends to be destructive in nature. This inherent drawback arises out of the

operation of scan chains as the functional clock needs to be disabled so as to facilitate

read-out of the scan values. One way to deal with this is to ensure that the chip can

be started from the particular internally scanned out state. The scan chains have to be

loaded with the given state (which was previously scanned out) to ensure the continuity

in state transitions while execution of the chip for debugging. Hold-scan flip-flop offers

an alternative solution to the problem of destruction of scan values during dumping.

However, this technique has large area overhead as the number of flip-flops in the design

gets doubled. For modern designs with large number of flip-flops, serial scan chain based

debug method is not a viable option as debug time gets increased dramatically. Thus,

alternative scan chain architectures need to be explored so that quick visibility of the

internal states can be obtained for debug purpose.

Chapter 7. Debug Architectures with On-chip Compression 232

Instead of stitching all flip-flops into a single chain, Random Access Scan (RAS)

provides accessibility to the particular flip-flop for the purpose of writing the test vector

bit or for the task of reading out the response bit. The scan cells are arranged in a

SRAM grid like arrangement. Each scan cell is addressed by an unique combination

of row address and column address resulting into routing issues. Progressive Random

Access Scan (PRAS) proposed by Baik et al. [14] is a modification of the conventional

RAS architecture which has less area overhead and is suited for practical implementation

of large circuits. Typically, RAS architectures have the problem of routing congestion

and area overhead due to flip-flop addressing mechanism. However, the authors in [14]

have reported that the progressive random access scan implementation is capable of

solving problems of test power, test volume and test application time at the expense

of around 2-5% overhead over the overhead of serial scan (which is with in practical

limits). For the purpose of non-destructive observability during post-silicon debug, due

to individual accessibility of each scan cell, PRAS can be a suitable option. This is

because debug time gets minimized as compared to serial scan chain based techniques

as individual flip-flops can be accessed. In the light of above, progressive random access

scan needs to be revisited for the purpose of silicon debug in addition to its applicability

to manufacturing test.

7.6.1 Observability Enhancement Based on PRAS

We explore the progressive access scheme of PRAS [14] architecture for observability

enhancement to measure the efficacy of the proposed signal selection methodology. Fig-

ure 7.16 presents the proposed scheme for observing flip-flop values non-destructively.

Flip-flops are arranged in a SRAM-like memory grid structure. The geometry of the ar-

chitecture depends on a number of factors like circuit structure and number of flip-flops

in it. Flip-flops can be arranged in a rectangular fashion. However, we have chosen a

square arrangement which is optimized for address calculations of scan cells as it reduces

number of bits required for addressing. Thus, if Ftot is the number of flip-flops, there are
√
F tot rows and columns. An individual FF can be accessed by an unique combination

Chapter 7. Debug Architectures with On-chip Compression 233

of column and row address bits.

PRAS−FF Row
 Enable shift reg (RE)

Controller

Logic

mode_ctrl

data i/o

col addr

 MISR and sense amp

Trace Buffer (TB)

Column Driver

Column Address Decoder

Figure 7.16: PRAS based observability enhancement scheme

For the square arrangement outlined in the Figure 7.16, each column has a particular

address which is generated by column address decoder based on the column address

input. The row address are generated by row address shift register which is nothing but

a ring counter enabling one row at a time. This progressive access of rows avoids the

necessity of a row address decoder, reducing the area overhead.

Response Compaction: Column drivers are responsible for writing into the scan

cells and sense-amplifiers read the values from scan cells. As is practice with test archi-

tectures, a MISR is used to calculate the signature of scan (or response) values captured

in the flip-flops through time compaction. A trace buffer (TB) is employed for storing

the MISR signatures and offloading them for debug analysis. Note that the depth of

TB utilized here is equal to one while the width is equal to the number of flip-flops (N)

in a row, so the area overhead reduces as compared to other approaches [1, 115]. This

is because techniques in [1, 115] employ trace buffer with a depth of 1024 clock cycles.

Note that in Figure 7.16, outputs (Q) of MISR flip-flops are directly fed to inputs (D)

of flip-flops of trace buffer.

Operation Modes: The architecture is to be operated in 3 modes: functional,

test and debug mode. Controller Logic block is responsible for switching between the

Chapter 7. Debug Architectures with On-chip Compression 234

modes. It provides necessary control signals and handling scan input/output. mode ctrl

pin decides the current mode of operation of the architecture. data i/o pin is used for

offloading trace/scan output values and for receiving scan input (SI) values.

7.6.1.1 Normal (Functional) Mode Operation

In functional mode, inputs are to be applied at the primary inputs (PI) and the responses

are observed at the primary outputs. There is no role of scan feature of flip-flops in this

mode. Thus, they operate as normal storage elements. The operation of the architecture

in this case is same as that of the functional behavior of the circuit.

7.6.1.2 Test Mode Operation

In test mode, two key operations are to be performed: a) writing the test vector bits

into the scan cells and b) reading the states of scan cells. It is worth to note that in the

architecture presented in Figure 7.16, reading is performed in parallel from all the flip-

flops in a row while the write operation is performed on one scan cell at a time. To write

into a single scan cell, column address pins provide the required column address. The

data i/o pin provides the scan value to be written. The corresponding column enable

pin is decoded and activated for writing. The row enable (RE) of that row is set to logic

‘1’ and the column address uniquely identifies the particular flip-flop.

Test application: The MISR is activated and the row enable signal is shifted after

all the write operations for the currently selected row are completed. The test application

is quite similar to the approach of Baik et al. [14] with the only difference that in the

current framework, test responses can be stored first in the trace buffer and then offloaded

for analysis.

7.6.1.3 Debug Mode Operation

In debug mode, the inputs are applied at the primary inputs and the responses captured

in the flip-flops are to be read-out via data i/o pin. As explained in Section 7.6.1.2, a read

Chapter 7. Debug Architectures with On-chip Compression 235

operation is performed for all scan cells in a selected row. The sequence of operations in

debug mode is explained with the help of a flow-chart in Section 7.6.3.

One key difference between test mode and debug mode is that the clock signal oper-

ates in a functional manner in the latter. Thus, the circuit functionality is not stopped

for writing the responses into flip-flops and reading the responses from them. Depending

on the debug requirement, the contents in row enable shift register can be altered to

select the desired row for observing the corresponding scan cells (flip-flops).

7.6.2 Scan FF Operation in Proposed Scheme

There is a significant difference in the operation of scan flip-flop used in PRAS and the

scan flip-flop utilized in serial scan methodology. While the latter requires functioning

in a chain for test purposes, the former does not require so and is individually accessible

through the addressing mechanism. Figure 7.17 is a schematic representation of PRAS

FF. Its operation in different modes (test-write, test-read, debug and normal) are de-

picted in Table 7.9. Note that this FF does not incur much area overhead as compared

to the conventional scan FF according to the results reported in [14].

Figure 7.17: PRAS FF [14] for observability enhancement

Chapter 7. Debug Architectures with On-chip Compression 236

Table 7.9: Operation of PRAS FF for observability enhancement scheme

operation mode test-write test-read debug normal

Clock(CLK) 1 1 functional functional

Write Enable(WE) 1 0 0 0

Row Enable(RE) 1 1 1 1

Column driver activated deactivated deactivated deactivated

Sense amplifier deactivated activated activated activated

7.6.3 Methodology for Observing Internal States

The sequence of events to be followed during debug mode to enable observing internal

states of the circuit is represented in Figure 7.18. The proposed observability enhance-

ment architecture provides reconfigurability which is missing in serial scan chain based

techniques. Also, a fixed visibility like restoration based trace signal selection methods

[1, 102, 115] may not be useful under different kind of functional errors or bug scenarios.

The proposed approach allows selective visibility of rows of flip-flops which is fully recon-

figurable in nature without any usage of multiplexers [118]. As noted in Section 7.6.1,

to avoid overwriting of data, only one row can be read in one clock cycle. As is shown

in Figure 7.18 the same row can be observed for p cycles or reading of few selected rows

may be distributed among p cycles. Note that as per the architecture of Figure 7.16, p

equals Ftot here. If the aliasing of the responses of the buggy designs with the golden

response exceeds tolerable limits, then MISR needs to be permanently deactivated.

As an alternate to second last step of the above methodology (Fig. 7.18), TB can

be configured for data capture from MISR at occurrence of particular trigger events

through Embedded Logic Analyzer (ELA) [1, 102, 115]. Thus, MISR signatures can be

sent off-line for error localization and other analysis. In the architecture of Figure 7.16,

if the row enable shift register progresses serially, first row can be accessed in first clock

cycle, second row in second cycle and so on. The arrangement of flip-flops in rows is

thus an important factor for quick read-out of flip-flop values. This hints at the need of

assignment of priority to flip-flops for debugging.

Chapter 7. Debug Architectures with On-chip Compression 237

 Set RE =1 (for the row to be read)

row to read

new

Deactivate column driver

Read the selected row

p

cycles over

 Reset MISR

Yes

Yes

No

No

Write MISR content to Trace Buffer

Need

Are

Enable MISR for compaction

Operate CLK at functional frequency

Figure 7.18: Flow chart for debug mode operation

7.6.4 Arrangement of Flip-flops in Debug Architecture

To establish the importance of flip-flops for their arrangement in the upper rows of the

architecture presented in Figure 7.16, signal ranking methodology in Algorithm 9 of

Chapter 5 can be utilized. The signal selection methodology for ranking of candidate

trace signals through topological analysis of the circuit (gate-level design description)

is based on [116]. During the logical synthesis of the design, the grouping of flip-flops

in each of the rows in Figure 7.16 can be based on the rank of signals obtained by

the signal selection methodology. The arrangement of rows based on Algorithm 9 (of

Chapter 5) can aim at reducing the error detection latency. This is because read-out of

flip-flop values from lower rows (in Figure 7.16) requires large number of clock cycles.

The highly ranked (i.e., important) r (which is equal to rowlength) signals are placed in

the first row, the second highly ranked r FFs in the second row and so on. The following

procedure (FFArrange) outlines the arrangement of FFs of the design given a ranked

arrangement (RankedSignals) of all signals. Note that the prioritized arrangement of

flip-flops in the architecture of Figure 7.16 can have impact on the layout process. The

routing considerations in a typical arrangement of flip-flops in RAS fashion (as in [14])

Chapter 7. Debug Architectures with On-chip Compression 238

Algorithm 20: FFArrange

Input: RankedSignals, r, Ftot
Output: Arrangement

1 Candidates ← RankedSignals;
2 q=0;
3 rownum=1;
4 while q < Ftot do
5 put r Candidates in rownumth row;
6 q = q + r;
7 rownum = rownum + 1;
8 Remove r FFs from Candidates;

9 end
10 Arrangement ← position of all flip-flops;

may have conflicting requirements as suggested by Algorithm 20. A joint optimization

of error detection priority and layout ease capable of providing better selection is left as

a future exercise.

7.7 Experimental Result on PRAS-based Debug

7.7.1 Experimental Formulation

The proposed observability enhancement scheme helps to obtain debug data quicker than

serial scan as compared to the scenario when the serial scan chain DfT solution is used

for reading and offloading scan values. The number of cycles (cycle) needed to offload

and read n rows consecutively is given by the following relation:

cycle = r ∗ (n+ 1) (7.10)

In the above equation, r is rowlength of one row of flip-flops in Figure 7.16 (assuming

a square arrangement). Note that the maximum value of n is give by
√
F tot, Ftot being

complete serial scan chain length. As we increase number of rows to be observed, we

move towards Ftot. Serial scan based methods require scanning out states of all the

flip-flops even for observing a few of them. However, with the proposed architecture,

Chapter 7. Debug Architectures with On-chip Compression 239

selective reading of rows can be performed quickly for the validation purpose. Equation

7.10 can also be applied in case the same row is read r times. Since serial scan chain-

based methodology requires at least Ftot clock cycles for offloading its contents, in order

to compare the number of clock cycles required with the presented methodology as

compared to serial scan chain-based methods, we define a ratio, reduction based on

Equation 7.10.

reduction =
Ftot − {1 + n ∗ (r + 1)}

Ftot
(7.11)

Substituting n =
√
F tot and simplifying,

reduction ≈ 1− r + 1√
F tot

(7.12)

The metric, reduction can have a minimum value of zero. As this metric approaches

zero, the cycle by PRAS-based mechanism achieves minimum value. So, as
√
F tot de-

creases, reduction metric tends to obtain lower values.

