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Abstract

Integrated circuits in deep sub-micron technologies usually suffer from subtle addi-

tional delays due to process variations on both gates and interconnects. These variations

have minimal impact on path delays of short interconnects but significant impact on path

delays of very long interconnects whose resistance can be as high as a kohm or even

greater. Additionally, aggressive fabrication techniques make the chip prone to defects

that manifest as multiple stuck-at faults. The Single Stuck-at Fault(SSAF) model is a

popular model which covers many defects but not all. Path Delay Fault(PDF) and Multi-

ple Stuck-at Fault(MSAF) models uncover defects that are missed by the SSAF model.

Testability challenges in any synthesis approach include complete fault efficiency

and ease of test generation for a fault model. The efficacy of a fault model lies in the

metric of the range of the defects covered. In this work we have focussed on synthesis

that gurantees complete fault efficiency for PDF and MSAF models, SSAFs are implicitly

covered.

Reduced Ordered Binary Decision Diagram (ROBDD) based combinational circuit

synthesis offers an increased degree of testability. This work proposes an ROBDD based

circuit synthesis which has complete testability under single stuck-at, multiple stuck-at

and path delay fault models. The circuit is constructed using a decision making sub-

circuit (2x1 mux) for each ROBDD node. A modified mux is used for nodes connected to

leaf nodes. The ROBDD based circuit can be represented by a Disjoint Sum of Products

(DSOP) expression. Each term in this expression represents a unique path from leaf node

1 to root node of the ROBDD. The order of the variables that control each node is fixed.

It is the primary input themselves that control the mux of an ROBDD node. Thus the rank

of the input variables is predetermined.

To prove complete delay testability of all paths of a circuit under test, it is necessary

to establish that the circuit has 100% single stuck-at fault coverage. The ROBDD based

implementation provides complete single stuck-at fault testability. This is used as a basis

to investigate delay testability of each path of the circuit under test.

The placement of the node in the ROBDD decides the condition whether the path

that begins at it’s controlling variable will be tested robustly or non-robustly. We demon-

strate testability under all conditions. As a result, all paths of the circuit represented as

DSOPs satisfy the conditions of path delay testability. The algorithm to derive the test

vector pairs that generate the required signal transition is developed. The test vector pair
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consists of only primary inputs, no additional inputs are required. The PDF tests are

derived through DSOP manipulation.

To gain more confidence in the testable synthesis, it is analysed for multiple stuck-at

fault testability. A circuit has a maximum of 3n − 1 multiple stuck-at fault combinations

where n is the number of circuit nets. A thorough investigation of multiple stuck-at fault

(MSAF) testability of ROBDD based implementation is done. Concepts of pseudoex-

haustive testing and MSAF testability of two-level AND-OR networks are combined and

applied to the 2x1 mux based implementation. First, the pseudoexhaustive test vector

set for one sub-circuit (2x1 mux) is derived. This set has four vectors. The test vectors

in this set are responsible for sensitizing and propagating MSAF condition to the circuit

output. It is proved that, for an ROBDD with N nodes, the circuit implementation has an

upper bound of 3N test vectors that cover MSAFs of all muxes. We systematically move

towards proving that, the test vector set that detects MSAFs in all sub-circuits also detects

all irredundant MSAFs of the complete circuit.

Two methods to derive the test vector set for MSAFs are presented. The first method

uses BDD manipulations to derive pseudoexhaustive test vector set for each node. The

second method uses the available DSOP expression. Each term of the DSOP expression

is processed to derive a partial test set. All partial test sets are combined and checked for

redundancies and a complete MSAF test set is derived.

Single stuck-at faults are covered by both path delay tests and MSAF tests. The

test generation complexity of the PDF as well as MSAF tests is O(m × n) where m is the

number of primary inputs and n is the number of ROBDD nodes.

The contribution of the thesis is as follows:

• Fully testable ROBDD based hardware synthesis approach for delay and multiple

stuck-at faults

• Algorithms for test generation
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Chapter 1

Introduction

Current VLSI technology has helped fabricate multiple systems on one chip (SoC) where

all functions of a computer are integrated. It is not feasible to test the chips exhaustively

for every combination of state and input. Therefore, critical hardware development re-

quires a detailed and rigorous process to assure that the final product is correct and as

reliable as possible. This in turn leads to development of hardware design approaches

that guarantee complete testability of such devices.

In early days of VLSI circuits, testing was restricted to only proving logical cor-

rectness of the fabricated chips. As the technology moved towards sub-micron sizes,

expectations of higher and higher speeds soared. Functional correctness of the fabricated

chip tested at low frequencies was not enough anymore. New defects emerged for which

new fault models were developed. Now when we are in the nanometer age, the greed

for speed leads to aggressive place and route. This causes increase in device density and

an increase in interconnect length. Hence the interconnect delay cannot be ignored as it

does not scale with technology. Dominance of interconnect delay with advancement in

technology is depicted in Figure 1.1. This also affects the operating speeds of the chips.

Defective chips fail to run at target speeds. They may run at speeds lower than rated

speeds. If a chip is tested at the rated clock frequency and fails, it will be tested at a few

lower frequencies. The chips that pass are then sorted into bins according to the speeds

they were tested at. This is called speed binning.What prohibits the chip to run at rated

speed but allows to run at lower speeds? The answer is delay defects.

The role of testing is to detect presence of defects and the role of diagnosis is to

determine exactly where the defect is, and where the process needs to be altered. This

necessitates the testing process to be correct and effective. A well thought out test strategy

is crucial to economic realization of products.

1



2 Introduction

Figure 1.1: Delay trends in sub-micron technology

Real defects on a silicon chip are too numerous and often not analyzable. Fault

models represent an approximation of the effects that defects produce on the behavior of

the circuit. Effectiveness of the model is measurable by experiments. An ideal model

should provide a high confidence of a faulty circuit being detected. The test generation

for such a fault model should allow handling of large circuits with minimum computing

resources. Figure 1.2 demostrates the abstraction level that a fault model provides and

also represents a basic fault model known as the Stuck-at Fault model.

Figure 1.2: Fault modeling

Each connecting line can have two types of faults: stuck-at-1 (s-a-1) and stuck-at-0

(s-a-0). In general, several stuck-at faults can be simultaneously present in the circuit.
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A circuit with n lines can have 3n − 1 possible stuck at combinations (multiple stuck-at

faults). An n-line circuit can have at most 2n single stuck-at faults.

The efficacy of a fault model can be measured by the range of defects covered. In the

nanometer technology regime, defects like process variations and aging dominate. These

defects do not change the logic function of the chip. However, the probability of the chip

being exposed to timing violations increases drastically. A single gate delay may be out

of specification, but as long as the total delay remains under the specified operating period

there is no fault. If the specified operating period is increased then many timing violations

will be eliminated. If the specified operating period is reduced, more timing violations are

exposed. Integrated circuits in deep sub-micron technologies usually suffer from subtle

additional delays due to process variations on both gates and interconnects. Testing for

these delay causing defects in addition to other defects is inevitable. A timing violation

is commonly defined as a delay fault. The fault model that represents the delay defects

is called the delay fault model. Table 1.1 gives a brief comparison of the defects that are

covered by the SSAF and delay models.

Table 1.1: Defect coverage of Stuck-at and Delay Fault Models

Defects covered Stuck-at tests Delay tests

Hard shorts & opens Definitely Definitely

Resistive shorts Maybe Definitely

Resistive opens & coupling faults Never Definitely

Process variations Never Definitely

Aging Never Definitely

Table 1.1 establishes the need to cover delay faults in addition to stuck-at faults. If

a device is intended for safety critical applications, it is pertinent that it should be tested

using more than one fault models.

1.1 Delay faults

In a combinational logic, if there exists a logical path from a primary input PI to primary

output PO on which the total propagation time of a 1-to-0 or 0-to-1 transition exceeds the

specified time period, then it is a delay fault. The delay fault is graphically demonstrated

in Figure 1.3.

To observe delay faults, it is necessary to generate transitions at the circuit input and

propagate them to the outputs. This requires application of a pair of vectors (v1, v2). The



4 Introduction

Figure 1.3: A delay fault

Figure 1.4: Resistive bridges

first vector v1 stabilizes all signals in the circuit. The second vector v2 causes the desired

transition at the input of the circuit.

1.1.1 Contributors to Delay Faults

There are several contributors to delay defects. Each contributor adds a small delay

and hence comprise small delay defects or SDDs. Some of the major contributors[31] are:

• Manufacturing Defects

Certain manufacturing defects do not change the logic function of the chip, but can

cause timing violations such as resistive bridges and opens.

In Figure 1.4, 0-to-1 Transition on A is delayed, but 1-to-0 Transition on A is

speeded up. In Figure 1.5 both 0-to-1 and 1-to-0 Transitions On A are delayed.

• Unaccounted capacitive coupling

Aggresive design rules lead to aggresive place and route. Any unaccounted cou-

pling capacitance leads to crosstalk effects that can increase or decrease delays of

victim or aggressor nets or both depending on transition direction, transition arrival

time etc. Figure 1.6 demonstrates how coupling capacitance has a direct impact on
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Figure 1.5: Resistive opens

the victim′s delay. It can be seen from Figure 1.7 that for different load capacitance

cases, the propagation delay on the victim net increases linearly with the coupling

capacitance. Variable dcouplingarrival denotes the victim net delay considering the im-

pact of coupling capacitance size and Ca−v is the coupling capacitance between the

aggressor and victim nets. For the same transition direction case, the crosstalk de-

lay decreases linearly. These delays dynamically add to the chip delays. The effect

of coupling capacitors is discussed in Miller[13].

Figure 1.6: Crosstalk effect

• Power supply variations

The increase in frequency and decrease in the rise/fall transition times in latest

designs causes more simultaneous switching activity within a small time interval

and further cause increase in current density and voltage drop along power supply

nets. This leads to slower transitions.

The voltage drop on a gate will directly impact its performance. The reduced volt-

age results in performance degradation or functional failures of the circuit. Fig-

ure 1.8 presents the simulation results of an AND gate with different power supply

voltages. The output load capacitance of the gate is 0.1 pF. It is seen that with

20% IR-drop (0.36 V), the average gate delay decrease can be approximately 21%.

This experiment is based on 180 nm Cadence Generic Standard Cell Library with

nominal Vdd = 1.8V[51],[43].
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Figure 1.7: Impact of coupling capacitance on victim propagation delay with same arrival

times, opposite transition direction, and different load capacitances (Source:ITRS 2007)

Figure 1.8: Average delay increase of a gate as a result of IR-drop increase

(180 nm Cadence generic standard cell library, nominal power supply voltage =

1.8V)(Source:Tehranipoor2012[51])

• Process variations

Process variations are statistical abnormal variations in geometry after fabrication.

For example, if line spacing is affected, coupling faults occur. Similarly, if line

thickness is affected,delay increases and if there are variations in gate threshold

level, there is an increase in transition time.

• Aging

After manufacturing, the circuit performance degrades over time due to several ag-

ing effects that cause a drift of device and interconnect parameters. These effects

must be considered during a timing analysis of an aged circuit. Conservative de-

sign that would account for aging is not preferred as it eliminates the advantages of
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moving to a smaller technology node. Some of the causes of performance degra-

dation due to aging are: 1) Metal migration which causes line thinning leading

to increase in interconnect resistance, 2) Gate oxide degradation over time which

causes Hot Carrier Injection which in turn leads to increased device threshold volt-

ages, consequently gate transition time increases, 3)Negative Bias Temperature
Instability(NBTI), a condition that affects the transconductance of a pmos transis-

tor causing a decrease in drain current. This delays low to high transitions.

1.2 Delay Fault Testability

1.2.1 Delay Fault Models

• Transition delay model(TDF):

The TDF model assumes that a large delay defect is lumped at one logical node,

such that any signal transition passing through the node will be delayed past the

clock period. In Figure 1.9, the delay is assumed to be lumped at NAND gate

Figure 1.9: Example:Transition Delay Fault

between a and c. A large delay defect on line a will be detected at pin c if delay on

path a-c exceeds specifications. A small delay defect on line a may not make delay

of path a-c large enough to be detected. It should be tested through long path a-d to

be detected.

Test generation for TDFs is based SSAF tests. If SSAF tests are available, TDF

test generation requires little additional effort. However, TDFs do not detect small

delay defects.

• Segment delay fault model:

The segment delay fault model assumes a distributed delay along a small segment

of a long path.

In Figure 1.10, path a-p-q-r-d is untestable for falling transition launched at a, but

part of its segment, namely segment p-q-r-d is testable. All the paths that pass
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Figure 1.10: Example:Segment Delay Fault

through segment p-q-r-d are considered for testing. This indicates that the longest

path may not be covered.

• Path delay fault model(PDF):

The PDF model takes into account distributed delay of the entire path[49]. In Fig-

Figure 1.11: Example:Path Delay Fault

ure 1.11, path a-p-q-r-d is tested for rising transition at pin a. Small delay defects

distributed along the path will be tested if the cumulative delay exceeds specifica-

tion. For PDFs, test generation is difficult as number of paths may explode for a

complex circuit, however, it detects small delay defects.

The Transition delay tests may detect many shorts and opens missed by stuck-at

tests, may also detect some capacitive coupling faults. However distributed and small

delay defects do not get covered. Thus Transition delay tests cannot be used to explicitly

target critical paths. The Path Delay Fault (PDF) Model is best suited for targeting all

paths; critical paths included since since all distributed delays are covered.

1.2.2 Path Delay Fault Tests

Path delay faults can be classified according to testability characteristics based on

specific fault detection conditions[31][33]. Figure 1.12 illustrates the classification. The

robust, non-robust and validatable non-robust, and functional sensitizable faults can af-

fect the performance of the circuit hence they are termed as functional irredundant faults

. Functional unsensitizable faults, also called functional redundant faults, can never inde-

pendently determine the performance and they cannot be tested.
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Path Delay Faults

Single

Functional Irredundant

Robust Non-robust and
Validatable
Non-robust

Functional
Sensitizable

Functional Redundant

Functional
Unsensitizable

Multiple

Figure 1.12: Classification of path delay faults

Delays of falling transition and rising transition along the same path from a primary

input to a primary output may be different. In the general case, a pair of vectors (v1, v2)

for each kind of transitions of a path is necessary. In accordance with the conditions of

fault manifestation, singly testable PDFs are divided into robust testable faults, non-robust

testable faults and functional sensitizable faults:

• A PDF is robust testable if there is a test pair on which a fault manifestation does

not depend on delays of other circuit paths.