As far as applicability of PRAS to large designs are concerned, it serves as an at-

tractive alternative considering the benefits it offers for manufacturing test as well as

debug. Although implementation of PRAS requires certain overheads regarding layout,

the original proposal in [14] showed that these overheads are tolerable. Recent proposals

in [195, 196] provide results on implementation of Joint Scan which is a hybrid debug

architecture of serial and random-access scan.

7.7.2 Experimental Metrics and Results

7.7.2.1 Ranked Arrangement of Flip-flops

To measure the effectiveness of the ranking of flip-flops from viewpoint of error localiza-

tion, a metric is proposed for the proposed scheme with the arrangement in Algorithm 20

utilizing the ranking methodology (Algorithm 9 of Chapter 5). It is based on comparing

the MISR signatures (MS) and golden signatures (GS). Note that MISR signatures

Chapter 7. Debug Architectures with On-chip Compression 240

which are referred to here, are essentially those which are stored in the trace buffer. The

following equation defines the metric:

φ(n) =
erroneous MISR signature bits for n rows

total MISR signature bits for n rows
(7.13)

In contrast to “Restoration Ratio” [1, 102, 115], the metric φ(n) serves as a bet-

ter metric to evaluate the effectiveness of the data collected through trace buffer since

restoration merely considers the enlargement of the debug data without consider the

effectiveness of the stored information [55]. We performed 100 iterations of gate replace-

ment error injections and the obtained results are shown in Figure 7.19. As expected,

we observed an increase in φ(n) values when the number of rows is increased by one or

two. For one circuit, with increase in value of n, the metric φ decreases. This indicates

the need of dynamic trace signal selection in the silicon debug scheme.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

s13207 s15850 s35932 s38417 s38584

φ
(n

)

1 row
2 rows
3 rows

Figure 7.19: Change in φ(n) with increase in no. of rows

Trace buffer techniques [1, 102, 115] can not achieve the feature of dynamic signal

selection and require dedicated multiplexers to achieve this. However, with proposed

PRAS based observability enhancement scheme, this can be achieved easily by loading

the appropriate bits in “row enable shift register”.

Chapter 7. Debug Architectures with On-chip Compression 241

7.7.2.2 Trivial Arrangement of Flip-flops

To avoid overheads arising out of ranked arrangement of flip-flops, we analyzed a normal

arrangement (i.e., without any ranking of signals of the design) which is suitable to the

synthesis process. We performed 100 iterations of wire exchange error scenario and then

computed the following metric (n2 > n1):

inc =
erroneous MISR signature bits for n2 rows

erroneous MISR signature bits for n1 rows
(7.14)

The results for computation of the above metric is shown in Figure 7.20. Note that

in this scheme, we have total flip-flops observed can be given by n2*rowlength and

n1*rowlength. These flip-flops are significantly higher than that of typical trace buffer

width (which is 32). As expected, there is an increment in inc metric when we move from

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

usb b21 s38584 s38417 b17 b15

In
c
re

a
s
e
 i
n
 e

rr
o
n
e
o
u
s
 s

ig
n
a
tu

re
 b

it
s

total rows in usb: 42
total rows in b21: 21
total rows in s38584: 39
total rows in s38417: 41
total rows in b17: 30
total rows in b15: 21

2 rows to 4 rows
4 rows to 8 rows

8 rows to 10 rows

Figure 7.20: Change in inc values with increase in no. of rows

n1 to n2 rows in the architecture in Figure 7.16. Therefore, even with normal arrangement

of flip-flops, larger number of flip-flops can be observed. Observing larger number of flip-

flops can help in the silicon debug process. However, exact error localization with the help

of signatures which are dumped off-line, is not trivial and therefore require considerations

of other factors like length of MISR (deciding the amount of compression).

Chapter 7. Debug Architectures with On-chip Compression 242

7.8 Discussions on Multi-session Silicon Debug

7.8.1 Reproducibility of Failures in Post-silicon Environment

Non-reproducible errors are extremely difficult to debug [159]. However, with mecha-

nisms for the deterministic replay of these errors (such as those proposed in [197, 198])

the errors can be reproduced to a certain extent allowing further debug (i.e., in the sec-

ond session in the proposed methodology). Dedicated mechanisms such as error tracing

buses [199] or some other hardware-assisted mechanisms [200] can allow the debug data

acquisition in the second session.

7.8.2 Availability of Golden Responses of Designs

As mentioned earlier, lack of golden response is one of the major impediments of quick

silicon debug [33, 159, 201]. However, for low-level debug, based on expected behavior at

an intermediate level, the expected signal values at RTL model can be computed. This

intermediate level behavior can be obtained concerning a broad range of user applications

targeting the particular design. In this work, we have not put any condition on the

internal signals being traced. For instance, if a subset of the flip-flops of the design is

traced, it can be possible to obtain the correct flip-flops from a higher level reference

model which has the same number of sequential elements as that of the RTL.

7.8.3 Relevance with Respect to Similar Work reported in Lit-

erature

With the proposed on-chip compression scheme and other features, the debug exper-

iments can be effectively carried out in a single session instead of two sessions. This

requires additional on-chip storage of the golden data signatures to facilitate comparison

with CUD signatures and suspect clock cycle/cycles (Cy) determination. The authors

in [191][189] utilize DRAM for storing the golden data signatures at the cost of addi-

tional area overhead. For a multi-core design, the proposed scheme can be applied for

Chapter 7. Debug Architectures with On-chip Compression 243

each core. The scheme of sharing trace buffer for multiple identical cores can be used in

conjunction with the proposed approach in [188] and [185]. The proposed scheme can

also be readily utilized in level-based debugging[123] to achieve significant reduction in

the CUD debug data to be compared with the corresponding golden data during each

level. Such an iterative debug scheme [123, 185, 191] typically employs segmented trace

buffer and multiple debug sessions at each debug level. The TB segmentation proceeds

till the last debug level is reached.

Consider that the CUD execution length is L1 (i.e., initial observation window), the

number of samples (ns) per signature at the first debug level is given by L1
TBd

. The

parameter ns decreases at each successive debug level. With the proposed tag bit gener-

ation and the suspect determination procedure, ns can be increased from second debug

level onwards. The debug time can also be brought down when the proposed technique is

incorporated with in the iterative methodologies of [123, 185, 191]. For achieving on-chip

compression, a setup comprising of hierarchical MISRs can also be adopted. However,

with such a setup aliasing of debug signatures may increase to a significant extent. By

utilizing on-chip summarizers [160], ineffective debug data can be removed and only se-

lective data needs to be stored into TB. This technique significantly reduces the number

of stalls during the debug data gathering. However, the success of these summarizers

is highly dependent on the design functionality. For regular designs like processors, in-

corporation of effective summarizers can be achieved as selection of a certain number of

important internal signals turn out to be easier compared to general sequential designs

[33]. We believe that with the proposed on-chip data compaction and subsequent seg-

regation, a larger number of trace signals can be traced in second session (S2) as the

actual debug data to be stored (corresponding to a fixed observation window) is signif-

icantly reduced. Thus, effective utilization of the on-chip storage and data segregation

can together provide some sort of summarizing feature in the second session of multi

session-based debug methodology.

Chapter 7. Debug Architectures with On-chip Compression 244

7.9 Conclusion

During post-silicon validation, data compaction techniques are typically employed to

efficiently utilize the on-chip storage during debug data acquisition. We proposed several

improvements in compaction-based selective debug data capturing. Using a two session-

based debugging methodology, we achieved fine-grained error localization with significant

expansion in temporal visibility expansion. With the proposed scheme, the amount of

on-chip storage required for tag bits (which act as markers for the selective data capture)

is also reduced. We revisited the progressive random access scan architecture for realizing

an observability scheme with the motive of integrating testing and post-silicon debug in

a single infrastructure. The PRAS scan cell allows non-intrusive dumping of scan values

which is a key requirement for debug purposes. A methodology has been proposed to

extend this architecture for reconfigurable observability enhancement of internal signals.

Flip-flops of the design can be ranked for their arrangement in the proposed observability

enhancement architecture so as to obtain effective debug data in lesser time.

− ∗ − ∗ −

Chapter 8

Conclusion and Future Scope

Demand for higher levels of integration coupled with the shrinking time-to-market win-

dow has drastically increased the chances of errors escaping to the first released silicon

[21], [151],[159]. Accurate modeling of physical effects such as process variations, thermal

effects and signal integrity is usually very difficult during pre-silicon design verification

resulting in occurrence of electrical errors. Thus, post-silicon validation and debug form

an essential step in the design implementation cycle of modern integrated circuits. Post-

silicon validation is performed at-speed in the gigahertz range in contrast to pre-silicon

validation which runs in tens of hertz range. This characteristic enables application of

a very large number of input sequences at this stage which can potentially capture the

target behavior of the chip. However, due to the limited controllability and observabil-

ity, this process becomes very time-consuming and challenging. This thesis presented

effective techniques to solve some of these issues. Self-checking methods were utilized

to validate and localize design and electrical errors in complex systems. Heuristics were

developed to tackle the restricted visibility problem and learning methods were employed

to obtain success in automatic gate-level error localization. Compression feature was ex-

tensively utilized for reducing the quantity of debug data and the possibilities of reusing

an alternative DfT scheme for silicon debug was also explored. The detailed summary

of the thesis and conclusions are described next.

245

Chapter 8. Conclusion and Future Scope 246

8.1 Thesis Summary and Conclusions

• Chapter 3 described the proposed methodology for validation of cache coherence

mechanism in multi-processors. An on-chip signal logging method is proposed

which helps in bug detection in case of design errors and soft-errors arising out

of reliability issues. The logged contents can then be further dumped off-line for

fine-grained bug localization. The proposed methodology utilizes cache coherence

protocol specifications to obtain the signal states of coherence transactions and the

detector module flags an error once a mismatch is found between observed signal

states and correct signal states. The proposed logging mechanism decreases the

error detection latency at minimal area and power overheads. Experiments on a

four core multiprocessor having a 7-stage MIPS pipeline implementing the widely

utilized directory-based MESI protocol indicate that the proposed methodology

succeeds in detecting design errors. Analysis of soft errors has also been performed

and shorter error detection latency is achieved compared to a previously proposed

technique in the literature.

• Chapter 4 presented the proposed methodology of satisfiability (SAT)-based error

localization of bit-flips (which can model electrical errors). This chapter revisited

methodologies to debug electrical errors through satisfiability(SAT) solving under a

limited visibility environment. We proposed various SAT formulations and analyze

their efficacy in error localization for a variety of benchmark circuits. The selection

of debugging instrumentation is an important issue in post-silicon validation. We

analyze different graph-based signal tracing techniques and propose a methodology

that utilizes clustering of the nodes of the circuit graph. We aimed at minimizing

the overhead associated with signal tracing while maintaining the error localization

efficacy. We address scalability concerns in SAT solving through partitioning of

large error traces. We analyzed localization results on two different error models

(bit-flip and stuck-at) and evaluate its efficiency through a set of different metrics.

• Chapter 5 presented the proposed methodology for effective trace signal selection.

Chapter 8. Conclusion and Future Scope 247

Since the selection of trace signals is done at the design stage itself, it becomes a de-

ciding factor for the success of trace buffer-based DfD (Design for Debug) schemes.

For processor-based systems, some of the general-purpose registers or architectural

event registers and performance counters can be used as trace signals, which can

capture functionally important events [202]. However, trace signal selection for

digital blocks within a complex system-on-chip is very difficult and needs an al-

gorithmic solution [34, 115]. The proposed methodology of trace signal selection

aimed at detecting design errors. As a better alternative to state restoration based

signal selection, two heuristics were proposed for signal selection which can account

for the error propagation ability of the traced flip-flops. Topology-based selection

achieved lower error detection latency compared to the signal selection techniques

proposed in the literature.