Figure 1.13: Robustly testable path b-d-e-g

In Figure 1.13, paths a-f and c can be independently driven to static values under

v1 and v2. This allows the transition on b to be propagated over path b-d-e-g. Thus

path b-d-e-g is a robustly testable path, independent of delay on paths a-f and c. In

most robust testable cases, OFF paths have stable non-controlling values under v1

and v2. If only robust tests are considered then the PDF coverage is low due to these

strict requirements.

• A PDF is non-robust testable if fault detection is possible only when all OFF paths

of the circuit are fault-free.
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Figure 1.14: Non-robustly testable path b-c-e

Figure 1.15: FS criterion for AND gate

In Figure 1.14, a rising transition at location b travels via paths b-c and b-d. If

path b-c-e is to be tested, delays on path b-d cannot be ignored. If path b-d is fault

free, then the rising transition arrives at e first. If path b-c-e is faulty then the falling

transition will arrive at e delayed. Since the polarities of the transitions are opposite,

a glitch-like signal appears at e. If this signal is detected at the clock-edge then it

will be detected as a faulty output and will be marked as a delay fault. Thus b-c-e

will be detected as faulty only if path b-d is fault free. The example given here

leads to a conclusion that if the stringent conditions of the OFF paths are relaxed,

it is still possible to detect a fault on a path, provided that the OFF paths settle at

non-controlling values under v2.

• The functional sensitization criterion requires that there exists more than one faulty

path in the circuit in order for the target fault to be detected.

For functional sensitizable PDFs, the detection of faults depends on the delays on

signals outside the target path. Figure 1.15 illustrates the functional sensitizable

criterion for an AND gate. When the ON-input a and OFF-input b both have falling

transitions, for the fault to be detected the output of the AND gate both transitions

have to be late. This is because the arrival time of the signal at the output is deter-

mined by the earlier of the two falling transitions. If the OFF path b is not delayed

then the fault on path a will not be detected. Thus for a functional sensitizable fault



1.2 Delay Fault Testability 11

detection on a path, both ON and OFF paths have to transition from non-controlling

value to controlling value and both have to be delayed.

In this work, we consider robustly and non-robustly testable PDFs.

While testing a path non-robustly, if all the OFF paths are robustly tested and found

fault-free then the non-robust test of the ON path will not be invalidated. In this case the

target path delay fault is validatable non-robust path delay fault. It is as good as a robust

test.

Let us consider a set of paths for a circuit represented in Figure 1.16(a). Each

circuit has functionally redundant(functionally sensitizable) and functionally irredun-

dant(functionally unsensitizable) paths. Given the stringent conditions of robust testa-

bility (Figure 1.13), the ratio of paths that can be tested robustly is very low as shown in

Figure 1.16(b)[25].

(a) Set of all paths (b) Robust testable paths

Figure 1.16: Testability of paths

The number of paths in a circuit are in general very large. In the worst case sce-

nario, ATPG may overtest sequential redundant paths or may abort in case of an irre-

dundant path. Consider a NAND implementation of XOR gate shown in Figure 1.17.

Figure 1.17: Paths a-c-d-g and b-e-f-g are untestable for falling transitions

Paths a-c-d-g and b-e-f-g can never be tested for falling transitions, are redundant. So this

implementation of the XOR gate is to be avoided.

If non-robust tests are accomodated then there is marginal increment in the path

coverage as depicted in Figure 1.18(a). Redundant paths still exist and ATPG may waste

time deriving tests for them. To overcome the redundant path issue, addition of muxes
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[41] or gates[48] on the dependent OFF paths have been proposed. This allows better

control of OFF paths. The disadvantages of these approaches are:

• ATPG may take long time to declare that no tests exist for a particular path.

• This is a post design-phase procedure, hence any circuit changes will have to be

followed by timing analysis.

• Additional control inputs are needed as in [8],[41]-[15]. This would result in addi-

tional input pins.

This brings us to the motive of our research. A synthesis which demonstrates

• No redundant paths

• All irredundant paths testable using either robust tests or non-robust tests,
Figure 1.18(b)

• Ease of test generation

(a) Including non-robust tests (b) Paths in a testable synthesis

Figure 1.18: Improving path coverage

1.3 Multiple Stuck-at Fault Testability

Detection of Multiple stuck-at faults(MSAFs) in a circuit gives increased confidence of

defect coverage. The multiple stuck-at fault(MSAF) model covers many stuck-open and

bridging defects. Many locations simultaneously are to be considered having stuck-at

faults. A circuit with n-nets can have 3n − 1 multiple stuck-at faults. Single stuck-at faults

test set do not cover the entire MSAF list since simultaneous presence of faults at multiple

locations may mask each other.

Consider the circuit in Fig.1.19. If F1 and F2 exist simultaneously, no test exists

that can detect F1 in presence of F2 and vice versa, indicating that they both mask each

other. Similar is the case for F1 and F3 when existing simultaneously. But multiple fault

combinations (F2, F3) or (F1, F2, F3) are detectable using AB = 11.
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Figure 1.19: Multiple stuck-at faults

Many approaches exist that consider MSAF detection using varied angles. The guar-

antee of irredundant paths in the circuit synthesis motivates to consider multiple fault

detection of smaller sections of the circuit since all sections are reachable.

1.4 Thesis Organisation

The thesis is organised as follows:

Chapter 2 discusses challenges in testing. The test generation complexities of se-

quential circuits are discssed. The motivation to consider testablity of combinational cir-

cuits is established. The need to cover PDFs and MSAFs in logic circuits is already

discussed in the current chapter. Chapter 2 presents two approaches available in litera-

ture that increase the testability in logic circuits. One is developing algorithms for test

generation and other is hardware modification.

The ROBDD based hardware synthesis approach proposed by us is explained in

Chapter 3. Circuit transformations and steps for hardware implementation are described.

The proposed ROBDD based synthesis is analysed for path delay faults in Chapter

4. Beginning from single stuck-at fault testability, conditions for robust and validatable

non-robust path delay tests are established.

Chapter 5 demonstrates the Multiple Stuck-at Fault testability of the synthesis ap-

proach. Pseudoexhaustive test methodolgy is applied on one sub-circuit and conditions

for complete MSAF testability are established.

The algorithms to derive test vectors for PDFs and MSAFs are developed in Chapter

6. Test vector calculations for a few combinational and sequential benchmark circuits are

listed in this chapter. Area, power and maximum path delays before and after BDD based

synthesis are comapred.

Chapter 7 concludes the thesis and gives direction for future work.
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Thesis Contribution

The main contribution of this thesis is an ROBDD based circuit synthesis. Circuit

transformations suggested for each node ensure that no additional control inputs are re-

quired and there are no redundant paths in the circuit. We have shown that all paths are

testable for distributed path delays with either robust tests or validatable non-robust tests.

Since the synthesis is structured, we have been able to prove complete multiple stuck-at

fault testability for the circuit.

Other contribution of the thesis is the development of test generation algorithms for

PDF and MSAF faults. The advantage of these algorithms is that they facilitate test vector

generation at design time and have polynomial test generation complexity. The test vector

pairs for PDFs and tests for MSAFs comprise of primary inputs only. Figure 1.20 depicts

the research overview of the thesis.

Testablity Issues
Fully Testable

Ease of Test Generation

Delay Fault
Testability

Delay Testability
of Sequential circuits

Delay Testability of
Combinational Circuits

ATPG Issues Delay Testable
Architectures

Symmetric Circuits
EXSOPs

Heuristic Driven Synthesis

BDD Based
Fully Testable
Implementation

Mux Based With Additional Input
XOR Sub-Circuit Based

OR Sub-Circuit Based

VDAT 2015-Synthesis
EWDTS 2016-PDF Testability & Test Generation

Multiple Stuck-at
Fault Testability

Augment Single Stuck-at Test Set
Testable Designs

Pseudoexhaustive
Testing

BDD Based
Fully Testable
Implementation

LATS 2017-MSAF Testability
IOLTS 2017-Test Generation

Figure 1.20: Research Overview
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Chapter summary

This chapter presents the motivation for research on testable synthesis. The reasons for

considering path delay and multiple stuck-at fault models are discussed. The next chap-

ter presents challenges in sequential and combinational circuit testing. Existing designs

having varied degrees of testability under PDF and MSAF models are discussed.





Chapter 2

Test Challenges and Prior Work

Most of the VLSI chips used for computational purposes encompass the digital domain

wherein sequential circuits dominate. These sequential circuits comprise of sequential

components i.e., flip-flops and combinational logic. As discussed in the last chapter, each

chip has to pass through the test process. This is required to maintain the quality and

economy.

Testing sequential circuits has its challenges. In the upcoming section we discuss the

issues with sequential circuit testing and then moving to testable combinational circuits.

Existing approaches to testable synthesis are examined in the next section.

2.1 Sequential Circuit Testing

A sequential circuit comprises of memory elements (flip-flops) and logic to generate out-

put and next state. Figure 2.1 denotes the general sequential circuit construction.

Figure 2.1: Sequential Circuit

The following issues increase the difficulty level of sequential circuit testing

17



18 Test Challenges and Prior Work

1. Unknown initial values of FFs

2. Propagation of FF values to POs

3. Long ordered test sequences for 1 fault

(a) Initialize FFs

(b) Apply combinational test

(c) Propagate value of FFs to POs

Thus the test for a fault may be a sequence of several vectors that must be applied in

the specified order. In comparison, a single vector can detect a fault in combinational

circuit. The computational complexity of combinational ATPG is NP-complete (NP-

complete means that no polynomial expression for the compute time function is found

and the problem is presumed to have exponential complexity). But ATPG algorithms

continuously evolve due to improving heuristic algorithms and procedures. This allows

the complexity of combinational fault simulation to be O(nr)(n is the size of the circuit

and r is a constant > 2) is allowing combinational ATPGs to find test vectors in poly-

nomial time. The worst case ATPG computational complexity of a sequential circuit is

O(n × 2no.pi × 4no. f f ); n is the size of the circuit, pi are the primary inputs and f f are the

flip-flops present in the circuit. If the faulty and fault-free circuits are not initialized, then

the complexity is O(n × 2no.pi × 9no. f f ), for 9 valued logic. This necessitates design ap-

proaches where sequential circuits have combinational test generation complexity. Here

are some methods that help transform sequential circuits for the purpose of achieveing

combinational test generation complexity.

2.1.1 Testing Sequential Circuits with Combinational ATPG

1. Time Frame Expansion: In this approach, the sequential circuit is “unrolled” into a

larger combinational circuit. If the test sequence for a single stuck-at fault contains

n vectors,

• Replicate combinational block n times

• Place fault in each block

• Generate a test for the multiple stuck-at fault using combinational ATPG with

9-valued logic.

Thus the test vector has to detect multiple faults. The expansion is done till the

fault is propagated to any of the POs. The presence of fault in all time-frames adds
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Figure 2.2: Time Frame Expansion

tremendous complexity to the test generation process. An approximate method is

described in Bushnell et. al.[11]. Here, only the time-frame of fault activation is

assumed to have the fault. The circuit states in all time-frames, previous to the

time frame in which fault is detected, have to be justified for both fault-free and

faulty circuits. This is achieved by incorporating a universal reset primary input

which initializes all flip-flops correctly in both fault-free and faulty circuits. Thus,

a combinational test can be generated in a single time frame. If the fault can only

be detected at a flip-flop input, then “future” time-frames are added without the

fault and the fault effect is propagated through them to a primary output. This is

shown in the example of Figure 2.3. There is a limit of PIs and POs that a combina-

tional ATPG can handle thus the maximum length of this expansion is limited. This

method is inapplicable to circuits with large number of FFs in the feedback path.

2. Full scan method: The aim is to have a circuit with combinational test generation

complexity. This can be achieved by scanning all the flip-flops in the feedback path

such as shown in Figure 2.4. A combinational ATPG is used to generate the test

vectors for the combinational part. The test vectors are applied by combination of

PI values and scanned values in the FFs. The responses are latched in the scan FFs

to be scanned out.

This method seems to be most appealing but if the FFs are in millions the scan chain

would grow larger. It would take millions of cycles to apply just one vector. Also

one test cycle would test only certain stuck at faults. Delay test vectors are applied

in pairs and at rated speed. To incorporate delay testing, additional FFs/latches

need to be added at each location in the scan chain[11]. This additional hardware

increases the critical path length. Application of one test pair requires two scan

cycles causing test time to increase tremendously.

3. Partial scan: In the partial scan method only a partial number of FFs are scanned

as shown in Figure 2.5. This has two advantages viz. :
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Figure 2.3: Timeframe expansion example

(a) The number of FFs in the scan chain are reduced

(b) The complexity of the sequential circuit is reduced allowing test generation to

be done by a sequential (Time frame expansion based) ATPG

Despite the advantages, the test length and ATPG run time for such circuits can be

quite large. A sequential ATPG program can achieve fault coverage in excess of

95% when about 25 to 50% of the FFs are scanned.

In either of the methods discussed earlier, all or some FFs have to be modified to

incorporate scan design. Increase in FF delay may increase delay of the critical path. A

non-scan design offers the following advantages :

• Reduction in area overhead of FFs

• Reduction in FF delay

• Use of Combinational ATPG

• Complete Fault Efficiency
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Figure 2.4: Full scan design

Figure 2.5: Partial scan method

• Shorter test application time

• At speed testing

One of the non-scan methods for testing sequential circuits is to identify a class of

sequential circuits that have combinational test generation complexity. Certain classes of

acyclic circuits fall into this category.

2.1.2 Acyclic circuits

A clocked synchronous circuit is called acyclic or cycle-free if the flip-flops con-

tain no feedback. An acyclic circuit is known to be initializable and the test sequence

length of any detectable single fault has an upper bound of dmax + 1, where dmax is the

sequential depth defined as the number of FFs on the longest path. A cyclic circuit can

be converted to acyclic by scanning a minimum set of FFs, known as minimum feedback



22 Test Challenges and Prior Work

vertex set (MVFS). A combinational ATPG model can be obtained by replacing all FFs

by wires. Literature [11] shows that for a SAF in this model, the test vector found by the

combinational ATPG, if repeated dmax times, will detect the fault. Many faults are still

undetected and sequential ATPG is required to cover the faults. Additionally, the issue of

detecting multiple faults lingers even if the logic is selectively duplicated. (Multiple faults

may mask each other and the fault may not propagate to the output at all). Not all acyclic

circuits have combinational test generation complexity. Acyclic sequential circuits having

combinational test generation complexity can be classified as:

1. Balanced circuits - Gupta et.al [21]

2. Internally balanced circuits - Fujiwara [20],[19]

3. Strongly balanced circuits - Balakrishnan and Chakradhar [6]

The classification of acyclic sequentiall circuits is shown graphically in Figure 2.6.