• Chapter 6 elaborated on the proposed method of complete internal visibility ex-

pansion and the subsequent error localization with this approach. Using Nearest

neighbors algorithm, some neighbors are identified and then utilizing majority vot-

ing, unknown (after the application of restoration) signal states are predicted albeit

with variable accuracy. Using the expanded internal visibility, the design error lo-

calization succeeds to a higher extent than the mere application of signal tracing

and restoration. A methodology for error localization to a smaller region of the

circuit was proposed via building a design response model that works on the prin-

ciple of classifying the smaller region into buggy or non-buggy. Using a training

analysis, the model was developed after the training for a large number of itera-

tions which was used to test an erroneous design to obtain probable suspects with

a ranking scheme. With the design response model, we were able to achieve design

error localization without any false positives during the debug process.

• Chapter 7 explained the proposed method of on-chip compression of debug data in

a multi-session silicon debug procedure. Data Compaction techniques are typically

employed to efficiently utilize on-chip storage. We proposed several improvements

Chapter 8. Conclusion and Future Scope 248

in 2D-compaction-based selective debug data capturing. The proposed debug archi-

tecture consists of on-chip MISR, two cycling registers and trace buffer for on-chip

storage. Using a 2-session based debugging methodology, we achieved fine-grained

error localization with significant expansion in temporal visibility expansion. With

the proposed scheme, the amount of on-chip storage required for tag bits (which

act as markers for selective data capture) is reduced. This chapter also presents

the reuse scheme for random access scan (RAS) in silicon debug. With the reuse

of progressive random scan design-for-testability scheme, we were able to achieve

reconfigurability in internal visibility of the design. This debug scheme has the

potential of developing into an integrated solution of manufacturing testing and

silicon debug.

8.2 Future Scope

8.2.1 Unified Validation of Memory Consistency and Coher-

ence in Complex Processor Designs

Modern processors employ a large number of architectural features such as speculative

execution and reordering of memory operations to achieve higher performance. Such

memory ordering operations are governed by Memory Consistency Models (MCM) which

act as an agreement between the programmer and the hardware designer. However,

due to a large number of valid execution results, simulation-based verification of MCM

implementation is a difficult task that necessitates its validation after manufacturing.

In the first silicon, due to restricted observability, the order of execution of memory

operations must be logged on-chip. These logged contents can then be dumped off-

line for further constraint-graph based analysis [77, 78] and checking for any MCM

violation(s). The validation of both consistency and coherence can be done in a unified

manner as some of the logged contents are similar in both the approaches. The proposed

CCP validation technique needs to be investigated for other cache coherence protocols

Chapter 8. Conclusion and Future Scope 249

such as MOSI, MOESI etc. and shared unified memory access (UMA) configuration.

Additionally, the proposed methodology can be improved by incorporating mechanisms

for adjusting system performance degradation because of validation tasks.

8.2.2 Enhancements of SAT-based Error Localization

We identified several avenues to improve the SAT-based error localization for some of

the circuits: (a) assigning proper primary inputs from the design knowledge (i.e., hi-

erarchical analysis of RTL), (b) obtaining initial state of the design netlist (i.e., signal

states of all flip-flops corresponding to a cycle before the beginning of error trace) from

design simulation to assist in SAT solving, and (c) setting intermediate controls signals

to their appropriate values to obtain proper UNSAT cores(s). We believe that these

enhancements would play a more important role in the error localization for circuits of

opencore and ITC’99 suites than a bit-flip detection driven trace signal selection (like

the one proposed in [34]). This is primarily because of our observation that attempting

the SAT-based methodology with a wide pool of trace signal selections (clustering-based,

[9, 23, 51], [1, 141] led to minuscule variations in the exact error localization metrics for

these circuits. With the above enhancements, stuck-at error localization would improve

significantly is compared to the bit-flip error localization because the former type of er-

ror shows more affinity towards sensitization by inputs. The analysis of the proposed

methodology for other kinds of error models (such as stuck-open or bridging effects)

is also left as a future exercise. The investigation of the impact of false paths on the

clustering-based signal selection is also left as a future exercise.

8.2.3 Targeted Trace Signal Selection

The proposed work can be extended in many directions. First, an automatic signal se-

lection algorithm (based on learning techniques) can be worked out to obtain the most

profitable combination of partitioning parameters, a, b and c. The choice of these pa-

rameters can also be formulated as an ILP (integer linear programming) problem for

Chapter 8. Conclusion and Future Scope 250

concurrent optimization of all the three signal selection preferences. Second, the efficacy

of the proposed heuristic needs to be investigated for other kinds of design error mod-

els and electrical bugs (which can be modeled as bit-flips/stuck-at) and blocking bugs

[203]. Adapting the proposed methodology in case of bugs with non-repeatable behavior

would require significant improvements in maintaining the state continuity across mul-

tiple debug sessions. Third, a better error transmission heuristic is needed to properly

deal with re-convergent nodes and paths. Improvement in the accuracy of the proposed

heuristics would enhance the error localization by a significant margin. Another method

of improvement in accuracy can be consideration of false paths for the path based trace

signal selection heuristic. On similar lines, we can even account for sequential paths (e.g.

2-cycle sequential) instead of combinational ones to capture controllability over several

cycles and analyze the error detection/localization. As a future research direction, several

modifications can be applied to the topology-based selection like assignment of priority

to nodes of the S-graph. This priority can be linked with error-proneness of few por-

tions of design based on pre-silicon verification information. The priority assignment is

intended to ensure selection of trace signals regardless of their topological score.

Assertions generated during pre-silicon verification of the RTL design can be reused

for the purpose of selecting the trace signals. Based on the mining of good quality asser-

tions from design description and its simulation, effective trace signals can be selected

based on the frequency of the occurrence of particular signal variables in the complete

list of assertions [63]. This can enable us to perform a signal selection at the RTL stage

itself instead of the selection with design netlist. The selection of trace signals can also

assist in calculating the coverage in post-silicon environment as based on traced and re-

stored data, we can check for the coverage of the assertions from pre-silicon verification

stage. However, the major challenge in applying this technique for a large and complex

design is to obtain a correct set of assertions. For designs in development stage, such

assertions suite is very rare to obtain. We have proposed a preliminary approach [63] in

this direction based on the assertions generated by the methodology described in [204–

206]. A similar technique has been also proposed in [207] targeting coverage estimation

Chapter 8. Conclusion and Future Scope 251

by assertion decomposition.

8.2.4 Automatic Error Localization for Wide Range of Error

Models

We believe that localizing electrical and design errors could be possible using regression

analysis and relating with observed system-level variables (i.e., obtained traces via record-

ing/visibility mechanisms). Hierarchical dependability analysis (from RTL description)

can also prove to be very useful in this regard. With the help of sufficient design knowl-

edge, the requirement of golden responses for debug can be eliminated. This can be easily

facilitated by data mining techniques as in [171]. Learning-based approaches have been

used for trojan detection at gate-level abstraction without the requirement of golden re-

sponses [208–212]. The proposed methodology of visibility expansion can be improved by

various means like employing a suitable technique for training a large number of features

during the training phase. Additionally, Bayesian analysis (similar to the methodology

adopted in [213]) can be utilized for enhancing the accuracy of neighbor-based maximal

internal visibility expansion. Instead of a plain majority voting, weight assignments to

the traced and restored signal states can also assist in improving the correctness in sig-

nal state prediction. Additionally, a proper theoretic formulation is needed to obtain

the optimum number of neighbors in Mnbr to achieve the highest accuracy in unknown

signal state prediction. With a highly accurate completely expanded internal visibility,

the offloaded debug data can be utilized for property checking without the incorporation

of on-chip checkers. Unsupervised machine learning algorithms like k-means can also be

attempted for the task of predicting unknown signal states.

Increasing number of features during training can help localize to the particular

erroneous gate instead of a smaller region of the circuit. Identifying such training features

is expected to play an important role in error localization. The definition of the objective

function while building the design response model (M) may also be refined to achieve

a better ranking of suspects during the error localization process. Different types of

learning algorithms have more potential to be useful for the error localization process in

Chapter 8. Conclusion and Future Scope 252

the way they have been applied for yield and defect analysis in manufacturing testing

[173–175].

8.2.5 Improving Debug Architectures with Compression

It would be interesting to extend the proposed methodology for non-reproducible errors

as the same debug data is not available in the second session. The dimensions of on-chip

MISR can be investigated for achieving better utilization of the trace buffer with the

amount of on-chip compression. The selective debug data capture can be further im-

proved with the incorporation of periodic monitoring or on-chip assertion-based trigger

mechanism. Other directions for future work are devising efficient compression mecha-

nisms along with self checking-based trigger schemes for deciding the temporal duration

of storing internals signals in the trace buffers. Investigating the arrangement of flip-flops

with a joint purpose of error localization and routing overhead minimization is needed

for the PRAS-based debug architecture. In addition to that, evaluation of the aliasing

due to MISR and its impact on the debug process would be an interesting topic. Despite

the overhead issues with PRAS, the ease in post-silicon validation and debug with the

proposed PRAS-based observability enhancement architecture can widen its acceptabil-

ity. The mapping of failing MISR signatures (from the offloaded trace data) with the

individual flip-flops (signals) can also be considered as a future extension of the proposed

PRAS-based debug methodology.

8.2.6 Validating Diversified Processor Components

The methodologies presented in the thesis can be be utilized in conjunction for vali-

dating the different components available in modern processors. For example- coherence

mechanism can be validated in on-chip fashion through the technique described in Chap-

ter 3. Logic components can be validated for electrical and design errors through the

techniques described in Chapter 4 and 6 respectively. Nevertheless, obtaining a method-

ology that encompasses the effective validation of all components in a synergistic way is

Chapter 8. Conclusion and Future Scope 253

an important direction in which further work needs to be carried out. Specifically, we

believe that by utilizing some of the techniques mentioned in the literature such as [69]

or that of Reversi [65], all the components in modern processors can be validated and

useful error trace(s) can be obtained for off-line debug analysis.

8.2.7 Interplay of Hardware Security and Debug Requirements

The contents stored in trace buffers can be reused to obtain sensitive information about

the design [214, 215]. Furthermore, trace buffers can be reused for performance enhance-

ment [216] as victim caches. This necessitates analysis of different attack strategies

possible through trace buffers. One of the possible research directions is to constrain the

signal tracing mechanism (or, the trace signal selection) such that security specifications

are not compromised. Another research direction could be the investigation of possibili-

ties of on-chip encryption of the traced data so that their off-line analysis does not reveal

any secrets to unauthorized entities.

− ∗ − ∗ −

Appendix A

Details of Experimental Setup

Apart from the benchmark circuits available from ISCAS’89 and ITC’99 suites, we ob-

tained some benchmark circuits after synthesizing the RTL obtained from Opencores.org

[143]. These circuits are then translated from the synthesized description into .bench for-

mat (a sample of which is shown in Figure A.1 where indicates similar entries in

the succeeding lines). Since the circuits from ISCAS’89 and ITC’99 have been widely

utilized in research in several decades, we do not describe them in detail. The steps to

obtain .bench description of circuits from [143] are below:

• Synthesize the original RTL descriptions (in verilog) using Synopsys Design Com-

piler (DC) tool.

• Rename the synthesized gates into respective trivial gates (AND, OR, NAND,

NOR, NAND, XOR, XNOR, NOT) and similarly for flip-flops.

• Arrange the netlist into .bench format (i.e., five lines in the top, listing of in-

puts, listing of outputs, space after each such listing etc.,) as per the formats

described/available at [217].

The functionalities of the benchmark circuits from [143] are described as below:

1. p16c5x: single cycle core for the emulation of PIC16C5x microcomputers

254

Appendix A. Details of Experimental Setup 255

Figure A.1: Sample .bench format

2. usb: a Serial Interface Engine (SIE) typically utilized for communication between

a processor and it’s peripherals.

3. softusb: communication controller for interfacing

4. mips: 5-stage pipeline MIPS 32-bit processor.

To simulate these .bench descriptions (along with the .bench corresponding to ITC’99

and ISCAS’89 circuits), we developed our own simulator in C language. The same

simulator was extended to perform signal restoration on the traced data. By minor

modification in this simulator, we performed the stuck-at and bit-flip simulation tasks

of Chapter 4. We performed most of the scripting tasks in Python and utilized many

shell (bash) functions. For all the other tools like Design Compiler, IC Compiler, RTL

Complier etc., appropriate .tcl scripts were written and the respective tasks were done

at servers maintained by VLSI LAB, IIT Bombay.

Bibliography

[1] K. Basu and P. Mishra. Rats: Restoration-aware trace signal selection for post-

silicon validation. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 21(4):605–613, April 2013. ISSN 1063-8210. doi: 10.1109/TVLSI.2012.