Sequential Circuits 

Combinational Circuits 

Acyclic Sequential Circuits 

Internally Balanced Circuits 

Strongly Balanced Circuits 

 Balanced Circuits 

Figure 2.6: Sequential circuit classification

Consider a multi-output acyclic circuit[27] shown in Fig 2.7. The classes of the

sequential circuits with combinational test generation complexity will be described with

this circuit as an example.

1. Balanced sequential circuits: In a balanced circuit, all signal paths between any

two nodes (inputs, outputs, gates and flip-flops) have the same number of FFs. Any

acyclic circuit can be converted into a balanced circuit by removing some FFs via

partial-scan. Replacing FFs with buffers or wires gives a combinational model that

can produce tests for all detectable faults.



2.1 Sequential Circuit Testing 23

Figure 2.7: Multi-output acyclic circuit

Figure 2.8: Transformation to Balanced class

Advantage: Though it has time expansion to dmax + 1, similar to acyclic, there are

no duplicates in the time expanded circuit. In Fig. 2.7 we see that the paths from

A,B & C to output X have different number of FFs. To convert to a balanced circuit

described earlier FF1, FF2 and FF3 have been scanned. Thus we see in Fig.2.8 that

from any input to one output, the number of FFs is the same.

2. Internally balanced circuits: In this case all node pairs excluding those involving

the PIs are balanced, ref. Figure 2.9. PIs with unbalance are split as additional

PIs. A combinational model can now be derived by replacing FFs with wires or

buffers, ref. Figure 2.10. A combinational ATPG is now used to generate the test

vectors. This test vector is converted to a test seq. of length dmax + 1. The bits

split from original PIs are appropriately placed in the sequence for application to

the corresponding original PI. Bits of unsplit PI are duplicated in each vector. This

method requires lower partial scan overhead than balanced circuits.

Figure 2.9: Transformation to internally balanced circuit
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Figure 2.10: Combinational model

3. Strongly balanced circuits: A strongly balanced circuit is balanced and in addi-

tion, all paths between a node and all reachable PIs in its fan-in cone have the same

sequential depth, ref. Figure 2.11. This allows the combinational test vectors to be

pipelined through the sequential circuit without repeating any vector except the last

one. The last one is repeated dmax + 1 times. The advantage of this approach is that

the test vectors are compact. Adversely more number of FFs needs to be scanned

as compared to internally balanced and balanced structures. Many algorithms are

available in literature that aid in the transformations discussed earlier. But in any

case it boils down to the testability of the resulting combinational circuit. Thus it is

important to discuss design of delay testable combinational logic.

Figure 2.11: Strongly balanced circuit

2.2 Literature Survey

2.2.1 Existing Approaches to Delay Testable Combinational Circuit

Synthesis

A path is functionally testable if a functional test exists for it, else it is a functionally

untestable path. A functionally untestable path is not responsible for the performance of

the circuit but a functionally testable path is. Path delay faults on functionally testable

paths degrade the performance. In this scenario and those mentioned in Section 1.2.1
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and 2.1.2, the most appropriate synthesis is the one that guarantees that all paths are

functionally testable.

If the circuit is designed in such a way that the delay testability of all paths is guar-

anteed then the disadvantages discussed in Section 1.2.1 can be overcome. Here are some

approaches to combinational circuit synthesis that offer full PDF coverage.

Shannon Expansion

The first work to ensure complete hazard-free robust fault coverage of all path delay faults

in a combinational circuit was based on Shannon′s decomposition theorem[30] where any

function f can be represented as

f (x1, x2, · · · xn) = xi · fxi + x̄i · fx̄i

Where fxi and fx̄i are co-factors of the function f with respect to variable xi and are

obtained by making xi = 1 and xi = 0, respectively, in f . The corresponding decomposed

circuit is shown in Figure 2.12.

Figure 2.12: Implementation of a function using Shannon decomposition

This type of implementation is appreciable only if the function f is binate in xi . If

this is the case and if the sub-circuits of the two co-factors are robustly testable then the

decomposed circuit will be robustly testable. This type of decomposition is fruitful since

one can always find at least one vector which, when applied to x1, x2, · · · , xi1, xi+1 · · · xn,

results in fxi = 1 and fx̄i = 0 ( fxi = 0 and fx̄i = 1) allowing the path xiC3 f (x̄iC4 f ) to be

robustly tested. By making xi = 1(xi = 0) the sub-circuit for fxi( fx̄i) can be fully tested by

applying the robust tests to the corresponding sub-circuits. It may be possible that the sub-

circuit is not robustly testable after one level of decomposition. The above given method

can be applied to the co-factors recursively until a robustly testable design is achieved.

After max n − 2 Shannon decompositions, two variable co-factors are obtained which are
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guaranteed to be robustly testable. Thus this method guarantees termination in a robustly

testable circuit.

Another way of terminating is when a co-factor is unate in all its variables since

robust tests can be found for each path in such a sub-circuit in which the initialization and

test vectors differ in just the literal being tested. After the process of decomposition, if the

sub-circuit is found to be robustly testable, even if some of the variables are binate, further

decomposition can be avoided. Furthermore, the sharing of logic among the cofactor sub-

circuits does not compromise the robust testability property. Suggested heuristics for

determination of variables to be chosen first:

• Variables appearing most of the times in complemented or un-complemented form

• Variables causing robust untestability in maximum number of gates

Example 2.2.1 : Consider the two-level circuit based on the expression

f2 = x1x3 + x1x2 + x̄1 x̄2 + x3x4 + x̄3 x̄4

The only robustly untestable literals are x1 and x3 in the first AND gate. Using one of

the above two heuristics, we choose either x1 or x3 . If we choose x1 , we obtain the

decomposition

f2 = x1(x2 + x3 + x̄4) + x̄1(x̄2 + x3x4 + x̄3 x̄4)

Since the two cofactors are robustly testable, the decomposed circuit for f2 is also robustly

testable.

Issues and possible solutions:

• This method would be fruitful for constructing multilevel circuits if the variables

chosen for decomposition occur frequently and the SOPs and are binate otherwise

redundancy will increase.

• It is mentioned earlier that recursive decomposition is applied to increase the lev-

els. This would reduce the area but there is no guarantee that the sub-circuit will

continue to be robustly testable. As mentioned earlier two level implementations of

irredundant functions may not be robustly testable.

Symmetric circuits

A symmetric function is defined as a switching function of n variables which is invariant

under any permutation of the variables. It is given in Menon et. al [26] that that a two-

level irredundant circuit realizing a minimum cover of a consecutive symmetric function
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S n(al − ar), is robustly testable for all path-delay faults if and only if 1)al = 0, or ar = n,

or 2) (n
al

) = (n
ar

). If the above condition is not satisfied, the number of untestable paths in

the circuit becomes at least
[{

(n
al

) ∼ (n
ar

)
}

+ 1
]
min(al, n − ar).

The proposed method of synthesizing S n(al − ar) shown in Chakraborty et. al[12],

Rahaman et. al[42], for full (100%) robust path-delay fault testability is based on the

following three key observations:

• S n(al − ar) is unate if al = 0 or ar = n;

• A two-level irredundant AND-OR realization of a unate symmetric function is fully

robustly delay testable. If al = ar, then each minterm will be a prime implicant

by itself, and a minimum two-level realization will be 100% robust testable since

(n
al

) = (n
ar

).

• Every consecutive symmetric function S n(al − ar), al , ar where al , 0, ar , n,

can be expressed as a logical composition (e.g., AND, NOR) of two consecutive

symmetric functions which are unate, and the resulting composite circuit realizing

S n(al − ar) is 100% robustly delay fault testable.

The following theorem represents the proposed composition technique. Theorem :

S n(al − ar), al , ar, l < r, can be expressed as a composition of two unate and consecutive

symmetric functions as follows:

1. S n(al − ar) = S n(al − an) · S n(ar+1 − an)

2. S n(al − ar) = S n(a0 − al−1) + S n(ar+1 − an)

3. S n(al − ar) = S n(0 − ar) · S n(0 − al−1)

4. S n(al − ar) = S n(0 − ar) · S n(al − an)

Example 2.2.2 : An irredundant two-level realization of S 6(4, 5) is not robustly delay

testable. If this is implemented as per case 1 of the proposed technique of synthesis-for-

testability, it is given as

S 6(4, 5) = S 6(4, 5, 6)S 6(6)

. The minimum s-o-p expression of S 6(4, 5, 6) and S 6(6) are given by

S 6(4, 5, 6) =x1x2x4x5 + x1x3x4x5 + x1x2x4x6 + x1x3x4x6

+ x1x2x3x5 + x1x2x3x4 + x2x4x5x6 + x2x3x4x5 + x2x3x4x6

+ x1x2x5x6 + x1x3x5x6 + x1x4x5x6 + x3x4x5x6 + x1x2x3x6 + x2x3x5x6

(2.1)

And S 6(6) = x1x2x3x4x5x6.
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Figure 2.13: Circuit for Equation 2.1

The circuit in Figure 2.13 will now be robustly testable and can be implemented using

basic two level circuits as described in Chakraborty et.al[12]. Rahman et al.[42] have

proposed modified DTSL and shuffle exchange based approach to demonstrate complete

path delay fault testability for symmetric circuits. A simple universal cellular module

that admits a recursive structure is designed for synthesizing unate symmetric functions.

General symmetric functions are then realized following a unate decomposition method.

This design guarantees complete and robust path delay testability for Unate Symmetric

functions.

The challange here is that all general circuits cannot be transformed to symmetric

circuits. Also symmetric circuits constitute a small fraction of all digital circuits.

EXOR Projected Sum-of-products

Shannon decomposition is the basis of synthesis approach of BDD circuits. A Boolean

function f is represented in terms of its two sub-functions derived by substituting the

value 0 and the value 1 to one of the input variables, say xi. The Boolean function f

is projected onto two complementary subspaces: the space where xi = 0, and the space

where xi = 1. This decomposition eliminates one input variable. But the Hamming dis-

tances among the cofactors of f do not change; thus, if f is represented as a minimal SOP,

its projections onto the two smaller subspaces cannot be further minimized. Alternatively

a different kind of Shannon projections, based on the use of EXOR gates is called the pro-

jected sum-of-products (PSOP) approach proposed by Bernasconi et al. in [8],[9]. These

projections, in addition to eliminating one variable, due to the presence of EXOR gates,

reduce the Hamming distances among the factors appearing in each subspace, so that

further merges are possible, even when the initial projected SOP for f is minimal. The

EP-SOP expressions can be derived starting from a SOP representation φ of a Boolean

function f in two steps.
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Step 1: Project φ onto the two subspaces (xi⊕x j) and (xi⊕x j̄), and we obtain the following

expression:

ξi j = (xi ⊕ x j)φ⊕ + (xi ⊕ x j̄)φ⊕̄

After the projection minimize the two SOPs φ⊕ and φ⊕̄ in order to minimize the EP-SOP

ξi j.

Step 2: The Minimal (i,j)-EP-SOP of f is the expression

ξi j = (xi ⊕ x j)φ
(min)
⊕ + (xi ⊕ x j̄)φ

(min)
⊕̄

Figure 2.14: EP-SOP example

Example 2.2.3 : Let a Boolean function φ be:

φ = x̄1x2 x̄3 + x1 x̄2 x̄3 + x1x2x3 + x̄1 x̄2x3 + x3 x̄4

Let φ be projected onto the spaces (x1 ⊕ x2) and (x1 ⊕ x2̄) The first product p in φ contains

both x1 and x2, since x1 is complemented and x2 is not complemented we project p onto

the space (x1 ⊕ x2). The projected product is x2x3. The unique crossing product of φ is

x3 x̄4 since it does not contain x1 and x2. This product will be inserted in both the spaces

without any literal removal. The overall projection will return the form:

(x1 ⊕ x2)(x̄2x3 + x2x3 + x3 x̄4) + (x1 ⊕ x2̄)(x2 x̄3 + x̄2 x̄3 + x3 x̄4)

The implementation is shown in Figure 2.14.

In this approach if the original SOPs are PDF testable then the transformed circuit

is also PDF testable. Thus while performing minimization, approaches that give a PDF

testable design should be considered. Example 2.2.3 is 1EP-SOP since only one variable

is considered for projection. The design as well as testing complexity increases when

more variables are considered for projection[9]. Every additional varaible chosen for

projection leads to insertion of extra test control variables.
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Delay Testable Design Using Funtional properties

A delay testable synthesis method is proposed in Mitra et. al[39] which taps into

functional properties of Boolean expressions and suggests testability preserving transfor-

mations.

Given the boolean cubes of a function, first, two-level robust PDF testable circuit

is designed by properly grouping the cubes. Then some testability-preserving algebraic

factorization techniques are used design to multilevel circuits.

This synthesis approach targets improving robust path delay testability. The first

step is to find which paths are not robustly testable. This information is obtained from

the K-map. Implicants which have variables overlapping may inhibit robust path delay

testability. After indentification, extra control variables are introduced in such a way that

they do not hinder the function and at he same time aid in removing the overlap of the

variables, thus allowing robust path delay testability. Following is an example of the

approach.

Example 2.2.4 : For a function f (x1, x2, x3) =
∑

(0, 2, 3, 4, 5, 7), the cube x2x3 is a

blocked cube with respect to literal x2, as it has an overlapped vertex (011) with an-

other cube x̄1x2, and its relatively essential vertex(rev)(111) is blocked by vertex (101) of

cube x1 x̄2. Here none of the paths would be robustly testable.

Consider a 4-variable function f = (C, x1, x2, x3) with one additional control input

C as shown in Figure 2.15(a). The original function is restored when C is set to logic

0. The cube x2x3 is still blocked with respect to literal x2, as it has overlapping vertices

(C, x1, x2, x3) = (0011, 1011) with cube x̄1x2, and its revs (0111, 1111) are blocked by

vertices (0101, 1101) of cube x1 x̄2. Thus, the circuit is still robust untestable.

However, if the overlapping cube x̄1x2 is replaced by Cx̄1x2, the K-map becomes as

shown in Figure 2.15(b). In this case, the normal function is restored by setting C to logic

x̄2x̄3 x̄2x3 x2x3 x2x̄3

C̄x̄1

C̄x1

Cx1

Cx̄1

0 0 11

1 1 01

0 0 11

1 1 01

(a) Robust untestable

x̄2x̄3 x̄2x3 x2x3 x2x̄3

C̄x̄1

C̄x1

Cx1

Cx̄1

0 0 01

1 1 01

0 0 11

1 1 01

(b) Remove overlapping

x̄2x̄3 x̄2x3 x2x3 x2x̄3

C̄x̄1

C̄x1

Cx1

Cx̄1

0 0 11

0 0 01

0 0 11

1 1 01

(c) Remove blocking

Figure 2.15: Robust testable by extra control inputs
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1. The vertex (0011) now becomes a rev of x2x3, that has no blocking vertex with respect

to the literal x2 . Hence, the circuit becomes robust testable.