2192457.

[2] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Con-

sistency and Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

ISBN 1608455645, 9781608455645.

[3] R. Rodrigues, I. Koren, and S. Kundu. A mechanism to verify cache coherence

transactions in multicore systems. In 2012 IEEE International Symposium on

Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages

211–216, Oct 2012. doi: 10.1109/DFT.2012.6378226.

[4] Harry Foster. 2014 wilson research group functional verification study.

https://blogs.mentor.com/verificationhorizons/blog/2015/01/21, 2014.

[5] D. D. Josephson. The manic depression of microprocessor debug. In Test Confer-

ence, 2002. Proceedings. International, pages 657–663, 2002. doi: 10.1109/TEST.

2002.1041817.

[6] A. W. DeOrio. Correct communication in multi-core processors. PhD Thesis, 2012.

[7] D. Lee, O. Matthews, and V. Bertacco. Low-overhead microarchitectural patching

for multicore memory subsystems. In 2018 IEEE 36th International Conference

on Computer Design (ICCD), pages 17–25, Oct 2018.

256

BIBLIOGRAPHY 257

[8] K. Constantinides, O. Mutlu, and T. Austin. Online design bug detection: Rtl

analysis, flexible mechanisms, and evaluation. In 2008 41st IEEE/ACM In-

ternational Symposium on Microarchitecture, pages 282–293, Nov 2008. doi:

10.1109/MICRO.2008.4771798.

[9] K. Rahmani, P. Mishra, and S. Ray. Efficient trace signal selection using aug-

mentation and ilp techniques. In Fifteenth International Symposium on Quality

Electronic Design, pages 148–155, March 2014. doi: 10.1109/ISQED.2014.6783318.

[10] http://15418.courses.cs.cmu.edu/tsinghua2017/lecture/coherence.

[11] John L Hennessy, David A Patterson, and Krste Asanović. Computer architecture:

a quantitative approach, 2012.

[12] Nima Honarmand. Cse 610 - parallel computer architectures lecture notes.

https://compas.cs.stonybrook.edu/ñhonarmand/courses/fa15/cse610/index.html,

Fall 2015.

[13] M.A. Kinsy, M. Pellauer, and S. Devadas. Heracles: A tool for fast rtl-based design

space exploration of multicore processors. In Proceedings of the ACM/SIGDA

international symposium on Field Programmable Gate Arrays, FPGA ’13, New

York, NY, USA, 2013. ACM.

[14] D. Baik and K.K. Saluja. Progressive random access scan: A simultaneous solution

to test power, test data volume and test time. In Proc. of the International Test

Conference, pages 1–10, 2005.

[15] P. Mishra, R. Morad, A. Ziv, and S. Ray. Post-silicon validation in the soc era: A

tutorial introduction. IEEE Design Test, 34(3):68–92, June 2017. ISSN 2168-2356.

doi: 10.1109/MDAT.2017.2691348.

[16] K. Rahmani and P. Mishra. Feature-based signal selection for post-silicon debug

using machine learning. IEEE Transactions on Emerging Topics in Computing,

PP(99):1–1, 2017. doi: 10.1109/TETC.2017.2787610.

BIBLIOGRAPHY 258

[17] Eshan Singh, Clark W. Barrett, and Subhasish Mitra. E-QED: electrical bug

localization during post-silicon validation enabled by quick error detection and

formal methods. In Computer Aided Verification - 29th International Conference,

CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II, pages

104–125, 2017.

[18] D. Lee and V. Bertacco. Mtracecheck: Validating non-deterministic behavior of

memory consistency models in post-silicon validation. In 2017 ACM/IEEE 44th

Annual International Symposium on Computer Architecture (ISCA), pages 201–

213, June 2017.

[19] A. Adir, S. Copty, S. Landa, A. Nahir, G. Shurek, A. Ziv, C. Meissner, and J. Schu-

mann. A unified methodology for pre-silicon verification and post-silicon valida-

tion. In 2011 Design, Automation Test in Europe, pages 1–6, March 2011. doi:

10.1109/DATE.2011.5763252.

[20] V. Bertacco. Post-silicon debugging for multi-core designs. In 2010 15th Asia and

South Pacific Design Automation Conference (ASP-DAC), pages 255–258, Jan

2010. doi: 10.1109/ASPDAC.2010.5419885.

[21] Subhasish Mitra, Sanjit A. Seshia, and Nicola Nicolici. Post-silicon validation

opportunities, challenges and recent advances. In Proceedings of the 47th Design

Automation Conference, DAC ’10, pages 12–17, New York, NY, USA, 2010. ACM.

ISBN 978-1-4503-0002-5.

[22] K. Rahmani, S. Proch, and P. Mishra. Efficient selection of trace and scan signals

for post-silicon debug. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 24(1):313–323, Jan 2016. ISSN 1063-8210. doi: 10.1109/TVLSI.2015.

2396083.

[23] D. Pal, S. Ma, and S. Vasudevan. Emphasizing functional relevance over state

restoration in post-silicon signal tracing. IEEE Transactions on Computer-Aided

BIBLIOGRAPHY 259

Design of Integrated Circuits and Systems, pages 1–1, 2018. ISSN 0278-0070. doi:

10.1109/TCAD.2018.2887047.

[24] K. Iwata, A. M. Gharehbaghi, M. B. Tahoori, and M. Fujita. Post silicon debugging

of electrical bugs using trace buffers. In 2017 IEEE 26th Asian Test Symposium

(ATS), pages 189–194, Nov 2017. doi: 10.1109/ATS.2017.44.

[25] M. Dehbashi and G. Fey. Automated debugging from pre-silicon to post-silicon. In

Design and Diagnostics of Electronic Circuits Systems (DDECS), 2012 IEEE 15th

International Symposium on, pages 324–329, April 2012. doi: 10.1109/DDECS.

2012.6219082.

[26] Kai hui Chang, I. L. Markov, and V. Bertacco. Automating post-silicon debugging

and repair. In 2007 IEEE/ACM International Conference on Computer-Aided

Design, pages 91–98, Nov 2007. doi: 10.1109/ICCAD.2007.4397249.

[27] B. Vermeulen and S. K. Goel. Design for debug: catching design errors in digital

chips. IEEE Design Test of Computers, 19(3):35–43, May 2002. ISSN 0740-7475.

doi: 10.1109/MDT.2002.1003792.

[28] M. Gao, P. Lisherness, K. T. Cheng, and J. J. Liou. On error modeling of electrical

bugs for post-silicon timing validation. In 17th Asia and South Pacific Design

Automation Conference, pages 701–706, Jan 2012. doi: 10.1109/ASPDAC.2012.

6165046.

[29] M. Gao, P. Lisherness, and K. T. Cheng. Post-silicon bug detection for variation

induced electrical bugs. In 16th Asia and South Pacific Design Automation Con-

ference (ASP-DAC 2011), pages 273–278, Jan 2011. doi: 10.1109/ASPDAC.2011.

5722197.

[30] C. C. Yen, T. Lin, H. Lin, K. Yang, T. Liu, and Y. C. Hsu. A general failure can-

didate ranking framework for silicon debug. In 26th IEEE VLSI Test Symposium

(vts 2008), pages 352–358, April 2008. doi: 10.1109/VTS.2008.60.

BIBLIOGRAPHY 260

[31] H. Mangassarian, A. Veneris, D. E. Smith, and S. Safarpour. Debugging with

dominance: On-the-fly rtl debug solution implications. In 2011 IEEE/ACM In-

ternational Conference on Computer-Aided Design (ICCAD), pages 587–594, Nov

2011. doi: 10.1109/ICCAD.2011.6105390.

[32] B. Kumar, M. Fujita, and V. Singh. A methodology for sat-based electrical error

debugging during post-silicon validation. In 2019 32nd International Conference

on VLSI Design and 2019 18th International Conference on Embedded Systems

(VLSID), pages 389–394, Jan 2019.

[33] B. Kumar, K. Basu, M. Fujita, and V. Singh. Post-silicon gate-level error localiza-

tion with effective amp;amp; combined trace signal selection. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, pages 1–1, 2018.

ISSN 0278-0070. doi: 10.1109/TCAD.2018.2883899.

[34] A. Vali and N. Nicolici. Bit-flip detection-driven selection of trace signals. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(5):

1076–1089, May 2018. ISSN 0278-0070. doi: 10.1109/TCAD.2017.2729458.

[35] J. S. Yang and N. A. Touba. Enhancing silicon debug via periodic monitoring.

In 2008 IEEE International Symposium on Defect and Fault Tolerance of VLSI

Systems, pages 125–133, Oct 2008. doi: 10.1109/DFT.2008.57.

[36] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder, and J. Torrellas.

Patching processor design errors with programmable hardware. IEEE Micro, 27

(1):12–25, Jan 2007. ISSN 0272-1732. doi: 10.1109/MM.2007.19.

[37] T.R. Halfhill. The truth behind the pentium bug.

http://www.byte.com/art/9503/sec13/art1.htm, March 1995.

[38] B Bentley. Validating a modern microprocessor. In Proceedings of the 17th Inter-

national Conference on Computer Aided Verification, CAV ’05, pages 2–4, 2005.

BIBLIOGRAPHY 261

[39] A. DeOrio, A. Bauserman, and V. Bertacco. Post-silicon verification for cache

coherence. In 2008 IEEE International Conference on Computer Design, pages

348–355, Oct 2008. doi: 10.1109/ICCD.2008.4751884.

[40] Ilya Wagner and Valeria Bertacco. Mcjammer: Adaptive verification for multi-

core designs. In Design, Automation and Test in Europe, DATE 2008, Munich,

Germany, March 10-14, 2008, pages 670–675, 2008.

[41] Meng Zhang, Jesse D. Bingham, John Erickson, and Daniel J. Sorin. Pvcoherence:

Designing flat coherence protocols for scalable verification. In 20th IEEE Inter-

national Symposium on High Performance Computer Architecture, HPCA 2014,

Orlando, FL, USA, February 15-19, 2014, pages 392–403, 2014.

[42] C. C. Yen, T. Lin, H. Lin, K. Yang, T. Liu, and Y. C. Hsu. Diagnosing silicon

failures based on functional test patterns. In Seventh International Workshop

on Microprocessor Test and Verification (MTV’06), pages 94–98, Dec 2006. doi:

10.1109/MTV.2006.9.

[43] D. Van Campenhout, T. Mudge, and J. P. Hayes. Collection and analysis of

microprocessor design errors. IEEE Design Test of Computers, 17(4):51–60, Oct

2000. ISSN 0740-7475. doi: 10.1109/54.895006.

[44] M. N. Velev. Collection of high-level microprocessor bugs from formal verification

of pipelined and superscalar designs. In Test Conference. Proceedings. ITC 2003.

International, volume 1, pages 138–147, Sept 2003. doi: 10.1109/TEST.2003.

1270834.

[45] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and D. Miller.

A reconfigurable design-for-debug infrastructure for socs. In 2006 43rd ACM/IEEE

Design Automation Conference, pages 7–12, 2006. doi: 10.1109/DAC.2006.238683.

[46] https://software.intel.com/en-us/intel-platform-analysis-library. Intel Platform

Analysis Li- brary.

BIBLIOGRAPHY 262

[47] www.arm.com. CoreSight On-Chip Trace and Debug Architecture.

[48] C. S. Zhu, G. Weissenbacher, D. Sethi, and S. Malik. Sat-based techniques for

determining backbones for post-silicon fault localisation. In High Level Design

Validation and Test Workshop (HLDVT), 2011 IEEE International, pages 84–91,

Nov 2011. doi: 10.1109/HLDVT.2011.6113981.

[49] S. BeigMohammadi and B. Alizadeh. Combinational trace signal selection with

improved state restoration for post-silicon debug. In 2016 Design, Automation

Test in Europe Conference Exhibition (DATE), pages 1369–1374, March 2016.

[50] X. Liu and Q. Xu. On signal selection for visibility enhancement in trace-based

post-silicon validation. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 31(8):1263–1274, Aug 2012. ISSN 0278-0070. doi:

10.1109/TCAD.2012.2189395.

[51] B. Kumar, A. Jindal, M. Fujita, and V. Singh. Post-silicon observability enhance-

ment with topology based trace signal selection. In 2017 18th IEEE Latin Amer-

ican Test Symposium (LATS), pages 1–6, March 2017. doi: 10.1109/LATW.2017.

7906761.

[52] P. Taatizadeh and N. Nicolici. Automated selection of assertions for bit-flip de-

tection during post-silicon validation. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, PP(99):1–1, 2016. ISSN 0278-0070. doi:

10.1109/TCAD.2016.2538087.

[53] S. Chandran, P. R. Panda, D. Chauhan, S. Kumar, and S. R. Sarangi. Extending

trace history through tapered summaries in post-silicon validation. In 2016 21st

Asia and South Pacific Design Automation Conference (ASP-DAC), pages 737–

742, Jan 2016. doi: 10.1109/ASPDAC.2016.7428099.

[54] D. Josephson and B. Gottlieb. The crazy mixed up world of silicon debug [ic

validation]. In Custom Integrated Circuits Conference, 2004. Proceedings of the

IEEE 2004, pages 665–670, Oct 2004. doi: 10.1109/CICC.2004.1358915.

BIBLIOGRAPHY 263

[55] B. Kumar, A. Jindal, V. Singh, and M. Fujita. A methodology for trace signal selec-

tion to improve error detection in post-silicon validation. In 2017 30th International

Conference on VLSI Design and 2017 16th International Conference on Embedded

Systems (VLSID), pages 147–152, Jan 2017. doi: 10.1109/VLSID.2017.66.

[56] M. Gort, F. M. De Paula, J. J. W. Kuan, T. M. Aamodt, A. J. Hu, S. J. E.

Wilton, and J. Yang. Formal-analysis-based trace computation for post-silicon

debug. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20

(11):1997–2010, Nov 2012. ISSN 1063-8210. doi: 10.1109/TVLSI.2011.2166416.

[57] O. Caty, P. Dahlgren, and I. Bayraktaroglu. Microprocessor silicon debug based

on failure propagation tracing. In IEEE International Conference on Test, 2005.,

pages 10 pp.–293, Nov 2005. doi: 10.1109/TEST.2005.1583986.

[58] G. J. Van Rootselaar and B. Vermeulen. Silicon debug: scan chains alone are

not enough. In Test Conference, 1999. Proceedings. International, pages 892–902,

1999. doi: 10.1109/TEST.1999.805821.

[59] Miron Abramovici. In-system silicon validation and debug. IEEE Des. Test, 25

(3):216–223, May 2008. ISSN 0740-7475.

[60] M. Boule and Z. Zilic. Incorporating efficient assertion checkers into hardware

emulation. In 2005 International Conference on Computer Design, pages 221–228,

Oct 2005. doi: 10.1109/ICCD.2005.66.

[61] M. Boule, J. S. Chenard, and Z. Zilic. Assertion checkers in verification, silicon

debug and in-field diagnosis. In 8th International Symposium on Quality Electronic

Design (ISQED’07), pages 613–620, March 2007. doi: 10.1109/ISQED.2007.38.

[62] M. H. Neishaburi and Z. Zilic. Enabling efficient post-silicon debug by clustering

of hardware-assertions. In 2010 Design, Automation Test in Europe Conference

Exhibition (DATE 2010), pages 985–988, March 2010. doi: 10.1109/DATE.2010.

5456904.

BIBLIOGRAPHY 264

[63] B. Kumar, K. Basu, M. Fujita, and V. Singh. Rtl level trace signal selection and

coverage estimation during post-silicon validation. In 2017 IEEE International

High Level Design Validation and Test Workshop (HLDVT), pages 59–66, Oct

2017. doi: 10.1109/HLDVT.2017.8167464.

[64] N. Foutris, D. Gizopoulos, M. Psarakis, X. Vera, and A. Gonzalez. Accelerating

microprocessor silicon validation by exposing isa diversity. In 2011 44th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 386–

397, Dec 2011.

[65] I. Wagner and V. Bertacco. Reversi: Post-silicon validation system for modern

microprocessors. In Computer Design, 2008. ICCD 2008. IEEE International Con-

ference on, pages 307–314, Oct 2008. doi: 10.1109/ICCD.2008.4751878.

[66] T. Hong, Y. Li, S. B. Park, D. Mui, D. Lin, Z. A. Kaleq, N. Hakim, H. Naeimi,

D. S. Gardner, and S. Mitra. Qed: Quick error detection tests for effective post-

silicon validation. In 2010 IEEE International Test Conference, pages 1–10, Nov

2010. doi: 10.1109/TEST.2010.5699215.

[67] D. Lin, T. Hong, Y. Li, E. S, S. Kumar, F. Fallah, N. Hakim, D. S. Gardner,

and S. Mitra. Effective post-silicon validation of system-on-chips using quick error

detection. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 33(10):1573–1590, Oct 2014. ISSN 0278-0070. doi: 10.1109/TCAD.

2014.2334301.

[68] D. Lin, E. Singh, C. Barrett, and S. Mitra. A structured approach to post-silicon

validation and debug using symbolic quick error detection. In Test Conference

(ITC), 2015 IEEE International, pages 1–10, Oct 2015. doi: 10.1109/TEST.2015.

7342397.

[69] S. B. Park and S. Mitra. Ifra: Instruction footprint recording and analysis for post-

silicon bug localization in processors. In Design Automation Conference, 2008.

DAC 2008. 45th ACM/IEEE, pages 373–378, June 2008.

BIBLIOGRAPHY 265

[70] S. B. Park, A. Bracy, H. Wang, and S. Mitra. Blog: Post-silicon bug localization in

processors using bug localization graphs. In Design Automation Conference, pages

368–373, June 2010.

[71] O. Friedler, W. Kadry, A. Morgenshtein, A. Nahir, and V. Sokhin. Effective post-

silicon failure localization using dynamic program slicing. In 2014 Design, Au-

tomation Test in Europe Conference Exhibition (DATE), pages 1–6, March 2014.

doi: 10.7873/DATE.2014.332.

[72] Fong Pong and Michel Dubois. A new approach for the verification of cache co-

herence protocols. IEEE Trans. Parallel Distrib. Syst., 6(8):773–787, August 1995.

ISSN 1045-9219.

[73] Fong Pong and Michel Dubois. The verification of cache coherence protocols.

In Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and

Architectures, SPAA ’93, pages 11–20, New York, NY, USA, 1993. ACM. ISBN

0-89791-599-2.

[74] Jason F Cantin, Mikko H Lipasti, and James E Smith. Dynamic verification of

cache coherence protocols. In High Performance Memory Systems, pages 25–42.

Springer, 2004.

[75] D. Borodin and B. H. H. Juurlink. A low-cost cache coherence verification method

for snooping systems. In 2008 11th EUROMICRO Conference on Digital System

Design Architectures, Methods and Tools, pages 219–227, Sep. 2008. doi: 10.1109/

DSD.2008.33.

[76] R. Fernandez-Pascual, J. M. Garcia, M. E. Acacio, and J. Duato. A low overhead

fault tolerant coherence protocol for cmp architectures. In 2007 IEEE 13th Inter-

national Symposium on High Performance Computer Architecture, pages 157–168,

Feb 2007. doi: 10.1109/HPCA.2007.346194.

[77] Andrew DeOrio, Ilya Wagner, and Valeria Bertacco. Dacota: Post-silicon val-

idation of the memory subsystem in multi-core designs. In 15th International

BIBLIOGRAPHY 266

Conference on High-Performance Computer Architecture (HPCA-15 2009), 14-18

February 2009, North Carolina, USA, pages 405–416, 2009.

[78] Sudheendra Hangal, Durgam Vahia, Chaiyasit Manovit, and Juin-Yeu Joseph Lu.

Tsotool: A program for verifying memory systems using the memory consistency

model. SIGARCH Comput. Archit. News, 32(2):114–, March 2004. ISSN 0163-

5964.

[79] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models:

A tutorial. Computer, 29(12):66–76, December 1996. ISSN 0018-9162.

[80] Kaiyu Chen, Sharad Malik, and Priyadarsan Patra. Runtime validation of memory

ordering using constraint graph checking. In 14th International Conference on

High-Performance Computer Architecture (HPCA-14 2008), 16-20 February 2008,

Salt Lake City, UT, USA, pages 415–426, 2008.

[81] Albert Meixner and Daniel J. Sorin. Dynamic verification of memory consistency

in cache-coherent multithreaded computer architectures. IEEE Trans. Dependable

Secur. Comput., 6(1):18–31, January 2009. ISSN 1545-5971.

[82] Biruk W. Mammo, Valeria Bertacco, Andrew DeOrio, and Ilya Wagner. Post-

silicon validation of multiprocessor memory consistency. IEEE Trans. on CAD of

Integrated Circuits and Systems, 34(6):1027–1037, 2015.

[83] Marco Elver and Vijay Nagarajan. Mcversi: A test generation framework for

fast memory consistency verification in simulation. In 2016 IEEE International

Symposium on High Performance Computer Architecture, HPCA 2016, Barcelona,

Spain, March 12-16, 2016, pages 618–630, 2016.

[84] Anders Landin, Erik Hagersten, and Seif Haridi. Race-free interconnection net-

works and multiprocessor consistency. In Proceedings of the 18th Annual Interna-

tional Symposium on Computer Architecture, ISCA ’91, pages 106–115, New York,

NY, USA, 1991. ACM. ISBN 0-89791-394-9.

BIBLIOGRAPHY 267

[85] I. Wagner and V. Bertacco. Caspar: Hardware patching for multicore processors.

In 2009 Design, Automation Test in Europe Conference Exhibition, pages 658–663,

April 2009.

[86] Hyungmin Cho, Eric Cheng, Thomas Shepherd, Chen-Yong Cher, and Subhasish

Mitra. System-level effects of soft errors in uncore components. IEEE Trans. on

CAD of Integrated Circuits and Systems, 36(9):1497–1510, 2017.

[87] Debjit Pal, Abhishek Sharma, Sandip Ray, Flavio M. de Paula, and Shobha Va-

sudevan. Application level hardware tracing for scaling post-silicon debug. In

Proceedings of the 55th Annual Design Automation Conference, DAC 2018, San

Francisco, CA, USA, June 24-29, 2018, pages 92:1–92:6, 2018.

[88] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

ISBN 0387310738.

[89] Zissis Poulos and Andreas G. Veneris. Clustering-based failure triage for RTL

regression debugging. In 2014 International Test Conference, ITC 2014, Seattle,

WA, USA, October 20-23, 2014, pages 1–10, 2014.

[90] Andrew DeOrio, Qingkun Li, Matthew Burgess, and Valeria Bertacco. Machine

learning-based anomaly detection for post-silicon bug diagnosis. In Design, Au-

tomation and Test in Europe, DATE 13, Grenoble, France, March 18-22, 2013,

pages 491–496, 2013.

[91] Valeria Bertacco and Wade Bonkowski. Ithelps: Iterative high-accuracy error lo-

calization in post-silicon. In 33rd IEEE International Conference on Computer

Design, ICCD 2015, New York City, NY, USA, October 18-21, 2015, pages 196–

199, 2015.

[92] A. DeOrio, D. S. Khudia, and V. Bertacco. Post-silicon bug diagnosis with inconsis-

tent executions. In 2011 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pages 755–761, Nov 2011. doi: 10.1109/ICCAD.2011.6105414.

BIBLIOGRAPHY 268

[93] Biruk Mammo, Milind Furia, Valeria Bertacco, Scott A. Mahlke, and Daya Shanker

Khudia. Bugmd: automatic mismatch diagnosis for bug triaging. In Proceedings

of the 35th International Conference on Computer-Aided Design, ICCAD 2016,

Austin, TX, USA, November 7-10, 2016, page 117, 2016.

[94] A. DeOrio, J. Li, and V. Bertacco. Bridging pre- and post-silicon debugging with

biped. In 2012 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pages 95–100, Nov 2012.

[95] H. F. Ko and N. Nicolici. Algorithms for state restoration and trace-signal selection

for data acquisition in silicon debug. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 28(2):285–297, Feb 2009. ISSN 0278-0070.

doi: 10.1109/TCAD.2008.2009158.