The main idea behind the above technique is to remove the overlapping cube. However,

robust testability can also be achieved by removing the blocking cube. The vertices (0101,

1101) of the cube x1 x̄2 block (0111, 1111) of the cube x2x3 in Figure 2.15(a). By AND-

ing the blocking cube with C, we obtain a free rev (0111) of the cube x2x3 which was

blocked earlier. Therefore, the circuit of Figure 2.15(c) now becomes robust testable.

An algorithm is demonstrated in the proposal wherein, control inputs are added

wherever necessary. Figure 2.16 shows the delay testable circuit. The drawbacks of this

approach are: i) Additional control inputs are required ii) In multilevel implementation,

the network is required to be unate.

Figure 2.16: Delay testable implementation using additional control inputs

BDD approach

One of the methods to represent Boolean functions are BDDs or Binary Decision Dia-

grams[10]. They are based on binary trees and are discussed in detail in Chapter 3.
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Because of the modular structure, ROBDDs (Reduced Ordered Binary Decision Di-

agrams) can be easily implemented with multiplexers. Not all mux based implementa-

tions are fully delay testable [7],[4]-[5]. One of the earliest works is discussed here.

BDD based testable synthesis was proposed by Becker in [7]. In this work most of

the nodes are replaced by 2x1 multiplexers. Depending upon what combinations can be

applied to the mux inputs, six redundancy classes are listed. The testability depends on

whether 01 or 10 or both are applicable to the mux inputs or not.

Red.class Possible mux inputs

1 00 01 10 11

2 01 10 11

3 00 01 10

4 01 10

5 00 01 11

6 00 10 11

Table 2.1: Redundancy classes in [7]

We see from Table 2.1 that in classes 5 and 6, values 10 and 01 are not applicable

to the mux inputs. This creates redundant paths in the circuit. In order to eliminate

this redundancy, circuit transformations are proposed for nodes under classes 5 and 6.

It is proved that for nodes that fall under classes 1-4, all paths are robustly testable and

for those nodes only, complete single stuck-at fault coverage implies complete multiple

stuck-at fault coverage. XOR gates are used for nodes under class 4. The challenge here

is that internal circuit transformations have the probability of creating redundancies in the

rest of the circuit. This work concentrates on robust testability of paths. Thus all paths

in the circuit are not testable due to existence of nodes under class 5 and 6. The circuit

transformations aim at removal of redundancies may have a large probalility of creating

secondary redundancies. This drawback is overcome in the work by Dreschler[15].

Consider the circuit in Figure 2.17. The AND gate with one of the input tied to 0

can never be tested. An additional switch t and an inverter is added in [15] as shown in

Figure 2.18. The input t is flipped to generate robust testable conditions for nodes that fall

under class 5 and 6. If t is set to constant 0, the circuit computes the original function. If t

is set to 1, the complement is computed. By changing the value of t , all internal signals,

i.e., signals corresponding to edges in the ROBDD, change their value. This can be seen
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as follows:

f̄ = x̄ig + xih

= (x̄ig)( ¯xih)

= (xi + ḡ)(x̄i + h̄)

= x̄iḡ + xih̄

No circuit transformations are done for any of the internal nodes. Addition of the addi-

tional control input t to the mux based circuit guarantees 100% testability for both single

stuck-at fault (SAF) and PDF models. The size of a circuit is proportional to the given

ROBDD size. The major disadvantage of the approach in [15] is the use of additional

input (Figure 2.18) which may lead to an increase in the number of the chip pins. Also

when t is flipped, the output is complemented. Test generation procedure has to take this

into account.

Figure 2.17: Mux based design(not fully delay-testable)

Figure 2.18: Mux based design with additional input(fully delay testable)
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In an alternate approach suggested by Matrosova et al. in [35], circuits are con-

structed from ROBDDs by special sub-circuit implementation using Shannon expansion:

fv = x̄i · f xi=0
v ⊕ xi · f xi=1

v (2.2)

Equation (2.2) represents an internal node v of the ROBDD. In this formula the operation

⊕ is realized by XOR gate. It is proved that each path delay fault of the resulted circuit

manifests itself as robust testable fault. When applying the test pairs in the definite order

we can detect any PDF of the circuit. Thus this synthesis technique guarantees 100%

testability of the corresponding circuits for PDFs without an additional input, Figure 2.19.

The disadvantage here is that the path lengths increase considerably due to presence of

XOR gates which are is non-standard gates. The worst case delay through the XOR gate

will be a three-gate-delay. The path length is dependent on the number of inputs as they

decide the maximum ROBDD node depth. As the number of inputs increase, the path

length increases by number of inputs x 3 gate delays.

Figure 2.19: XOR based implementation of [35]

As an extension of this work, the authors of [35] have combined the ROBDD based

implementation of the combinational part of a sequential circuit with its next state logic to

construct a delay testable implementation for the Finite State Machine output [34]. Here

the FSM states are encoded with (2,4) codes. Table 2.2 indicates a state transition diagram

with state variables and output variables.

Delay fault of a path is detected on the outputs y1, y2, y3, y4. The circuit of one output

y1 is constructed as follows.

y1 = z1z2(x̄1x3 + x1x2x3) + z2z3(x2 x̄3 + x̄1x3) + z3z4(x1 x̄2x3 + x2x3) + z1z4(x2x3)

Individual input variable SOPs are segregated and a shared ROBDD is made for them,

ref. Figure 2.20. The complete delay testable circuit for y1 is given in Figure 2.21.
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Table 2.2: State Transition Table

Primary Inputs Present State Next State Outputs

x1 x2 x3 z1 z2 z3 z4 z1 z2 z3 z4 y1 y2 y3 y4 y5

0 - 1 1 1 - - 1 1 0 0 1 0 0 1 0

1 0 - 1 1 - - 1 1 0 0 0 0 0 1 0

1 1 1 1 1 - - 0 1 1 0 1 0 0 1 0

- 1 0 - 1 1 - 0 1 1 0 1 0 1 1 0

0 - 1 - 1 1 - 0 0 1 1 1 0 1 1 0

1 0 1 - - 1 1 0 0 1 1 1 1 0 0 0

0 - 0 - - 1 1 1 0 0 1 0 1 0 0 0

- 1 1 - - 1 1 1 0 0 1 1 1 0 0 0

1 - 0 1 - - 1 1 0 0 1 0 1 0 0 1

- 1 1 1 - - 1 1 1 0 0 1 1 0 0 1

Table 2.3: Segregation of SOPs

q Input variable SOPs

1 x̄1x3 + x1x2x3

2 x2 x̄3 + x̄1x3

3 x1 x̄2x3 + x2x3

4 x2x3

Figure 2.20: Shared BDD for SOP functions
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Figure 2.21: Delay testable sequential circuit

In the current work, circuits are constructed from ROBDDs by covering each internal

node v with the sub-circuit implementing the simpler Shannon expansion:

fv = x̄i · f xi=0
v + xi · f xi=1

v (2.3)

In this formula the operation + is realized by OR gate. The path delay faults manifest

themselves either as robust testable or validatable non-robust testable ones. It means that

this synthesis approach too guarantees 100% testability for essential PDFs without an

additional input. Long path lengths due to XOR gates are avoided. Another advantage the

OR gate based sub-circuit has over XOR gate based sub-circuits is that most of the nodes

can be implemented using 2x1 muxes. For the gscl45nm library, a mux would occupy an

area of 3.754µm2 where as the XOR based sub-circuit would occupy 8.446µm2 of area.

2.2.2 Existing Approaches to Multiple Stuck-at Fault Testability

The single stuck-at fault model is widely used, so the SSAF test set is readily avail-

able. Some of the works, [50]-[23] focus on mapping SSAF tests to evaluate MSAF tests.

This takes minimum test generation effort but may not cover all MSAFs.

Alternatively, MSAF testability issue has been approached in two ways:

1. MSAF testable synthesis

2. Develop efficient algorithms for test generation

Here is a list of approaches that work on test generation to improve MSAF coverage:
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• Model MSAFs as SSAFs- Kim et al.[28]. In this work, procedure is provided to

model any multiple-stuck at fault as a single stuck-at fault. The method requires

insertion of n + 3 modeling gates where n represents the multiplicity of the targeted

fault. The modeling approach is demonstrated in Figure 2.22. This allows multiple

faults detection by a single stuck-at fault ATPG. As n increases, complexity of test

generation increases. The disadvantage here is that the fault coverage for multiple

faults is very less.

Figure 2.22: A model for multiple stuck-at fault [28]

• SAT based approach-Fujita et al.[17]: In this work ATPG steps are combined with

fault simulation steps as a set of pure incremental SAT problems. For n faulty lo-

cations, stuck-at 0 and stuck-at 1 faults are modeled using two additional variables

(x, y) for each faulty location. The fault values are indicated in Table 2.4. Now a

formula for ATPG is defined. in is the set of primary inputs and out is the set of

primary outputs. NoFault(in) and Faulty(in, xy) are the logic functions realised at
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Table 2.4: Fault values

xi yi Fault

0 0 Fault free

0/1 1 S-a-1

1 0 S-a-0

the outputs by the circuit without and with additional circuits for stuck-at faulty be-

haviour. The ATPG process for a fault is formulated as the following SAT problem.

∃in, xy · Faulty(in, xy) , NoFault(in) (2.4)

This is a normal SAT problem and indicates that some fault can be detected by

some input vector as under that input vector, the two circuits behave differently.

The solution values of variables, (in, xy) are marked as (in1, xy1) respectively. This

means that the fault corresponding to xy1 can be detected by in1. Both xy1 and in1

are explicit representations of the fault and its corresponding test vector.

In traditional ATPG process, fault simulators are used for the input vector in1, in

order to eliminate the detectable faults from the target remaining faults. This ap-

proach is not appropriate for detecting multiple faults as the possible fault combi-

nations can never be manipulated explicitly. In order to eliminate detected faults

implicitly rather than explicitly, another SAT problem is formulated.

∃xy · Faulty(xy, in1) , NoFault(in1) (2.5)

Where in1 is one of the solutions for Equation (2.4). All the faults corresponding

to the values of xy, whhich are the solution of SAT problem Equation (2.5), can

be detected by the test vector in1, as under that test vector, Faulty and NoFault

behave differently. In order to eliminate the detected faults by the test vector in1,

the following constrant is added to Equation (2.4):

Faulty(xy, in1) = NoFault(in1)

This constrains xy to be the ones which behave correctly with test vector in1, i.e.,

undectable under in1. This works as a way to eliminate all detectable faults from

the target faults in the next iteration.

The next step of the ATPG is to solve the following SAT problem:

∃xy, in · (Faulty(in, xy) , NoFault(in))

∧ (Faulty(xy, in1) = NoFault(in1))
(2.6)
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where in1 is the solution of Equation (2.4). If the solution values of variables (xy, in)

for Equation (2.6) are (xy2, in2) respectively then in2 becomes the second test vector.

It detects some faults which are not detected by in1. This is repeated till there is no

more solution. It is assumed that the following SAT problem has a solution

∃xy, in · (Faulty(in, xy) , NoFault(in))

∧ (Faulty(xy, in1) = NoFault(in1))

∧ (Faulty(xy, in2) = NoFault(in2)) ∧ · · ·

∧ (Faulty(xy, inn−1) = NoFault(inn−1))

(2.7)

But the following SAT problem has no solution

∃xy, in · (Faulty(in, xy) , NoFault(in))

∧ (Faulty(xy, in1) = NoFault(in1))

∧ (Faulty(xy, in2) = NoFault(in2)) ∧ · · ·

∧ (Faulty(xy, inn−1) = NoFault(inn−1))

∧ (Faulty(xy, inn) = NoFault(inn))

(2.8)

As Equation (2.7) has a solution and Equation (2.8) does not have a solution, the test

vectors in1, in2, · · · inn can detect all of the detectable faults, as the unsatisfiablity of

Equation (2.8) guarantees that there is no more detectable fault. So they become a

set of complete test vectors for all combinations of multiple stuck-at faults which

are detectable. Advancement of this algorithm that works on transformed circuits

too is described in Fujita et.al[18]. Another work that targets multiple stuck-at

faults via detection of double stuck-at faults is presented in Moore et.al[40]. The

premise is that, given some double stuck-at(DSA) fault { f1, f2}, as long as f2 does

not interfere with the propagation of f1, f1 will be detected, and therefore { f1, f2}

will also be detected. The method focuses on putting path constraints on the circuit

such that a fault is guaranteed to propagate to a primary output. Once a test pattern

is found for some fault and the constraints are in place, any other fault which may

interfere with the constraints can easily be identified and dealt with.

• Augment SSAF tests to cover MSAFs-Agrawal et al.[2]: This work proposes an

ATPG method wherein all MSAF tests of a logic circuit are generated using two

complementary algorithms. The first algorithm finds pairs of input vectors to detect

the occurrence of target single stuck-at faults independent of the occurrence of other

faults. The second uses a sophisticated branch and bound procedure to complete the

test set generation on the faults undetected by the first algorithm.
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The disadvantage of both these proposals is that they have exponential test generation

complexity.

Jacob et al.[24] have suggested a measure to give lower bound on multiple faults

that can be detected using single stuck-at test sets based on Gauranteed To Be Detected

or GTBD faults. A fault is GTBD if its detection is not masked by the presence of any

other fault or faults. If one of the faults of a multiple fault combination is GTBD then the

MSAF is also GTBD. In a circuit with n lines, if the number of GTBD faults are k, then

the lower bound on MSAF coverage is derived as:

Ccomb ≥ 1 −
1
3k (2.9)

This requires classifying single stuck-at faults into GTBD and non-GTBD faults which in

turn would require MSAF simulation. It is not possible to simulate all combinations of

MSAFs. Additionally, since the coverage depends only on k and not on n, the coverage

indicated by this measure can be very misleading. Nevertheless, the concept of GTBD

faults helps in easier test generation.

Next we look at existing MSAF testable design approaches:

• Fan-out free circuits-Hayes et al.[22]: This work suggests a network transforma-

tion called “Normalization" wherein superflous lines and gates are eliminated and

only NAND gates are used (Ref. Figure 2.23). This method allows detection of all

multiple faults of the entire circuit.

• Irredundant two-level circuits-Kohavi et al.[29]: This seminal work proves that

an experiment designed to detect all multiple faults on external inputs of an irredun-

dant two-level AND-OR network, detects all the faults within the network as well.

Thus an irredundant two-level AND-OR implementation is testable for multiple

stuck-at faults. A compact test generation method is also suggested.

• Internal fan-out free circuits-Schertz et al.[44]: This work suggests a fault class

structure which results from application of fault collapsing techniques which results

in a division of circuit into fan-out free segments. The detection of all single faults

within a restricted connected set implies detection of all multiple faults within that

connected set.