[96] S. Ma, D. Pal, R. Jiang, S. Ray, and S. Vasudevan. Can’t see the forest for the trees:

State restoration’s limitations in post-silicon trace signal selection. In Computer-

Aided Design (ICCAD), 2015 IEEE/ACM International Conference on, pages 1–8,

Nov 2015. doi: 10.1109/ICCAD.2015.7372542.

[97] Andre Suelflow, Goerschwin Fey, Roderick Bloem, and Rolf Drechsler. Using un-

satisfiable cores to debug multiple design errors. In Proceedings of the 18th ACM

Great Lakes Symposium on VLSI, GLSVLSI ’08, pages 77–82, 2008. ISBN 978-1-

59593-999-9.

[98] S. Safarpour, H. Mangassarian, A. Veneris, M. H. Liffiton, and K. A. Sakallah.

Improved design debugging using maximum satisfiability. In Formal Methods in

Computer Aided Design, 2007. FMCAD ’07, pages 13–19, Nov 2007.

[99] Sean Safarpour, Görschwin Fey, Andreas G. Veneris, and Rolf Drechsler. Utilizing

don’t care states in sat-based bounded sequential problems. In Proceedings of the

15th ACM Great Lakes Symposium on VLSI 2005, Chicago, Illinois, USA, April

17-19, 2005, pages 264–269, 2005.

BIBLIOGRAPHY 269

[100] Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik. Silicon fault

diagnosis using sequence interpolation with backbones. In The IEEE/ACM In-

ternational Conference on Computer-Aided Design, ICCAD 2014, San Jose, CA,

USA, November 3-6, 2014, pages 348–355, 2014.

[101] Y. S. Yang, A. Veneris, N. Nicolici, and M. Fujita. Automated data analysis

techniques for a modern silicon debug environment. In 17th Asia and South Pacific

Design Automation Conference, pages 298–303, Jan 2012. doi: 10.1109/ASPDAC.

2012.6164963.

[102] M. Li and A. Davoodi. A hybrid approach for fast and accurate trace signal

selection for post-silicon debug. In Design, Automation Test in Europe Conference

Exhibition (DATE), 2013, pages 485–490, March 2013.

[103] K. Rahmani and P. Mishra. Efficient signal selection using fine-grained combination

of scan and trace buffers. In 2013 26th International Conference on VLSI Design

and 2013 12th International Conference on Embedded Systems, pages 308–313, Jan

2013. doi: 10.1109/VLSID.2013.206.

[104] S. BeigMohammadi and B. Alizadeh. Combinational trace signal selection with

improved state restoration for post-silicon debug. In 2016 Design, Automation

Test in Europe Conference Exhibition (DATE), pages 1369–1374, March 2016.

[105] P. Komari and R. Vemuri. A novel simulation based approach for trace signal se-

lection in silicon debug. In 2016 IEEE 34th International Conference on Computer

Design (ICCD), pages 193–200, Oct 2016. doi: 10.1109/ICCD.2016.7753280.

[106] X. Liu and Q. Xu. On multiplexed signal tracing for post-silicon debug. In Design,

Automation Test in Europe, pages 1–6, March 2011. doi: 10.1109/DATE.2011.

5763116.

[107] P. Thakyal and P. Mishra. Layout-aware selection of trace signals for post-silicon

debug. In 2014 IEEE Computer Society Annual Symposium on VLSI, pages 326–

331, July 2014. doi: 10.1109/ISVLSI.2014.19.

BIBLIOGRAPHY 270

[108] X. Liu and Q. Xu. On signal selection for visibility enhancement in trace-based

post-silicon validation. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 31(8):1263–1274, Aug 2012. ISSN 0278-0070. doi:

10.1109/TCAD.2012.2189395.

[109] D. Chatterjee, C. McCarter, and V. Bertacco. Simulation-based signal selection for

state restoration in silicon debug. In 2011 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), pages 595–601, Nov 2011. doi: 10.1109/

ICCAD.2011.6105391.

[110] K. Rahmani, S. Ray, and P. Mishra. Postsilicon trace signal selection using machine

learning techniques. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 25(2):570–580, Feb 2017. ISSN 1063-8210. doi: 10.1109/TVLSI.2016.

2593902.

[111] K. Basu, P. Mishra, P. Patra, A. Nahir, and A. Adir. Dynamic selection of trace

signals for post-silicon debug. In 14th International Workshop on Microprocessor

Test and Verification, pages 62–67, Dec 2013. doi: 10.1109/MTV.2013.13.

[112] K. Basu, P. Mishra, and P. Patra. Efficient combination of trace and scan signals

for post silicon validation and debug. In 2011 IEEE International Test Conference,

pages 1–8, Sept 2011. doi: 10.1109/TEST.2011.6139157.

[113] E. Hung and S. J. E. Wilton. On evaluating signal selection algorithms for post-

silicon debug. In Quality Electronic Design (ISQED), 2011 12th International

Symposium on, pages 1–7, March 2011. doi: 10.1109/ISQED.2011.5770739.

[114] H. F. Ko and N. Nicolici. Algorithms for state restoration and trace-signal selection

for data acquisition in silicon debug. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 28(2):285–297, Feb 2009. ISSN 0278-0070.

doi: 10.1109/TCAD.2008.2009158.

[115] H. F. Ko and N. Nicolici. Automated trace signals selection using the rtl descrip-

tions. In 2010 IEEE International Test Conference, pages 1–10, Nov 2010.

BIBLIOGRAPHY 271

[116] Binod Kumar, Ankit Jindal, Masahiro Fujita, and Virendra Singh. Combining

restorability and error detection ability for effective trace signal selection. In Pro-

ceedings of the on Great Lakes Symposium on VLSI 2017, GLSVLSI ’17, pages

191–196, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4972-7.

[117] H. F. Ko and N. Nicolici. Mapping trigger conditions onto trigger units during

post-silicon validation and debugging. IEEE Transactions on Computers, 61(11):

1563–1575, Nov 2012. ISSN 0018-9340. doi: 10.1109/TC.2011.192.

[118] S. Prabhakar and M. S. Hsiao. Multiplexed trace signal selection using non-trivial

implication-based correlation. In Quality Electronic Design (ISQED), 2010 11th

International Symposium on, pages 697–704, March 2010. doi: 10.1109/ISQED.

2010.5450503.

[119] B. Kumar, K. Basu, A. Jindal, M. Fujita, and V. Singh. Improving post-silicon

error detection with topological selection of trace signals. In 2017 IFIP/IEEE

International Conference on Very Large Scale Integration (VLSI-SoC), pages 1–6,

Oct 2017. doi: 10.1109/VLSI-SoC.2017.8203485.

[120] K. Han, J. S. Yang, and J. A. Abraham. Enhanced algorithm of combining trace

and scan signals in post-silicon validation. In VLSI Test Symposium (VTS), 2013

IEEE 31st, pages 1–6, April 2013. doi: 10.1109/VTS.2013.6548915.

[121] H. F. Ko and N. Nicolici. Combining scan and trace buffers for enhancing real-

time observability in post-silicon debugging. In 2010 15th IEEE European Test

Symposium, pages 62–67, May 2010. doi: 10.1109/ETSYM.2010.5512781.

[122] E. Anis and N. Nicolici. Low cost debug architecture using lossy compression for

silicon debug. In 2007 Design, Automation Test in Europe Conference Exhibition,

pages 1–6, April 2007. doi: 10.1109/DATE.2007.364595.

[123] E. Anis Daoud and N. Nicolici. On using lossy compression for repeatable ex-

periments during silicon debug. IEEE Transactions on Computers, 60(7):937–950,

July 2011. ISSN 0018-9340. doi: 10.1109/TC.2010.122.

BIBLIOGRAPHY 272

[124] E. Anis and N. Nicolici. On using lossless compression of debug data in embedded

logic analysis. In 2007 IEEE International Test Conference, pages 1–10, Oct 2007.

doi: 10.1109/TEST.2007.4437613.

[125] H. F. Ko, A. B. Kinsman, and N. Nicolici. Distributed embedded logic analysis for

post-silicon validation of socs. In 2008 IEEE International Test Conference, pages

1–10, Oct 2008. doi: 10.1109/TEST.2008.4700594.

[126] S. Prabhakar, R. Sethuram, and M. S. Hsiao. Trace buffer-based silicon debug

with lossless compression. In 2011 24th Internatioal Conference on VLSI Design,

pages 358–363, Jan 2011. doi: 10.1109/VLSID.2011.31.

[127] Kanad Basu and Prabhat Mishra. Efficient trace data compression using statically

selected dictionary. In 29th IEEE VLSI Test Symposium, VTS 2011, May 1-5,

2011, Dana Point, California, USA, pages 14–19, 2011. doi: 10.1109/VTS.2011.

5783748.

[128] R. Kapur and T. W. Williams. Tough challenges as design and test go nanometer.

Computer, 32(11):42–45, Nov 1999. ISSN 0018-9162. doi: 10.1109/2.803639.

[129] H Ando. Testing vlsi with random acecss scan. In Digest of Computer Society

International Conference, pages 50–52, 1980.

[130] Dong Hyun Baik, K. K. Saluja, and S. Kajihara. Random access scan: a solution

to test power, test data volume and test time. In VLSI Design. Proceedings.

17th International Conference on, pages 883–888, 2004. doi: 10.1109/ICVD.2004.

1261042.

[131] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for

multiprocessors with private cache memories. In Proceedings of the 11th Annual

Symposium on Computer Architecture, Ann Arbor, USA, June 1984, pages 348–

354, 1984.

BIBLIOGRAPHY 273

[132] Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, and David A. Wood. Safe-

tynet: Improving the availability of shared memory multiprocessors with global

checkpoint/recovery. In Proceedings of the 29th Annual International Symposium

on Computer Architecture, ISCA ’02, pages 123–134, Washington, DC, USA, 2002.

IEEE Computer Society.

[133] https://people.eecs.berkeley.edu/p̃attrsn/252F96/Lecture18.pdf.

[134] http://projects.csail.mit.edu/heracles/.

[135] Giorgio Delzanno. Automatic verification of parameterized cache coherence pro-

tocols. In Proceedings of the 12th International Conference on Computer Aided

Verification, CAV ’00, pages 53–68, London, UK, UK, 2000. Springer-Verlag. ISBN

3-540-67770-4.

[136] Allon Adir, Maxim Golubev, Shimon Landa, Amir Nahir, Gil Shurek, Vitali

Sokhin, and Avi Ziv. Threadmill: A post-silicon exerciser for multi-threaded pro-

cessors. In Proceedings of the 48th Design Automation Conference, DAC ’11, pages

860–865, New York, NY, USA, 2011. ISBN 978-1-4503-0636-2.

[137] R. Fernandez-Pascual, J. M. Garcia, M. E. Acacio, and J. Duato. A fault-tolerant

directory-based cache coherence protocol for cmp architectures. In 2008 IEEE

International Conference on Dependable Systems and Networks With FTCS and

DCC (DSN), pages 267–276, June 2008. doi: 10.1109/DSN.2008.4630095.

[138] A. Meixner and D. J. Sorin. Error detection via online checking of cache coherence

with token coherence signatures. In 2007 IEEE 13th International Symposium on

High Performance Computer Architecture, pages 145–156, Feb 2007. doi: 10.1109/

HPCA.2007.346193.

[139] Milos Prvulovic, Zheng Zhang, and Josep Torrellas. Revive: Cost-effective architec-

tural support for rollback recovery in shared-memory multiprocessors. SIGARCH

Comput. Archit. News, 30(2):111–122, May 2002. ISSN 0163-5964.

BIBLIOGRAPHY 274

[140] Kai hui Chang, I. L. Markov, and V. Bertacco. Automating post-silicon debugging

and repair. In 2007 IEEE/ACM International Conference on Computer-Aided

Design, pages 91–98, Nov 2007. doi: 10.1109/ICCAD.2007.4397249.

[141] M. Li and A. Davoodi. Multi-mode trace signal selection for post-silicon debug.

In 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC),

pages 640–645, Jan 2014. doi: 10.1109/ASPDAC.2014.6742963.

[142] E. Hung and S. J. E. Wilton. Scalable signal selection for post-silicon debug. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 21(6):1103–1115,

June 2013. ISSN 1063-8210. doi: 10.1109/TVLSI.2012.2202409.

[143] http://www.opencores.org/.

[144] Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and

Computation (JSAT, page 2008.