• BDD implementations: Mux based BDD implementations of [7] indicate com-

plete MSAF testability for nodes that can be tested robustly for path delay faults.

Mux implementation of [15] is also testable for all MSAFs but with the help of an

additional control signal. XOR based BDD implementation of [35] is also testable

for MSAFs but presence of XOR gates creates long path lengths.
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Figure 2.23: (a) Original circuit, (b) Circuit after normalization procedure

In this work we investigate the MSAF testability of mux based BDD implementation

which does not have an additional control signal. Concepts of Pseudoexhaustive testing

and MSAF testability of two-level AND-OR circuits are used for the analysis.

Exhaustive testing of a circuit-under-test would cover complex faults including

MSAFs and bridging faults, however it is impractical. A practical approach called Pseu-

doexhaustive testing was proposed by McCluskey et al. in [37],[36]. Their proposal was

aimed at Built-In Self-Test architectures. The premise of pseudoexhaustive testing is as

follows.

If it is possible to apply all 2n patterns to a circuit with n inputs, test generation

is eliminated. It is unnecessary to calculate fault coverage since the entire truth table

is verified. No faults would remain undetected. The major hurdle is this approach is

that most of the circuits have large number of inputs causing long test times. The work

proposes an approach where each circuit output is traced back to determine actual number

of inputs in its fan-in cone and apply only those inputs exhaustively. This is represented

in Figure 2.24. The work also suggests partition methods so that each partition output

function depends on a sufficiently small number of input variables.

Two methods to perform partitioning are proposed: Hardware partitioning and sen-

sitized partitioning. Access to the embedded inputs and outputs of the sub-circuit under

test can be achieved by inserting multiplexers and connecting the embedded inputs and
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Figure 2.24: Pseudoexhaustive testing

Figure 2.25: Hardware partitioning

outputs of each sub-circuit to those primary inputs and outputs that are not used by the

sub-circuit under test. Figure 2.25(a) depicts this hardware partitioning scheme. By con-

trolling the multiplexers, all the inputs and outputs of each sub-circuit can be accessed

using primary input and output lines. For example, to test sub-circuit Gi the multiplexers

can be controlled as depicted in Figure 2.25(b) to completely access all the inputs and

outputs (including the embedded intermodule lines).

For the purpose of hardware partitioning, a considerable amont of diagnostic cir-

cuitry consists of routing multiplexers. Insertion of these muxes hinder the speed of op-

eration and are expensive.

In sensitized partitioning, same testing discipline is achieved without insertion of any

multiplxers. Circuit partitioning and sub-circuit isolation can be achieved by applying the
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appropriate input pattern to some of the input lines. The effect achieved is similar to that of

hardware partitioning. Paths from the primary inputs to the sub-circuit inputs and paths

from the sub-circuit output to the primary output can be sensitized. Using these paths

each sub-circuit can be tested exhaustively. The challenge in sensitized partitioning is

whether all possible combinations of sub-circuit inputs can be delivered to the sub-circuit.

Combining harware partitioning with sensitized partitioning would give best accessability.

Pseudoexhautive testing has potential application to ROBDD based implementation

since the synthesis is modular and, sensitising and propagation paths are readily available.

Chapter summary

: In this chapter it is demonstrated that it is better to work with combinational circuits than

sequential circuits as combinational circuits have polynomial test generation complexity.

Algorithmic as well as hardware approaches that facilitate ease of test generation under

PDF and MSAF models are depicted. A case for a BDD based synthesis approach is

developed. The upcoming chapter expalins the BDD prelimaries and provides steps for

the proposed synthesis.





Chapter 3

ROBDD Based Synthesis

Logic synthesis is a process by which an abstract form of desired circuit behavior, typi-

cally at register transfer level (RTL), is turned into a design implementation in terms of

logic gates, typically by a synthesis tool. The synthesis tool is usually guided by con-

straints provided by the user for the purpose of area and timing optimization. As seen

in earlier chapters, it is advisable to use different synthesis approaches to improve the

testability of digital circuit designs. Binary Decision Diagram(BDD) based synthesis is

known to have higer degree of testability as compared to other techniques. In this chapter

we discuss BDD based circuit transformations that serve our motive of complete PDF and

MSAF testabilty.

3.1 Binary Decision Diagrams

Figure 3.1: Binary Decision Diagram for x1x2 + x̄1 x̄2 x̄3 + x̄1x2x3

A Binary Decision Diagram or BDD[10] is a rooted acyclic graph G = (V, E)

with vertex set V containing two types of vertices, non-terminal and terminal vertices.

Consider Figure 3.1, nodes marked by x1, x2 andx3 are non-terminal nodes. A termi-

nal vertex(node) v has attribute value(v) ∈ {0, 1}. A non-terminal vertex v has attribute

45
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index(v) ∈ {1, 2, · · · , n} and two children, low(v), high(v) (marked by dotted and straight

lines respectively, in Figure 3.1). The attribute index(v) specifies a linear ordering of

the variables in the support of the BDD; i.e., it satisfies the property such that for any

non-terminal node v, index(v) < {index(low(v)), index(high(v))}; For example: x1 < x2.

Reduced Ordered Binary Decision Diagram or ROBDD extends the above defini-

tions of BDD with two additional constraints:

• For any non-terminal node v, if low(v) is also non-terminal then index(v) <

index(low(v)), and similarly, if high(v) is also non-terminal, then index(v) <

index(high(v)).

• There exists no v ∈ V with low(v) = high(v) and there are no two nodes v and v′

such that the sub-BDDs rooted by v and v′ are isomorphic.

The ROBDD for Figure 3.1 is shown in Figure 3.2.

Figure 3.2: Reduced Ordered Binary Decision Diagram for x1x2 + x̄1 x̄2 x̄3 + x̄1x2x3

In an ROBDD, every sub-graph that is rooted at vertex v represents a unique function

fv. The directed acyclic graph rooted at root r of the entire ROBDD represents the main

Boolean function f = fv. A function fv is stored in the data structure of the node v and is

defined recursively as follows:

• If v is a terminal node such that value(v) = 0, then fv = 0, else if v is a terminal node

such that value(v) = 1, then fv = 1

• If v is a non-terminal node such that index(v) = i then, fv = xi fhigh(v) + x̄i flow(v), where

the variable order is x1 < x2 < · · · < xn and, fhigh(v) and flow(v) represent the functions

rooted at high(v) and low(v) respectively
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Thus each ROBDD node v can be represented by the Shannon expansion in Equation 3.1.

fv = x̄i · f x̄i
v + xi · f xi

v (3.1)

f xi
v and f x̄i

v are evaluated at xi = 1 and xi = 0 respectively. This theorem allows to

construct a unique Boolean function at each node of the ROBDD G = (V, E), starting

from the root which represents the main function of the entire ROBDD. The construction

is performed as follows; given a node v representing fv, and v with attribute index(v) = i,

the functions represented by it’s two children, low(v) and high(v) are flow(v) = f x̄i and

high(v) = f xi , respectively. f x̄i and f xi are known as the co-factors of f with respect to x̄i

and xi respectively.

Since the variable ordering is fixed for the ROBDD, the representation of the

Boolean function is canonical. A circuit with m outputs will have a ROBDD with m

root nodes and two terminal or leaf nodes: leaf node-0 and leaf node-1. This would be a

shared ROBDD. For the current work we consider a single output function, hence a single

output ROBDD as shown in Fig.3.3.

Figure 3.3: ROBDD example for Boolean function f

For the purpose of understanding, the K-maps for the function indicated in Figure 3.3

are shown in Figure 3.4.

It can deduced from the K-maps, that the minterms resulting from the ROBDD con-

struction are irredundant and canonical. It can also be seen that, the minterms are disjoint

making each minterm a prime implicant. Thus the function f can be represented by a Dis-

joint Sum of Products(DSOP) expression [14].

For a logic function represented by ROBDD, all the individual paths starting from a

root node to leaf node 1 constitute the DSOP. The DSOP of function f of Figure 3.3 is as
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x̄4x̄5 x̄4x5 x4x5 x4x̄5

x̄2x̄3

x̄2x3

x2x3

x2x̄3

0 1 10

0 1 10

0 1 10

1 0 10

(a) K-map for x̄1

x̄4x̄5 x̄4x5 x4x5 x4x̄5

x̄2x̄3

x̄2x3

x2x3

x2x̄3

1 1 11

0 1 10

0 1 10

0 1 10

(b) K-map for x1

Figure 3.4: K-maps for function f

follows:

f = x1 x̄2 x̄3 + x1 x̄2x3 x̄4x5 + x1 x̄2x3x4 x̄5

+x1x2 x̄4x5 + x1x2x4 x̄5 + x̄1 x̄2 x̄4x5

+x̄1 x̄2x4 x̄5 + x̄1x2 x̄3 x̄4x5 + x̄1x2 x̄3x4 x̄5

+x̄1x2x3 x̄5

(3.2)

The DSOP pays a crucial role in test generation for Path Delay Faults(PDFs) as well as

Multiple Stuck At Faults(MSAFs).

3.2 Synthesis Without Additional Input

ROBDD based synthesis involves implementing each node with a decision making circuit.

Intuitively a 2x1 mux can be used to replace each ROBDD node. Alternatively, an XOR

based circuit can also be used. This work has been published in [47].

According to the placement of the ROBDD nodes, they can be classified into

• Nodes with both edges (high(v) and low(v)) connected to other nodes

• Nodes with both edges connected to leaf nodes

• Nodes with one of the edges connected to leaf nodes

Nodes that have both edges connected to other nodes are implemented using multiplexers

where the node variable xi acts as a control signal and the co-factors f x̄i
v and f xi

v are the

mux inputs; Example nodes x1, x2, x4 in Figure 3.3. Nodes that have both edges connected

to leaf nodes do not require a dedicated mux. Consider node x5 in Figure 3.3 whose

high(v) is connected to 0 and low(v) is connected to 1. This is equivalent to f x4
v = x̄5. So
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Figure 3.5: Gate implementation of the formula fv = x̄i · f x̄i
v + xi · f xi

v

x5 can directly be connected to the mux inputs controlled by x4. Some transformation is

required for nodes with one of the edges connected to leaf nodes. This is discussed as

follows.

In order to eliminate the additional control input of [15], the node connected to the

leaf nodes are replaced by a slightly modified circuit as compared to the 2x1 mux. All

intermediate nodes are made up of Invert-AND-OR sub-circuits(2x1 muxes) shown in

Fig.3.5.

Each node that connects to a leaf node can have either of four conditions:

• High successor connected to leaf node 0

• High successor connected to leaf node 1

• Low successor connected to leaf node 0

• Low successor connected to leaf node 1

If any of the successors is connected to 0, then the sub-circuit can be simplified to an AND

gate without disturbing the testability. If one of the successors is connected to leaf node 1

then the Invert-AND-OR sub-circuit simplifies to an OR gate. This will cause a transition

on the control variable to be masked by a 1 on the other input of the OR gate[15]. Instead

of the OR gate, following Boolean algebra rule is used.

x̄i + fx j = x̄i + xi · fx j (3.3)

xi + fx j = xi + x̄i · fx j (3.4)



50 ROBDD Based Synthesis

The resultant transformation for circuits connected to the leaf nodes is shown in

Figures 3.6 and 3.7. This ensures that any OR gate input that lies on the OFF path always

has a non controlling value.

Figure 3.6: Sub-circuit for nodes connected to leaf node 1

Figure 3.7: Sub-circuit for nodes connected to leaf node 0

The premise of using this transformation can be deduced from the following exam-

ple.

Figure 3.8: Example 3.2.1:Improving testability by avoiding simplification
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Example 3.2.1 Consider a section of an ROBDD in Figure 3.8(a). The DSOP terms

would be x2 x̄3 + x2x3x4. This would reduce to x2(x̄3 + x4). The implementation using OR

gate is shown in Figure 3.8(b). If x4 = 0, any transition on x̄3 can be robustly propagated.

If subpath x2x3 from path x2x3x4 is to be tested via a transition at x3, the transition will

be masked by a 1 at x4. But if implementation of Figure 3.6 is followed, the untestability

via x3 can be overcome. Consider Figure 3.8(c). If x4 = 0, any transition on x3 can be

propagated to the next stage via gates 2 and 3. Let us assume that path x3 - gate 2 - gate

3 is tested and is fault free. When x4 = 1, and a rising transition is applied at x3, paths x3

- gate 1 - gate 3 and x3 - gate 2 - gate 3 will be activated. Since path x3 - gate 2 - gate 3

is fault free, the corresponding transition arrives in time. If path x3 - gate 1 - gate 3 has

a delay fault, the corresponding transition will be delayed. This results in a glitch-like

signal at the output. If this signal is captured at the clock edge, then the delay fault in path

x3 - gate 1 - gate 3 is detected. Thus this transformation increases testability as compared

to OR gate implementation.

The composite circuit for the ROBDD in Fig.3.3 is shown in Fig.3.9.

Figure 3.9: Circuit C corresponding to function f in Fig. 3.3

Equation (3.2) indicates the DSOP equation for circuit C (Figure 3.9).

It should be noted that in an ROBDD based implementation, the ordering of vari-

ables is fixed. For ease of understanding, the variables are ranked as per their position in

the ROBDD. The root node variable x1 is ranked the highest and the node variable farthest

form the root node is ranked the lowest. In Equation 3.2, x1 has the highest rank and x5

has the lowest rank.

Limitations of ROBDD based synthesis

ROBDD based designs have two major disadvantages:



52 ROBDD Based Synthesis

• The number of paths may increase exponentially

• Since the levels are not bounded, large path delays could exist

Chapter summary

: This chapter provides circuit transformation steps for an ROBDD based synthesis. It is

shown that each path can be represented by a DSOP. All DSOP terms combined represent

all paths of the circuit. No paths in the synthesized circuit are redundant. No additional

control signal is required. Analysis of the synthesized circuit for PDF testability is dis-

cussed in the next chapter.



Chapter 4

Path Delay Fault Testability

For any path in an ROBDD based circuit to be fully testable for delays, it is required that

all single stuck-at faults of the path are testable. This chapter aims to establish complete

PDF testability of ROBDD based synthesized circuit.

4.1 Single Stuck-at Fault Testability

Since the circuit is constructed using AND-OR implementation, all single stuck-at-0 faults

on the path would be tested by the product term that represents the path.

Using fault equivalence, any single stuck-at-1 fault at any location on a path can be

traced to the nearest input variable. This variable is used to sensitize the fault.