[145] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequential bench-

mark circuits. In IEEE International Symposium on Circuits and Systems,, pages

1929–1934 vol.3, May 1989. doi: 10.1109/ISCAS.1989.100747.

[146] L. Basto. First results of itc’99 benchmark circuits. IEEE Design Test of Comput-

ers, 17(3):54–59, July 2000. ISSN 0740-7475. doi: 10.1109/54.867895.

[147] H. Sabaghian-Bidgoli, P. Behnam, B. Alizadeh, and Z. Navabi. Reducing search

space for fault diagnosis: A probability-based scoring approach. In 2017 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), pages 545–550, July

2017.

[148] J. S. Yang and N. A. Touba. Efficient trace signal selection for silicon debug

by error transmission analysis. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 31(3):442–446, March 2012. ISSN 0278-0070.

BIBLIOGRAPHY 275

[149] B. Kumar, A. Jindal, and V. Singh. A trace signal selection algorithm for improved

post-silicon debug. In 2016 IEEE East-West Design Test Symposium (EWDTS),

pages 1–4, Oct 2016. doi: 10.1109/EWDTS.2016.7807700.

[150] A. Bhattacharya, S. Koley, and A. Banerjee. Considering multi-cycle influences

for signal selection for post silicon validation. In Electronic Design, Computer

Networks Automated Verification (EDCAV), 2015 International Conference on,

pages 160–164, Jan 2015. doi: 10.1109/EDCAV.2015.7060559.

[151] P. Taatizadeh and N. Nicolici. Automated selection of assertions for bit-flip detec-

tion during post-silicon validation. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 35(12):2118–2130, 2016. ISSN 0278-0070. doi:

10.1109/TCAD.2016.2538087.

[152] Jianliang GAO, Yinhe HAN, and Xiaowei LI. A novel post-silicon debug mecha-

nism based on suspect window. IEICE Transactions on Information and Systems,

E93.D(5):1175–1185, 2010.

[153] Prateek Thakyal and Prabhat Mishra. Layout-aware signal selection in reconfig-

urable architectures. In 18th International Symposium on VLSI Design and Test,

VDAT 2014, Coimbatore, India, July 16-18, 2014, pages 1–6, 2014.

[154] Yu HU, Jing YE, Zhiping SHI, and Xiaowei LI. Laps: Layout-aware path selection

for post-silicon timing characterization. IEICE Transactions on Information and

Systems, E100.D(2):323–331, 2017. doi: 10.1587/transinf.2016EDP7184.

[155] J. Ye, Y. Huang, Y. Hu, W. T. Cheng, R. Guo, L. Lai, T. P. Tai, X. Li,

W. Changchien, D. M. Lee, J. J. Chen, S. C. Eruvathi, K. K. Kumara, C. Liu,

and S. Pan. Diagnosis and layout aware (dla) scan chain stitching. In 2013 IEEE

International Test Conference (ITC), pages 1–10, Sept 2013. doi: 10.1109/TEST.

2013.6651929.

[156] L. H. Goldstein and E. L. Thigpen. Scoap: Sandia controllability/observability

BIBLIOGRAPHY 276

analysis program. In Papers on Twenty-five Years of Electronic Design Automa-

tion, 25 years of DAC, pages 397–403, New York, NY, USA, 1988. ACM. ISBN

0-89791-267-5.

[157] C. C. Yu and J. P. Hayes. Scalable and accurate estimation of probabilistic behavior

in sequential circuits. In 2010 28th VLSI Test Symposium (VTS), pages 165–170,

April 2010. doi: 10.1109/VTS.2010.5469586.

[158] C. Y. Lee. An algorithm for path connections and its applications. IRE Trans-

actions on Electronic Computers, EC-10(3):346–365, Sept 1961. ISSN 0367-9950.

doi: 10.1109/TEC.1961.5219222.

[159] A. Nahir, M. Dusanapudi, S. Kapoor, K. Reick, W. Roesner, K. D. Schubert,

K. Sharp, and G. Wetli. Post-silicon validation of the ibm power8 processor. In

2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,

June 2014. doi: 10.1145/2593069.2593183.

[160] S. Chandran, P. R. Panda, S. R. Sarangi, A. Bhattacharyya, D. Chauhan, and

S. Kumar. Managing trace summaries to minimize stalls during postsilicon valida-

tion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(6):

1881–1894, June 2017. ISSN 1063-8210. doi: 10.1109/TVLSI.2017.2657604.

[161] R. McLaughlin, S. Venkataraman, and C. Lim. Automated debug of speed path

failures using functional tests. In 2009 27th IEEE VLSI Test Symposium, pages

91–96, May 2009. doi: 10.1109/VTS.2009.53.

[162] A. G. Veneris and I. N. Hajj. Design error diagnosis and correction in vlsi digital

circuits. In Proceedings of 40th Midwest Symposium on Circuits and Systems.,

volume 2, pages 1005–1008 vol.2, Aug 1997. doi: 10.1109/MWSCAS.1997.662246.

[163] A. G. Veneris and I. N. Hajj. Design error diagnosis and correction in vlsi digital

circuits. In Proceedings of 40th Midwest Symposium on Circuits and Systems.,

volume 2, pages 1005–1008 vol.2, Aug 1997. doi: 10.1109/MWSCAS.1997.662246.

BIBLIOGRAPHY 277

[164] M. S. Abadir, J. Ferguson, and T. E. Kirkland. Logic design verification via test

generation. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 7(1):138–148, Jan 1988. ISSN 0278-0070. doi: 10.1109/43.3141.

[165] S. Choudhary, A. M. Gharehbaghi, T. Matsumoto, and M. Fujita. Trace signal

selection methods for post silicon debugging. In 2015 IFIP/IEEE International

Conference on Very Large Scale Integration (VLSI-SoC), pages 258–263, Oct 2015.

doi: 10.1109/VLSI-SoC.2015.7314426.

[166] X. Liu and R. Vemuri. Effective signal restoration in post-silicon validation. In

2017 IEEE International Conference on Computer Design (ICCD), pages 169–176,

Nov 2017. doi: 10.1109/ICCD.2017.34.

[167] P. Komari and R. Vemuri. A novel simulation based approach for trace signal se-

lection in silicon debug. In 2016 IEEE 34th International Conference on Computer

Design (ICCD), pages 193–200, Oct 2016. doi: 10.1109/ICCD.2016.7753280.

[168] Yun Cheng, Huawei Li, Ying Wang, Yingke Gao, Bo Liu, and Xiaowei Li. Flip-

flop clustering based trace signal selection for post-silicon debug. In 2017 IEEE

35th VLSI Test Symposium (VTS), pages 1–6, April 2017. doi: 10.1109/VTS.2017.

7928929.

[169] K. Rahmani, P. Mishra, and S. Ray. Scalable trace signal selection using ma-

chine learning. In 2013 IEEE 31st International Conference on Computer Design

(ICCD), pages 384–389, Oct 2013. doi: 10.1109/ICCD.2013.6657069.

[170] K. Rahmani and P. Mishra. Feature-based signal selection for post-silicon debug

using machine learning. IEEE Transactions on Emerging Topics in Computing,

PP(99):1–1, 2017. doi: 10.1109/TETC.2017.2787610.

[171] Eman El Mandouh and Amr G. Wassal. Application of machine learning techniques

in post-silicon debugging and bug localization. Journal of Electronic Testing, 34

(2):163–181, Apr 2018.

BIBLIOGRAPHY 278

[172] C. S. Zhu and S. Malik. Optimizing dynamic trace signal selection using ma-

chine learning and linear programming. In 2015 Design, Automation Test in

Europe Conference Exhibition (DATE), pages 1289–1292, March 2015. doi:

10.7873/DATE.2015.0573.

[173] Li-C. Wang. Data mining in design and test processes: basic principles and

promises. In International Symposium on Physical Design, ISPD’13, Stateline,

NV, USA, March 24-27, 2013, pages 41–42, 2013.

[174] Magdy S. Abadir, Nik Sumikawa, Wen Chen, and Li-C. Wang. Data mining based

prediction paradigm and its applications in design automation. In Proceedings of

Technical Program of 2012 VLSI Design, Automation and Test, VLSI-DAT 2012,

Hsinchu, Taiwan, April 23-25, 2012, page 1, 2012.

[175] Pouria Bastani, Nicholas Callegari, Li-C. Wang, and Magdy S. Abadir. Feature-

ranking methodology to diagnose design-silicon timing mismatch. IEEE Design &

Test of Computers, 27(3):42–53, 2010.

[176] Sean H. Wu, Dragoljub Gagi Drmanac, and Li-C. Wang. A study of outlier analysis

techniques for delay testing. In 2008 IEEE International Test Conference, ITC

2008, Santa Clara, California, USA, October 26-31, 2008, pages 1–10, 2008.

[177] Xavier Amatriain. The recommender problem revisited. In Proceedings of the 8th

ACM Conference on Recommender Systems, RecSys ’14, pages 397–398, New York,

NY, USA, 2014. ACM.

[178] A. Vali and N. Nicolici. Bit-flip detection-driven selection of trace signals. In 21th

IEEE European Test Symposium (ETS), pages 1–6, May 2016. doi: 10.1109/ETS.

2016.7519315.

[179] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

BIBLIOGRAPHY 279

[180] https://scikit-learn.org/stable/modules/neighbors.html.

[181] https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html.

[182] https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html.

[183] Y. Cheng, H. Li, Y. Wang, and X. Li. Cluster restoration based trace signal

selection for post-silicon debug. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pages 1–1, 2018. ISSN 0278-0070. doi: 10.1109/

TCAD.2018.2818690.

[184] A. Jindal, B. Kumar, K. Basu, and M. Fujita. Elura: A methodology for post-

silicon gate-level error localization using regression analysis. In 2018 31st Interna-

tional Conference on VLSI Design(VLSID’18), Pune, India, Jan 2018.

[185] I. Choi, H. Oh, Y. Lee, and S. Kang. Test resource reused debug scheme to reduce

the post-silicon debug cost. IEEE Transactions on Computers, 67(12):1835–1839,

Dec 2018. ISSN 0018-9340. doi: 10.1109/TC.2018.2835462.

[186] Bart Vermeulen, Mohammad Zalfany Urfianto, and Sandeep Kumar Goel. Auto-

matic generation of breakpoint hardware for silicon debug. In Proceedings of the

41th Design Automation Conference, DAC 2004, San Diego, CA, USA, June 7-11,

2004, pages 514–517, 2004. doi: 10.1145/996566.996708.

[187] J. S. Yang and N. A. Touba. Improved trace buffer observation via selective data

capture using 2-d compaction for post-silicon debug. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 21(2):320–328, Feb 2013. ISSN 1063-8210.

doi: 10.1109/TVLSI.2012.2183399.

[188] H. Oh, T. Han, I. Choi, and S. Kang. An on-chip error detection method to reduce

the post-silicon debug time. IEEE Transactions on Computers, PP(99):1–1, 2016.

ISSN 0018-9340. doi: 10.1109/TC.2016.2561920.

BIBLIOGRAPHY 280

[189] S. Deutsch and K. Chakrabarty. Massive signal tracing using on-chip dram for

in-system silicon debug. In 2014 International Test Conference, pages 1–10, Oct

2014. doi: 10.1109/TEST.2014.7035363.

[190] H. F. Ko, A. B. Kinsman, and N. Nicolici. Design-for-debug architecture for

distributed embedded logic analysis. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 19(8):1380–1393, Aug 2011. ISSN 1063-8210. doi:

10.1109/TVLSI.2010.2050501.

[191] H. Oh, I. Choi, and S. Kang. Dram-based error detection method to reduce the

post-silicon debug time for multiple identical cores. IEEE Transactions on Comput-

ers, 66(9):1504–1517, Sep. 2017. ISSN 0018-9340. doi: 10.1109/TC.2017.2678504.

[192] S. Deutsch and K. Chakrabarty. Test and debug solutions for 3d-stacked integrated

circuits. In 2015 IEEE International Test Conference (ITC), pages 1–10, Oct 2015.

doi: 10.1109/TEST.2015.7342421.

[193] W. Jung, H. Oh, D. Kang, and S. Kang. A 2-d compaction method using macro

block for post-silicon validation. In 2015 International SoC Design Conference

(ISOCC), pages 41–42, Nov 2015. doi: 10.1109/ISOCC.2015.7401690.