Single stuck-at faults can occur at primary inputs or on the gates which fall on a path

of circuit C. Let this path be represented by product K from the DSOP which includes

primary input xi; K = f (x1, · · · , xi, · · · , xn−1, xn) . Let K
′

be a product term obtained

by complementing only xi to x̄i, all other variables remaining as they are in K; K
′

=

f (x1, · · · , x̄i, · · · , xn−1, xn).

Lemma 1 If K
′

is not an implicant of DSOP then the fault xi(s−a−1) is detectable

Proof In the terms K and K
′

, only the value of variable xi differs. Since K is one of the

DSOP terms, K
′

will not be a DSOP term. In an ROBDD, K and K
′

both cannot exist

since isomorphic sub-graphs are removed. A test vector tv1 that turns K
′

into 1 will turn

K to 0 in a fault free condition. None of the paths are functionally active and output is 0.

If a stuck-at-1 fault exists at xi, application of tv1 causes the output to be 1 and xi(s−a−1)

detected.

Lemma 2 A test vector tv0 that turns K to 1 detects xi(s−a−0)

53
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Figure 4.1: Stuck-at faults corresponding to delay faults

Proof If test vector tv0 turns K to 1, it will turn K
′

to 0 in fault free case. If application of

tv0 causes the output to be 0, a stuck-at-0 fault exists at xi. This is true for all input vari-

ables included in K. Thus tv0 will detect all single stuck-at-0 faults of the input variables

that constitute the path K.

4.2 Robust and Non-Robust Testability Conditions

A stuck-at-0 fault can also be considered as slow-to-rise delay fault and a stuck-at-1 fault

as slow-to-fall, demonstared in Figure 4.1. In [33] the conditions of robust path delay

fault manifestation for test pairs are formulated and are as follows:

1. The stuck-at fault corresponding to the delay fault of the literal should be detectable.

The corresponding test vector constitutes v2 of the test pair (v1, v2).

2. The variable xi from where the path begins takes complementary values for v1, v2

vectors.

It can be inferred from lemmas 1 and 2 that all single stuck-at faults of the path under

consideration are detectable. Also the test vectors have complementary values of literal-

under-consideration for stuck-at faults of opposite polarity. Thus both the conditions

stated above are satisfied. To adopt this to the DSOP for the purpose of generating test

pairs for the PDF manifestation[33], additional notions are required.

Let x1 represent the root node, xn indicate the last literal (as per ROBDD rank of

variables) and xi mark the node where the path begins. A path that begins at xi ends at the

root node x1 and constitues a sub-product of the DSOP term of that path. If the node xi

where the path begins is not the last node in the corresponding DSOP term then there may

be several prolongations and consequently several products containing the literal xi i.e.

there could be many paths from xi to leaf node 1. Now the product term representation can
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be split into three parts, viz. sub-product including x1 to xi−1(Kε), xi, set of sub-products

from xi+1 to xn({Kα}). This composite product term be represented as {Kε, xi, {Kα}} [33].

Considering one 2x1 mux of the circuit, the paths controlled by xi and x̄i in the same

sub-circuit form companion paths. The other inputs to the mux are f x̄i
v and f xi

v Gates 1-2-4

and 3-4 in Figure 3.5 form companion paths. They have the same sub-product Kε, i.e. the

propagation path to circuit output via root node. Let K(u) be the minimal cube covering

vectors v1, v2 of a test pair. Let the path under test be β (gates 3-4 in Fig.3.5).

Theorem 3 If Kγ ∈ {Kα} is a sub-product on which the condition f x̄i
v , f xi

v occurs, espe-

cially f x̄i
v = 0 and f xi

v = 1 and the product KεKγ (excluding xi, x̄i) is represented by K∗,

then this product K∗ represents a test pair which can robustly test path β for rising and

falling transitions in xi.

Proof Since Kγ ∈ {Kα}, the product term xiKεKγ = xiK∗ represents a valid DSOP term

which makes the output 1. The product xiK∗ represents the Boolean vector v2 that turns the

product KεKγ to 1. It means v2 is a test pattern for the fault. The product x̄iK∗ represents

vector v1 of this test pair. The product v1 turns DSOP into 0. The test pair detects rising

transition of the path β. Actually v1 is orthogonal to all products of the DSOP that does

not contain sub-product kε and x̄i as kγ is orthogonal to f x̄i
v . To test for falling transition

v1 must be taken as v2 and vice versa for the same path β. K(u) = K∗ is orthogonal to

• All products of the DSOP except products of {Kα}

• All products of the DSOP that does not contain sub-product kε

• Products of the DSOP containing sub-product kε and x̄i as kγ is orthogonal to f x̄i
v

Also none of the DSOP products contain repeated literals. Thus all conditions of robust

testable manifestation for rising and falling transition of the path β are fulfilled. Hence

the theorem is proved.

Corollary 4 If there exists a path γ for which f xi
v (γ) = 1, f x̄i

v (γ) = 0 and a path δ for

which f xi
v (δ) = 0, f x̄i

v (δ) = 1 then for both paths that begin at the same input and marked

with the literals xi and x̄i, PDFs manifest themselves as robust testable for rising and

falling transitions.

Figure 4.2 illustrates the above mentioned corollary.

Example 4.2.1 Consider a path that begins from x3 to root node x1 in Figure 3.9. (kε =

x̄1x2 x̄3). This sub path exists in the 8th term and the 9th term of the DSoP.

Kα = {x̄1x2 x̄3 x̄4x5, x̄1x2 x̄3x4 x̄5}
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We can use either of the terms to generate the test pair (v1, v2). Selecting 8th term

x̄1x2 x̄3 x̄4x5 gives v2 = 01001. To test the path via x3, the value of x3 is complemented

to get v1 = x̄1x2x3 x̄4x5 = 01101. It should be noted that v1 is not an implicant of the

DSOP. Thus (v1, v2) = (01101, 01001). This sequence will test the path with rising transi-

tion via x3. Interchanging v1 & v2 will test the path with falling transition. Hence to test

for falling transition via x3, (v1, v2) = (01001, 01101).

The values for f x̄i
v & f xi

v are generated by combinations of input varaibles xi+1 to xn

. xi is the primary input which can be driven directly. For each ROBDD node only one

of the following conditions hold good. These conditions arise because of the ROBDD

structure itself. The conditions are as follows:

1. f x̄i
v = 0, f xi

v = 1 as well as f x̄i
v = 1, f xi

v = 0 can be delivered to the node or

2. Only f x̄i
v = 0, f xi

v = 1 can be delivered to the node or

3. Only f x̄i
v = 1, f xi

v = 0 can be delivered to the node

Condition 1 exists if f xi
v 1 f x̄i

v , f x̄i
v 1 f xi

v and f xi
v ∩ f x̄i

v = 0. Condition 2 exists if f x̄i
v ⊂ f xi

v

and condition 3 exists if f xi
v ⊂ f x̄i

v for a node v.

Figure 4.2: Robustly testable conditions

In case 1, both paths of the mux (1-2-4, 3-4) are robustly testable. This is demon-

strated in Fig. 4.2. In case 2, path 3-4 is robustly testable and in case 3, path 1-2-4

is robustly testable. It is possible to test the companion paths in cases 2 & 3 for PDFs

non-robustly.

Theorem 5 Let there be a ROBDD node, wherein the condition f xi
v = 0, f x̄i

v = 1 does not

exist, however let Kγ be a sub-product on which the condition f x̄i
v = 1 and f xi

v = 1 exists
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and the product KεKγ (excluding xi, x̄i) is represented by K∗. The product K∗ represents a

test pair which can non-robustly test path α(1-2-4) for rising transition.

Proof The product xiK∗ represents the Boolean vector v2 that turns the product Kγ from

{Kα} to 1. It means v2 is a test pattern for the fault xi(s−a−0). The product x̄iK∗ represents

vector v1 of this test pair. The test pair detects rising transition of the path α. The product

v1 turns K∗ to 1. Moreover as the condition f xi
v = 0, f x̄i

v = 1 is not feasible, the product K∗

is an implicant of DSOP and consequently v1 is not a test pattern for the fault. Besides it

K(u) is also implicant of the DSOP. Hence the theorem is proved.

If path 3-4, which is robustly testable in this case, is tested and found fault free then the

non-robust test for path 1-2-4 will not be invalidated. Thus for cases 2 and 3 mentioned

earlier, the companion paths of the robustly testable paths can be tested using validatable

non-robust tests. This condition is demonstrated in Fig.4.3.

Figure 4.3: Non-robustly testable conditions

In order to detect validatable non-robust PDF of the path and its rising transition,

the test pair to detect robust testable PDF for the companion path has to be delivered

first. If the companion path is fault free, validatable non-robust test will detect PDF of

rising/falling transition of the considered path.

• If only f x̄i
v = 0, f xi

v = 1 can be delivered to the node, path 3-4 is robustly testable,

path 1-2-4 has a validatable non-robust testable PDF in falling transition at xi.

• If only f x̄i
v = 1, f xi

v = 0 can be delivered to the node, path 1-2-4 is robustly testable,

path 3-4 has a validatable non-robust testable PDF in rising transition at xi.
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4.3 Test Vector Generation

Each ROBDD node is controlled by an input variable. Thus each node becomes a potential

beginning of a path that ends in root node x1. Given a DSOP term, the test vector pair of

the path {x1, ...xi} consists of

• A product term Kα consisting of variables from xi+1 to xn, this product term sensi-

tises the path.

• A product term Kε consisting of variables from x1 to xi−1, this product term is re-

sponsible for fault propagation.

• The primary input xi where the path begins.

From Section 4.2 we infer that the test vector pair of a path corresponds to the DSOP term

it represents, where the literal of the path origin takes complementary values. Kα(x̄i)xiKε

will be the test vector pair (v1, v2).

DSOP manipulation is used to derive the PDF test sets. Since initial steps of the

process are common with MSAF test vector derivation, the topic is revisited in Chapter 6.

Chapter summary

: In this chapter, it is proved that each path in the synthesis satisfies conditions of path

delay testability. Conditions that lead to classification of paths as robustly testable and

non-robustly testable for delays, are discussed. It is shown that the non-robust tests would

not be invalidated, hence the test quality is as good as robust tests. Test vector pairs can

be generated from the primary input variables, no additional inputs are required. MSAF

testability of the synthesis approach is covered in the upcoming chapter.



Chapter 5

Multiple Stuck-at Fault Testability
Analysis

Testing a circuit exhaustively has two benefits, viz.: Fault models including multiple

stuck-at faults, bridging faults are covered and test generation effort is negligible. This

would be highly infeasible as the circuit complexity increases. In the current example of

circuit C, the output is a function of 5 variables. The number of input variables being

very small, exhaustive test set that has 25 = 32 vectors would detect all MSAFs. As the

number of inputs increase for larger circuits, the test vector volume explodes.

Alternatively, a larger circuit can be segmented into partitions having few inputs so

that they can be tested exhaustively for those inputs,i.e., Pesudoexhaustive testing (pro-

posed by McCluskey[37][36][52]). This test strategy is also described in [? ] and [1].

Each node in an ROBDD is implemented using a sub-circuit. This makes ROBDD based

circuits inherently segmented/partitioned.

Each ROBDD node has a fixed order of nodes under its hierarchy. The nodes are

marked by primary inputs. The number of inputs in the fanin cone of a node would depend

on order of the node. Depending on how many inputs can be considered for exhaustive

testing, a corresponding node and sub-circuit output is chosen for observation. Here ad-

ditional logic would be required to observe the segment output directly. A multiplexer

with increased size is used before the scan flop. A default selection will select the circuit

output and during testing the multiplexer can choose between the segment outputs. Figure

5.1 shows an example of segmentation of circuit C shown in Figure 3.9. Table 1 shows

segment representation.

It may not always be possible to implement large multiplexers as they hinder the

speed of operation and are expensive. As ROBDD based implementation represents a

binary tree structure, additional multiplexers can be avoided. Each node is implemented

59
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Figure 5.1: Test partitions of circuit in Figure 3.9

Table 5.1: Test partitions of Fig. 5.1

Mux select Mux output

0 f (x3, x4, x5)

1 f (x1, x2, x3, x4, x5) (Normal output)

2 f (x3, x4, x5)

3 Scan input

using a sub-circuit redrawn here as Figure 5.2. Since the entire circuit is composed of

the same sub-circuit, it is a natural candidate for the partition. Paths from the primary

inputs to the sub-circuit inputs and from sub-circuit outputs to the circuit output need

to be sensitized [37]. These paths will allow the sub-circuits to be tested exhaustively.

Since the ROBDD based implementation has all the paths testable under the path delay

fault model, sensitization and propagation is ensured for each path. This work has been

published in [45],[46]. Test vectors derived for each sub-circuit drive the primary inputs

so as to sensitize the faults of partition-under-test and propagate the partition output to the

circuit output.

5.1 MSAF testability of two-level AND-OR circuits

It has been proved in Section 4.2 that the circuit C is fully path delay testable. This

indicates that fault sensitizing and propagating paths are readily available. Test vectors

derived for each mux drive the primary inputs so as to sensitize the faults of partition-

under-test(one 2x1 mux corresponding to one node) and propagate the partition output to

the circuit output.

The expression for each ROBDD node v is

fv = x̄i · f x̄i
v + xi · f xi

v



5.1 MSAF testability of two-level AND-OR circuits 61

Figure 5.2: Gate implementation of the formula fv = x̄i · f x̄i
v + xi · f xi

v

Since the inputs are xi, f x̄i
v and f xi

v , eight combinations are required to test the mux ex-

haustively.

The values for f x̄i
v & f xi

v are generated by combinations of input variables xi+1 to xn.

xi is the primary input which can be driven directly. For each ROBDD node only one

of the following conditions hold good. These conditions arise because of the ROBDD

structure itself. The conditions are as follows:

1. f x̄i
v = 0, f xi

v = 1 as well as f x̄i
v = 1, f xi

v = 0 can be delivered to the node or

2. Only f x̄i
v = 0, f xi

v = 1 can be delivered to the node or

3. Only f x̄i
v = 1, f xi

v = 0 can be delivered to the node

Condition 1 exists if f xi
v 1 f x̄i

v , f x̄i
v 1 f xi

v and f xi
v ∩ f x̄i

v = 0. Condition 2 exists if f x̄i
v ⊂ f xi

v

and condition 3 exists if f xi
v ⊂ f x̄i

v for a node v.

This means all 8 values of input combinations can not be applied. Thus any mux

in the circuit cannot be tested pseudoexhaustively. Though exhaustive values cannot be

applied to the node, four values can definitely be applied to each node.

We need to apply a different approach to detect all multiple faults in the mux. The

2x1 mux circuit is a two-level irredundant AND-OR circuit. Any test set which detects

every single fault in a two-level single-output combinational circuit also detects every

multiple fault in the circuit[44]. Further, for irredundant two-level AND-OR networks, a

test vector set that detects all multiple stuck-at faults at the inputs of the network will also

detect all MSAF combinations of the network [29]. Thus, if the four values that can be

applied to the node detect all multiple faults at the mux inputs xi, f x̄i
v and f xi

v , all MSAFs

of the mux will be tested.

Since the circuit in Fig. 3.5 is a two-level irredundant AND-OR circuit, each product

term is a prime implicant. If one of the variables is stuck-at-0 then the entire term disap-
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Figure 5.3: a,b faults

pears creating disappearing fault or a-fault [29]. If a variable is stuck-at-1, it disappears

from the product term creating shrinkage or b-fault [29].

Lemma 6 Single stuck-at fault at a gate input connected to xi is equivalent to multiple

a,b-faults of the 2 × 1 mux sub-circuit

Proof For the 2x1 mux (shown in Figure 3.5), stuck-at-1 fault at input xi corresponds to

the multiple a,b-fault because of the following:

1. First product term of Equation 1 disappears due to literal x̄i turning into constant

0 (a-fault).

2. Literal xi disappears in the second product of the formula since it is constant 1

(b-fault).

Similarly, stuck-at-0 fault at input xi also corresponds to the multiple a,b-fault as:

1. Literal x̄i disappears in the first product of the formula.

2. Second product disappears due to xi being forced to be constant 0 (a-fault).

Hence proved.

Lemma 7 A test vector set that detects all a,b faults at sub-circuit inputs (xi, f x̄i
v , f xi

v ) will

detect all multiple faults of the sub-circuit.

Proof From Lemma 1, we see that a single stuck-at fault causes disappearance of either

a literal (b-fault) or a product term (a-fault). Since Equation 1 represents an irredundant
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SOP, all the terms are prime implicants. To test whether a product term disappears, it

is needed to test only that product term which itself is a prime implicant. Thus the two

terms of the Equation 1 will detect all s-a-0 faults at the AND gate inputs (called a-tests).

If a literal in the product term disappears due to a s-a-1 fault then the product term is

realized without the literal in question. The sub-cube next to this product term having

a complemented value of the literal will detect this fault (b-test). The set of a,b-tests

will detect all MSAFs at sub-circuit inputs. Therefore all MSAFs of the sub-circuit are

detected [29].

Figure 5.4: Multiple fault locations at inputs of sub-circuit

5.2 Deriving MSAF test set for each node

Depending on the conditions discussed in Section 5.1 a,b-test set for each case is as fol-

lows:

1. When f x̄i
v = 0, f xi

v = 1 as well as the condition f x̄i
v = 1, f xi

v = 0 is true, a,b-test set is

(xi, f xi
v , f x̄i

v ) = {001, 010, 101, 110} as shown in Figure 5.5(a).

2. Only when the condition f x̄i
v = 0, f xi

v = 1 is true, a,b-test set is (xi, f xi
v , f x̄i

v ) =

{000, 001, 101, 111} as shown in Figure 5.5(b).

3. Only when the condition f x̄i
v = 1, f xi

v = 0 is true, a,b-test set is (xi, f xi
v , f x̄i

v ) =

{010, 011, 100, 110} as shown in Figure 5.5(c).
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(a) K-map for cond.1 (b) K-map for cond.2 (c) K-map for cond.3

Figure 5.5: K-maps for ROBDD nodes

There are two methods that can be used to derive MSAF test vectors. The first method

that uses BDD manipulation is dicussed here. Alternatively, a DSOP manipulations based

method can also be used to derive the MSAF tests. Since DSOP manipulations are used

to derive PDF tests too, the approach is dealt with in a separate chapter.

5.3 Test vector generation

BDD manipulation method

Each ROBDD node maps to one partition that comprises of one 2x1 mux. A valid

test vector K must comprise of

• A product term Kα that sensitizes the partition inputs.

• A product term Kε that propagates the partition output to circuit output via path ε.

• The primary input xi that represents the partition

Let Kαxi(x̄i)Kε be the composite test pattern on which the multiple faults at inputs of the

mux manifest on circuit C output. The Boolean vector which turns this product into 1

must be included in the partition tests for the mux.

Following is the procedure to find partition test vectors when f x̄i
v , f xi

v is always

true.

Let there be two vectors γ and δ such that f x̄i
v (γ) = 0, f xi

v (γ) = 1 and f x̄i
v (δ) =

1, f xi
v (δ) = 0, also {γ, δ} ⊆ Kα.

There may exist several paths from the mux output function to the circuit output,

i.e., from the node representing the partition to root node. Kε is a set of all such paths.

Any one path from this set can be selected.

The algorithm for obtaining γ required to generate test vectors a2 and b1 from Figure

5.5 is as follows:
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Figure 5.6: ROBDD for x3

1. ROBDD( f xi
v ) denotes an ROBDD for function f xi

v for given internal node v. It’s root

is the internal node in which the bold edge(xi = 1) runs from v. The ROBDD( f x̄i
v )

root is the internal node in which the dashed edge(x̄i) from v runs. The terminal

nodes of ROBDD( f xi
v ) and ROBDD( f x̄i

v ) coincide with the terminal nodes of the

ROBDD of the function f on the corresponding output of circuit C.

2. To get ROBDD( f̄ x̄i
v ), exchange the terminal nodes of the ROBDD( f x̄i

v ) i.e. replace

leaf node 0 with leaf node 1 and vice versa

3. Multiply ROBDD( f xi
v ) and ROBDD( f̄ x̄i

v ) and let ROBDD R* represent the result.

4. If ROBDD R* is not empty, a path from R* root till its terminal node 1 is repre-

sented by the product γ.

Note that the vector δ which satisfies conditions f x̄i
v (δ) = 1 and f xi

v (δ) = 0 is com-

puted in the similar way, i.e., by multiplication of ROBDD( f x̄i
v ) and ROBDD( f̄ xi

v ). Thus

all the test patterns shown in Figure 5.5 for the conditions f x̄i
v (γ) = 0, f xi

v (γ) = 1 and

f x̄i
v (δ) = 1, f xi

v (δ) = 0 can be derived.

Example 5.3.1 Let us consider a node marked by x3 on the left side of Fig. 3.3. The

ROBDD of x3 is shown in Fig. 5.6. For this node condition 1 is true. The test vector set

derived using the above stated algorithm, for the node marked with x3 ( with respect to

Figure 5.5) is as follows:

{a2, b1, a1, b2} ={x̄1x2x3 x̄4 x̄5, x̄1x2 x̄3 x̄4 x̄5,

x̄1x2 x̄3 x̄4x5, x̄1x2x3 x̄4x5}
(5.1)

Table 5.3 shows which ROBDDs are required to calculate the remaining test vectors that

encompass the conditions f xi
v ⊂ f x̄i

v and f x̄i
v ⊂ f xi

v . For each entry, the path from root node

to terminal 1 node represents the corresponding test vector.
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Table 5.2: ROBDD operation for other test vectors

Test vector Figure no. ROBDD required

a2 Fig. 5.5(a),Fig. 5.5(c) ROBDD( f xi
v )

a2 Fig. 5.5(b) ROBDD( f x̄i
v )

a1 Fig. 5.5(a), Fig. 5.5(b) ROBDD( f̄ x̄i
v ) * ROBDD( f̄ xi

v )

b2 Fig. 5.5(c) ROBDD( f̄ x̄i
v ) * ROBDD( f̄ xi

v )

The test set {a1, a2, b1, b2} is the partition (pseudoexhaustive) test set. This set is

enough to detect all irredundant multiple faults of the partition under test (2x1 mux). The

composite test set constitutes of partition test sets all nodes.

ROBDD multiplication can be done in time O(|C|2) [7]; C = V + E, where V is

the number of ROBDD nodes and E is the number of edges. Time required to find the

set of applicable test inputs is proportional to C. Thus the complete test set for all the

ROBDD nodes can be computed in time O(|C|3) [7]. As ROBDD size increases, this

method becomes computationally cumbersome. Thus we look at an alternative method

for generating test vectors.

DSOP manipulation method

As initial steps of the DSOP manipulation test generation for MSAFs are common

with test generation of PDFs, this method is discussed in detail in Chapter 6.

5.4 MSAF detection with proposed approach

It has been shown in Section 5.1 that each sub-circuit of the ROBDD based implemen-

tation is considered as a partition and it is testable for multiple faults using sensitized

partitioning method [37]. The ab-test set for each partition is derived either using method

described in Section 5.3 or that described in Section 6.2.

In an ROBDD, the rank of literals is known and fixed. Since each node corresponds

to a primary input, the rank of primary inputs is known. Without loss of generality, the

rank of input variables is taken as x1, ...., xn−1, xn, where x1 is the root node and is ranked

the highest.

Theorem 8 A b-test vector for a mux controlled by a variable of rank i detects all stuck-

at-1 faults on the OFF path of partitions controlled by variables of rank greater than

i.



5.4 MSAF detection with proposed approach 67

Proof Let us consider a general circuit shown in Figure 5.7. Let h be the path which

traverses through the muxes controlled by xi and xi−1 respectively. We assume that the

circuit is tested according to lower to higher ranked variables. Muxes controlled by xi

will be tested only if muxes at xi+1 are found fault free. Hence to generalize it, all muxes

controlled by variables of rank lesser than i are assumed to be fault free. Any test vector

Figure 5.7: Fault propagation on the path

from the partition test set derived for the mux controlled by xi will generate D or D̄ at the

mux output yi. The test vector also ensures that yi is propagated to the next circuit (as per

rank of path h) by applying necessary value to xi−1 (1 in this case). If mux controlled by

xi−1 is fault free then D or D̄ will be propagated to yi−1. Location P lies on the OFF path.

A stuck-at-1 fault may exist here due to an actual stuck-at fault or due to multiple faults

in the circuit representing x̄i−1. f x̄i−1 . The situations that can occur when the value of yi is

D or D̄ are shown in Table 5.3.

Table 5.3: Fault propagation in presence of Ps−a−1

yi yi−1 Fault propagated Mask

D 1 Ps−a−1 No

D̄ 1 No Yes

For the circuit marked by variable xi, when a-test is applied, the output at yi would be D̄.

This would be masked by the Ps−a−1 fault. However, a b-test would generate D. In this

case Ps−a−1 would be propagated at the output by one of the tests and circuit would be

detected as faulty. Thus a test vector for a sub-circuit controlled by variable xi will detect

any stuck-at-1 fault on the OFF path of the muxes controlled by variables having rank

grater than i lying on path h. This is applicable to all OFF path s-a-1 faults of path h.

Hence it is prerogative to test all muxes as per the rank of the variables beginning from

the lowest. This test strategy will detect all the faults in the circuit. Hence proved.
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If net P is stuck-at-0, it acts as a non-controlling value for the OR gate. D or D̄ value

from the previous circuit will be propagated to the next circuit in incrementing rank of

variables. This Ps−a−0 fault will be detected when a-test is applied which has been derived

specifically for the partition where it exists.

Lemma 9 For an ROBDD based implementation, if partition tests are delivered in the

ROBDD variable order xn, xn−1, ....x1, all irredundant multiple faults of the circuit-under-

test are detected.

Proof Let the partition currently under test be controlled by xi where n > i > 1. It is

possible that faults of muxes of variable ranked j (i > j > 1) affect the fault propagation

of muxes at variables ranked i to the circuit output. Either a faulty output is produced or

fault propagation is masked and a fault free output is produced. In case of a faulty output,

testing will be stopped. If fault propagation of a mux at variable rank i is masked by faults

of a mux at variable rank j testing will continue. Since tests are delivered for variables

ranked lower to higher, the faults at variable rank j will eventually be tested for by their

corresponding a,b-tests and detected. Thus the tests applied in ROBDD variable order

xn, xn−1, · · · , x1 will detect all irredundant multiple faults of the circuit.

An ROBDD with N nodes will have N partitions and hence it will require 4N test

vectors to test the entire circuit. ROBDD or DSOP manipulations that are required to

derive the test vectors can be done in polynomial time. Note that the actual number of test

vectors required are less than 4N.

Given the test set for each sub-circuit be {a1, a2, b1, b2}, test vectors a1, a2 represent

x̄i · f
x̄i
v + xi · f

xi
v . These terms are sub-sets of the Disjoint Sum of Products (DSoP). A DSoP

term is unique for an individual path and will comprise either of the a-tests for all nodes

of the said path.

Let path p represent one of the DSoP terms. Let the number of nodes encountered

on the path p be m. One a-test is common to all nodes in p. Each node resides on two

paths, one controlled by xi and the other by x̄i. This means that for each node, another

DSoP term (the other a-test) is also available. So for path p, number of test vectors would

be 2m + m = 3m where 2m would be number of b-tests and m are the number of a-tests.

This is true for all the nodes in the circuit. Thus, a maximum of 3N test vectors need to

be applied to detect all MSAFs, N being the ROBDD node count.

Chapter summary

: In this chapter, full MSAF testability of each sub-circuit is proved using approaches of

pseudoexhaustive testing and MSAF testability of two-level AND-OR circuits. Addition-
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ally it is demonstrated that the combined test set of the sub-circuits detects all MSAFs of

the complete circuit. In the upcoming chapter, test generation algorithms for PDFs and

MSAFs are demonstrated and experimental results of some combinational and sequential

benchmark circuits are listed.





Chapter 6

Algorithms to Derive Test Vectors for
PDFs and MSAFs

This chapter discusses development of test generation algorithms for PDFs and MSAFs.

Test vector calculations are provided for some combinational and sequential benchmark

circuits.

From Chapter 4 we see that for detecting PDFs the test vector pair of a path corre-

sponds to the DSOP term it represents and the literal of the path origin takes complemen-

tary values in (v1, v2). Also from Chapter 5 we infer that the b-tests are one bit comple-

ment of a-tests. This similarity allows us to have a common approach to find initial v1

vectors/b-tests.

Each path form the root node to terminal node 1 constitutes one product term of the

Disjoint Sum of Products or DSOP expression of the ROBDD. Table 6.1 lists the DSOP

terms for ROBDD in Fig. 3.3 and corresponding circuit in Fig. 3.9. These terms can be

graphically represented by K-maps as shown in Fig. 6.1(a) and Fig. 6.1(b).

To obtain the v1 vectors/b-tests, we need to complement the bits in each DSOP terms

one by one. This can be done using matrices. For a circuit with n literals, we create a test

generator matrix G of size n × n as shown in Fig. 6.2. This in an identity matrix. The

rows have a complemented bit in incremental positions. D is a column matrix consisting

of one DSOP term. A bitwise EX-OR operation of G with D will give initial values of v1

vectors/b-tests corresponding to each literal as shown in Fig. 6.3.