[194] Xinli Gu, Weili Wang, K. Li, Heon Kim, and S. S. Chung. Re-using dft logic

for functional and silicon debugging test. In Test Conference, 2002. Proceedings.

International, pages 648–656, 2002. doi: 10.1109/TEST.2002.1041816.

[195] J. Tudu. Jscan: A joint-scan dft architecture to minimize test time, pattern volume,

and power. In Proc. of VLSI Design and Test Symposium, pages 186–191, May

2016.

[196] S. Ahlawat, J. Tudu, A. Matrosova, and V. Singh. A high performance scan flip-

flop design for serial and mixed mode scan test. IEEE Transactions on Device and

Materials Reliability, 18(2):321–331, June 2018.

BIBLIOGRAPHY 281

[197] S. R. Sarangi, B. Greskamp, and J. Torrellas. Cadre: Cycle-accurate deterministic

replay for hardware debugging. In International Conference on Dependable Systems

and Networks (DSN’06), pages 301–312, June 2006. doi: 10.1109/DSN.2006.19.

[198] Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang Wu, and Tianshi Chen.

Deterministic replay: A survey. ACM Comput. Surv., 48(2):17:1–17:47, September

2015. ISSN 0360-0300.

[199] S. Chen, M. Hsiao, W. Jone, and T. Chen. A configurable bus-tracer for error

reproduction in post-silicon validation. In 2013 International Symposium onVLSI

Design, Automation, and Test (VLSI-DAT), pages 1–4, April 2013.

[200] Ting Wang, Yannan Liu, Qiang Xu, Zhaobo Zhang, Zhiyuan Wang, and Xinli Gu.

Retrodmr: Troubleshooting non-deterministic faults with retrospective dmr. In

Proceedings of the Conference on Design, Automation & Test in Europe, DATE

’17, pages 638–641, 2017.

[201] E. A. Daoud and N. Nicolici. Real-time lossless compression for silicon debug. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(9):

1387–1400, Sep. 2009.

[202] Y. Cheng, H. Li, and X. Li. An on-line timing error detection method for silicon

debug. In 2014 IEEE 23rd Asian Test Symposium, pages 263–268, Nov 2014. doi:

10.1109/ATS.2014.63.

[203] E. A. Daoud and N. Nicolici. Embedded debug architecture for bypassing block-

ing bugs during post-silicon validation. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 19(4):559–570, April 2011. ISSN 1063-8210. doi:

10.1109/TVLSI.2009.2038390.

[204] L. Liu, D. Sheridan, W. Tuohy, and S. Vasudevan. A technique for test coverage

closure using goldmine. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 31(5):790–803, May 2012.

BIBLIOGRAPHY 282

[205] L. Liu, C. H. Lin, and S. Vasudevan. Word level feature discovery to enhance

quality of assertion mining. In 2012 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 210–217, Nov 2012.

[206] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. Johnson. Gold-

mine: Automatic assertion generation using data mining and static analysis. In

2010 Design, Automation Test in Europe Conference Exhibition (DATE 2010),

pages 626–629, March 2010. doi: 10.1109/DATE.2010.5457129.

[207] F. Farahmandi, R. Morad, A. Ziv, Z. Nevo, and P. Mishra. Cost-effective analysis

of post-silicon functional coverage events. In 2017 Design, Automation Test in

Europe Conference Exhibition (DATE 2017), March 2017.

[208] T. Inoue, K. Hasegawa, M. Yanagisawa, and N. Togawa. Designing hardware

trojans and their detection based on a svm-based approach. In 2017 IEEE 12th

International Conference on ASIC (ASICON), pages 811–814, Oct 2017.

[209] K. Hasegawa, M. Yanagisawa, and N. Togawa. Trojan-feature extraction at gate-

level netlists and its application to hardware-trojan detection using random forest

classifier. In 2017 IEEE International Symposium on Circuits and Systems (IS-

CAS), pages 1–4, May 2017.

[210] F. Chen and Q. Liu. Single-triggered hardware trojan identification based on gate-

level circuit structural characteristics. In 2017 IEEE International Symposium on

Circuits and Systems (ISCAS), pages 1–4, May 2017.

[211] Q. Liu, P. Zhao, and F. Chen. A hardware trojan detection method based on

structural features of trojan and host circuits. IEEE Access, 7:44632–44644, 2019.

[212] C. H. Kok, C. Y. Ooi, M. Moghbel, N. Ismail, H. S. Choo, and M. Inoue. Clas-

sification of trojan nets based on scoap values using supervised learning. In 2019

IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5, May

2019. doi: 10.1109/ISCAS.2019.8702462.

BIBLIOGRAPHY 283

[213] R. O. Gallardo, A. J. Huy, A. Ivanov, and M. S. Mirian. Reducing post-silicon

coverage monitoring overhead with emulation and bayesian feature selection. In

Computer-Aided Design (ICCAD), 2015 IEEE/ACM International Conference on,

pages 816–823, Nov 2015. doi: 10.1109/ICCAD.2015.7372655.

[214] Y. Huang, A. Chattopadhyay, and P. Mishra. Trace buffer attack: Security versus

observability study in post-silicon debug. In 2015 IFIP/IEEE International Con-

ference on Very Large Scale Integration (VLSI-SoC), pages 355–360, Oct 2015. doi:

10.1109/VLSI-SoC.2015.7314443.

[215] Jerry Backer, David Hely, and Ramesh Karri. Secure and flexible trace-based

debugging of systems-on-chip. ACM Trans. Des. Autom. Electron. Syst., 22(2):

31:1–31:25, December 2016. ISSN 1084-4309.

[216] Neetu Jindal, Preeti Ranjan Panda, and Smruti R. Sarangi. Reusing trace buffers

as victim caches. IEEE Trans. VLSI Syst., 26(9):1699–1712, 2018.

[217] http://www.pld.ttu.ee/ maksim/benchmarks/iscas89/bench/.

	Acknowledgements
	Publications
	Abstract
	Keywords
	Notations and Abbreviations
	Introduction
	Post-silicon Validation and Debug
	Examples from Errata Documents of Processors
	Observability Enhancement Issues
	Validation in a Self-checking Manner

	Thesis Contributions and Organization

	Previous Work
	Architecture-level Validation Methods
	Gate-level Post-silicon Error Localization
	Effective Trace Signal Selection
	Motivation behind Alternative Signal Selection
	Relevance of Restoration Ratio as Signal Selection Metric
	Different Types of Post-silicon Observability Enhancement Techniques

	Debug Data Compression Techniques

	Validating Multi-processor Cache Coherence Mechanisms
	Introduction
	Cache Coherence Protocol (CCP) Preliminaries
	Proposed Methodology of CCP Validation
	Basic Premise
	Description of Logging Structure & Detection Mechanism
	Deriving Validity Conditions Inside Detector Module
	Coverage Issues Under Proposed Methodology
	Test Programs for RTL Simulation

	Experimental Setup, Observation & Results
	Experimental Setup Details
	Overview of Multi-core Design Framework
	RTL Implementation Analysis of Proposed Technique
	Comparative Evaluation with Literature

	Discussion on Previous Methods
	Applicability to Other System Configurations
	Variation with Number of Cores
	Variation with Cache/Memory Organization
	Implications on Performance Overhead

	Conclusion

	SAT-based Silicon Debug of Electrical Errors
	Introduction
	Satisfiability-based Post-silicon Error Localization
	Proposed Signal Clustering Methodology
	Description of Clustering Methodology
	Illustration of Clustering Methodology
	Ranking within Individual Clusters
	Algorithmic Complexity of Clustering Algorithm

	SAT-based Post-silicon Error Localization
	Methodology for Debugging Large Error traces
	Description of Evaluation Metrics

	Experimental Results and Observations
	Chosen Benchmark Circuits
	Comparison with Other Signal Selection Methods
	Error Localization Results with Fixed Tracing
	Impact of Increasing Trace Buffer Width on Bit-flip Error Localization
	Impact of Different Selection from Clustering Choices and Ranking Inside Clusters
	Localization of Stuck-at Errors
	Error Localization with Temporally Variable Visibility Enhancement
	Summary of Variation in Localization Results with Different SAT Formulations

	Addressing Different Scalability Issues in SAT-based Error Localization
	Scalability of Design Unrolling Step
	Scalability of SAT Solving Step
	Analysis of Localization in Large Error Traces

	Comparative Evaluation with Previous Silicon Debug Methods
	Post-silicon Debug Methods at Architecture-level
	SAT-related Post-silicon Error Localization Methods

	Conclusion

	Effective & Combined Trace Signal Selection
	Introduction
	Proposed Methodology of Topology-based Trace Signal Selection
	S-graph Creation and Score Calculation
	Arranging Flip-flops and Trace Signal Selection
	Topological Selection Methodology Illustration

	Experimental Formulation and Results for Topology-based Selection
	Description of Evaluation Metrics
	Evaluation Results

	Signal Selection with Combination of Preferences
	Error Detection-aware Trace Signal Selection
	Layout-aware Trace Signal Selection
	Heuristics for Accounting Error Propagation

	Proposed 2-Parameter Combined Selection Methodology
	Combining Error Detection and Restoration for Signal Selection
	Illustration of Combined Trace Signal Selection

	Proposed Congestion-aware Routing Algorithm and Wire Length Measurement Technique
	Basic Ideas
	Description of the Routing Algorithm

	Proposed 3-Parameter Trace Signal Selection
	Proposed Error Localization Methodology
	Experimental Results and Discussions
	Experimental Setup
	Comparative Evaluation of Signal State Restoration
	Design Error Localization
	Routing and Wire Length Measurement Results
	Combined Trace Signal Selection Results and Analysis
	Different Perspectives on Trace Signal Selection

	Conclusion

	Learning-assisted Gate-level Error Localization Techniques
	Introduction
	Post-silicon Observability and Error Localization with Learning Techniques
	Maximal Post-silicon Observability Expansion
	Relevance of Learning Techniques in Post-silicon Error Localization

	Proposed Methodology of Visibility Expansion
	Methodology Illustration
	Algorithmic Description of Visibility Expansion

	Coarse-grained Error Localization Methodology
	Observability Expansion Formulation & Results
	Experimental Setup
	Internal Observability Expansion Results
	Defining Error Localization Metric
	Error Localization Results with Complete Visibility

	Error localization with Design Response Model Building Approach
	Finding Smaller Zones in Circuit
	Error Injection in Smaller Zones
	Building the Classification Model
	Evaluating the Classification Model

	Experimental Formulation and Results of Localization with Model-based Classification
	Experimental Setup
	Formulation for Identifying False Positives
	Results on Error Localization with Classification Model

	Conclusion

	Debug Architectures with On-chip Compression
	Introduction
	Background behind Session-based Silicon Debug
	Proposed Multi-session Debug Architecture
	Brief Overview
	Debug Architecture Operation
	Design Choices in Proposed Architecture

	Details of Two Session-based Debug
	Suspect Clock Cycle Determination in 1st Session
	Tag Bits (TBits) Generation for 2nd Session
	Fine-grained Spatial Visibility in 2nd Session

	Experimental Setup, Results and Analysis
	Experimental Setup
	Metrics for Comparative Evaluation
	Comparative Evaluation Results
	Experiments with Burst Errors
	Variation of |Cy| and TBits with ER and Tag Sizes
	Overhead analysis

	Proposed Progressive Random Access Scan (PRAS)-based Debug Architecture
	Observability Enhancement Based on PRAS
	Scan FF Operation in Proposed Scheme
	Methodology for Observing Internal States
	Arrangement of Flip-flops in Debug Architecture

	Experimental Result on PRAS-based Debug
	Experimental Formulation
	Experimental Metrics and Results

	Discussions on Multi-session Silicon Debug
	Reproducibility of Failures in Post-silicon Environment
	Availability of Golden Responses of Designs
	Relevance with Respect to Similar Work reported in Literature

	Conclusion

	Conclusion and Future Scope
	Thesis Summary and Conclusions
	Future Scope
	Unified Validation of Memory Consistency and Coherence in Complex Processor Designs
	Enhancements of SAT-based Error Localization
	Targeted Trace Signal Selection
	Automatic Error Localization for Wide Range of Error Models
	Improving Debug Architectures with Compression
	Validating Diversified Processor Components
	Interplay of Hardware Security and Debug Requirements

	Details of Experimental Setup