6.1 Derivation of PDF tests

Each DSOP term represents a circuit path from terminal node to root node. If a circuit is

represented by d DSOPs then it will have d number of paths. Let the paths be represented

71
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Table 6.1: DSOP List

Number Product Term

1 x1 x̄2 x̄3

2 x1 x̄2x3 x̄4x5

3 x1 x̄2x3x4 x̄5

4 x1x2 x̄4x5

5 x1x2x4 x̄5

6 x̄1 x̄2 x̄4x5

7 x̄1 x̄2x4 x̄5

8 x̄1x2 x̄3 x̄4x5

9 x̄1x2 x̄3x4 x̄5

10 x̄1x2x3 x̄5

x̄4x̄5 x̄4x5 x4x5 x4x̄5

x̄2x̄3

x̄2x3

x2x3

x2x̄3

0 1 10

0 1 10

0 1 10

1 0 10

(a) K-map for x̄1

x̄4x̄5 x̄4x5 x4x5 x4x̄5

x̄2x̄3

x̄2x3

x2x3

x2x̄3

1 1 11

0 1 10

0 1 10

0 1 10

(b) K-map for x1

Figure 6.1: K-maps for function f

by P1 to Pd. Each path Pi = f (x1, ...xn) where x1, ...xn are input variables. Each path Pi

has sub-paths.

Pi2 = f (x1, x2) path begins at x2, ends at x1

Pi3 = f (x1, x2, x3) path begins at x3, ends at x1

...

Pin = f (x1, x2, · · · , xn) path begins at xn, ends at x1

For a rising transition, the vector v2 should force the output to 1. This can be achieved

by considering the DSOP term Pi as v2. The term Pi will act as v2 for all sub-paths Pi2 to

Pin . The v1 vector is supposed to drive the output to 0. This means v1 has to be orthogonal
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Let one DSoP term D be f {x1, x2, · · · , xn} = {10 · · · 111}

G(n × n) =



0000 · · · 0001

0000 · · · 0010
...

0001 · · · 0000

0010 · · · 0000

0100 · · · 0000

1000 · · · 0000


D =



1

0
...

1

1

1


G ⊕ D = v1 vectors / b-tests. (6.1)

Figure 6.2: Generating v1 vectors / b-tests set for one path

v1vectors/b-tests =



10 · · · 110

10 · · · 101

10 · · · 011
...

01 · · · 111



← v1vector / b-test(xn)

← v1vector / b-test(xn−1)

← v1vector / b-test(xn−2)
...

← v1vector / b-test(x1)

Figure 6.3: v1 vector / b-test set for one DSOP term

to all v2 vectors (DSOP terms). v1 vectors for sub-paths Pi2 to Pin can be derived by

complementing the value of the variable that originates the path. This is shown in Figures

6.2 and 6.3.

Example 6.1.1 Let us consider the 8th DSOP term from Table 6.1 i.e., x̄1x2 x̄3 x̄4x5. The

v1 tests are generated in Fig. 6.4. We see that some of the generated vectors are not

orthogonal to some v2 vectors, i.e., they will not be valid v1 tests and have to be discarded.

This DSOP term cannot originate v1 vector for x̄1x2. The term x̄1x2 exists in the 9th and

the 10th terms, valid v1-tests can be created from them.

This example indicates that some amount of redundancy exists in the approach of

generating v1 vectors. This also means that if a sub-path exists in more than one paths,

it can have more than one v1 test vectors. As the ranking of the variable that originates a

sub-path, goes higher, the probability of having one than one v1 vectors is higher. This is

due to ROBDD construction.
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G (nxn) =



00001

00010

00100

01000

10000


D =



0

1

0

0

1



b-tests =



01000

01011

01101

00001

11001



← v1vector / b-test(x5)

← v1vector / b-test(x4)

← v1vector / b-test(x3)

← another v2 vector / a-test(DSOP term 6)

← another v2 vector / a-test(DSOP term 4)

Figure 6.4: Test generation for Example 6.1.1

Let P represent the set of DSOP terms. The procedure to derive one set of v1 vectors

for one term Pi in the ROBDD based design is as follows:

1. For P derive V∗jk∀ j = 1, 2, · · · ,m and k = 1, · · · , r j, where m is the number of DSOP

terms and r j is the number of literals in each term. This is done by performing EX-

OR operation of Pi and n × n unity matrix, n is the number of input literals of the

circuit. (Note: The last vector corresponding to x1 needs to be ignored since Pi2 is

the last and smallest path).

2. For every V∗ab ⊇ V∗jt, replace V∗ab with V∗jt from the list. This will minimise the

number of don’t care terms.

3. In V∗jk, fill don’t care terms with all combinations resulting in V∗x .

4. For every V∗y ⊂ P, delete V∗y from V∗x . This eliminates any term in V∗x that matches

any of the DSOP terms.

5. For every term in V∗jk retain one term from V∗x such that V∗jk ⊃ V∗x . This will be the

list of fully specified valid v1 vectors for Pi.

Example 6.1.2 : Reconsider term 10 from DSOP list i.e., x̄1x2x3 x̄5 i.e.,011-0. The v1 tests

for this term are derived in Fig. 6.5. v2 can be 01100 or 01110. For product term 10 the
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test vector pairs for each sub-path are

(v1, v2) = (01101, 01100) for path P105

(v1, v2) = (01000, 01100) for path P103

(v1, v2) = (00100, 01100) for path P102

V jk =


011 − 1

010 − 0

001 − 0

 Vx =



01101

01111

01000

01010
00100

00110


Vx(updated) =


01101

01111

01000

00100


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

Figure 6.5: Example 6.1.2: v1 tests

If path begins at a node xi that has robust tests then the test vector pair (v1, v2) can be

derived as follows:

◦ Select the product term in the DSOP that includes path-to-be-tested.

The test vector v2 is the selected term itself.

◦◦ Test vector v1 is the selected product term with the variable xi complemented. This

would be the test pair for rising transition. For falling transition, values of v1 and v2

are interchanged.

If the path-to-be-tested begins at a node xi that has one non-robust test then:

◦ First derive the test vector pair using the method described above for the companion

path that can be robustly tested.

For the non-robust testable path, select the product term in DSOP that includes the

path. This is v2.

◦◦ Application of v2 will detect if a PDF exists on the path.

Although v1 can be found by complementing the value of xi in the product term, it

will a part of the DSOP and does not have contribution in testing the path. Since in this

case v1 does not exist, falling transition cannot be tested for.

If the nodes have to be classified as robust testable or non-robust testable, test gener-

ation complexity increases. To simplify the test generation process we consider the steps



76 Algorithms to Derive Test Vectors for PDFs and MSAFs

for test generation given for robust testable nodes for all types of nodes. This allows us

to use DSOP terms derived from ROBDD to generate the test patterns directly. Thus the

test patterns can be generated at design time.

The test generation complexity of the DSOP based method is O(m × n); m is the

number of DSOP terms, n is the number of inputs.

6.2 Derivation of MSAF tests

Valid b-tests need to be orthogonal to all a-tests i.e., all DSOP terms of the function under

consideration. The initial b-tests are derived as per matrix operations shown in Figures

6.2 and 6.3.

Total ab-tests = all a-tests i.e., all DSOP terms + all b-tests i.e., sum of b-tests

created by each DSOP term.

Example 6.2.1 Let us consider the 8th DSOP term from Table 6.1, i.e., x̄1x2 x̄3 x̄4x5. The

b-test generation is shown in Fig. 6.4. The last two entries in the b-test list correspond to

some other a-tests. This can be verified from the K-map of Fig. 6.1(a). This means that

this DSOP term cannot originate b-tests for x̄1x2. Since the term x̄1x2 exists in the 9th and

the 10th terms, valid b-tests can be created from them.

This example indicates that redundancy has to be checked everytime a set of b-tests are

generated.

A method to derive minimal b-tests for irredundant sum of products was presented

in Kohavi et. al.[29]. The b-tests derived for ROBDD based DSOP represented circuits

are not minimal since each variable represents a sub-circuit. Additional steps are required

in ROBDD based system to eliminate redundancy.

Let P represent the set of DSOP terms. The procedure to derive b-tests B for the

ROBDD based design is as follows:

1. For every term in P derive B∗jk∀ j = 1, 2, · · · ,m and k = 1, 2, · · · , r j, where m is the

number of DSOP terms and r j is the number of literals in each term. This is done

by performing EX-OR operation of each DSOP term and n × n unity matrix, n is

the number of input literals of the circuit.

2. For every B∗ab ⊇ B∗jt, remove B∗ab from the list. Every test for B∗jt is a test for B∗ab,

while the converse is not true. This gives the number of valid b-tests.

3. In the updated B∗jk, fill don’t care terms with all combinations resulting in B∗x.
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4. For every B∗y ⊂ P, delete B∗y from B∗x. This eliminates any term in B∗x that matches

any of the DSOP terms.

5. For every term in B∗jk retain one term from B∗x such that B∗jk ⊃ B∗x. This will be the

list of fully specified valid b-tests.

This can be done quite early in the design cycle since the DSOP terms are available

at design time. It should be noted that this test generation strategy holds true only for

ROBDD based designs.

Example 6.2.2 Consider term 10 from DSOP list i.e., x̄1x2x3 x̄5 i.e.,011-0. The b-tests for

this term are derived in Fig. 6.6. In Bx matrix, the terms highlighted in bold are ones that

match other DSOP terms and are eliminated. In Bx(updated) matrix, terms highlighted

in italics are tests corresponding to the same variable so either of them can be retained.

The DSOP term itself is the a-test = 01100 or 01110. The ab-test set for this DSOP term

is {01100, 01101, 01000, 00100, 11100}.

B jk =


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001 − 0

111 − 0


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Figure 6.6: Example 6.2.2: b-tests

The complete test set derived by combining all the partial test sets and eliminating

redundancies is capable of detecting all multiple stuck-at faults. Single stuck-at faults are

part of the MSAFs and are automatically covered.

6.3 Experimental Results

For ROBDD based implementation the synthesis tool is to be directed to avoid optimiza-

tion so as to maintain the structure. We have used ABC tool[38] to generate verilog

representation of BDD based circuits. Synopsys Design Compiler is used to estimate

area, power consumption and maximum path delays. The implementation is done using
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gscl45nm library. The Design Compiler is guided to perform unconstrained syhthesis for

original benchmark circuits. For the BDD based synthesis Design Compiler is forced to

use multiplexers, inverters and AND,OR gates.

Python programs are written to implement the PDF and MSAF test generation algo-

rithms. SSAF simulation of ROBDD designs is done using ABC.

For a few combinational benchmark circuits, data regarding test vectors and logic

gates count is given in Table 6.2. Column I indicates the benchmark circuit under con-

sideration, column II indicates the primary inputs(PIs) and outputs(POs) of the circuit.

ROBDD nodes and corresponding DSOP terms are listed in columns III and IV respec-

tively. Number of SSAF tests are listed in column V. These tests have been generated

for full SSAF testability using fault simulator of ABC. MSAF tests and PDF tests which

guarantee complete testability are listed in column VI and VII respectively. These test

vectors have been generated using the DSOP based algorithms.

Sequential circuits have pseudo-primary inputs(PPIs) and pseudo-primary out-

puts(PPOs) in addition to the primary inputs and outputs due to presence of flip flops.

ROBDD construction in sequential circuits includes the PPIs and PPOs in addition to the

primary inputs and outputs. Table 6.3 indicates test vectors for combinational section of

some sequential benchmark circuits. Column III in Table 6.3 lists all primary and pseu-

doprimary, inputs and outputs. Column IV and V list ROBDD nodes and corresponding

DSOP terms respectively. Columns VI, VII, and VIII list the SSAF,MSAF and PDF test

sets respectively.

It should be noted that the circuits have multiple outputs. All the outputs do not have

all the inputs in their fan-in cones. If all the inputs are considered for all outputs, the x-

filling process of step 3 in section 6.2 may increase exponentially, especially for sequential

circuits. Hence while deriving b-tests only one output and corresponding inputs are taken

into consideration at a time. The process is repeated for all outputs.

Since fault simulation is not available for MSAFs, test compaction is not possible.

As a result the test data volume of MSAFs is larger for most of the circuits as compared

to the SSAF test data volume. Nevertheless, if unoptimized synthesis for ROBDD based

designs is done, the tests generated at design time are valid MSAF tests for the synthesized

circuit.

While deriving the PDF tests, all sub-paths of one path(root node to leaf node) are

considered. Thus the PDF test volume is large. Since the PDF tests have to be applied in

a sequence, it is not possible to reduce the test data volume. If one decides to test only

longest paths, the test data volume may be clipped.
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Table 6.4 lists the area comparisons of the original benchmark circuit description

and BDD based synthesis using proposed method, for combinational benchmark circuits.

Columns II and III indicate area considerations before and after BDD based synthesis.

Column IV indicates the amount of increase/decrease in area. The amount of power

consumtion before and after BDD based synthesis is listed in columns V and VI. In-

crease/decrease in power is indicated in column VII. The maximum path delays are com-

pared in columns VIII and IX. Column X indicates the amount of increase/decrease in

path delays after BDD based synthesis. Similar comparisons for sequential benchmark

circuits are depicted in Table 6.5

It should be noted that the test methodology presented in this work is restricted to

circuits which can be represented by ROBDDs. In circuits, where the number of paths are

very large and generating ROBDDs is increasingly difficult, the test generation approach

of this work does not hold good.

Table 6.2: Combinational Circuit Test Generation

I II III IV V VI VII

Combinational PI/PO Robdd DSOP SSAF MSAF PDF

benchmarks nodes terms testsa testsb testsc

b1 3/ 4 6 6 4 10 6

C17 5/ 2 9 7 6 6 7

decod 5/ 16 80 16 17 48 64

rd53 5/ 3 21 35 12 34 42

xor5 5/ 1 5 16 10 32 16

cm138a 6/ 8 48 48 10 7 24

5xp1 7/ 10 83 74 21 81 154

con1 7/ 2 16 9 11 15 15

rd73 7/ 3 35 147 28 132 211

z4ml 7/ 4 28 59 15 55 112

f51m 8/ 8 58 78 40 94 163

misex1 8/ 7 61 33 18 28 73

mm4a 8/ 4 439 508 184 1203 2473

rd84 8/ 4 50 294 28 273 473

sqrt8 8/ 4 39 42 22 49 90

9sym 9/ 1 24 148 29 138 356

a Test vectors for full SSAF testability using commercial ATPG
b Test vectors for full MSAF testability in proposed synthesis using DSOP based

algorithm
c Test vectors for full PDF testability in proposed synthesis using DSOP based algo-

rithm
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Table 6.2: Combinational Circuit Test Generation

I II III IV V VI VII

Combinational PI/PO Robdd DSOP SSAF MSAF PDF

benchmarks nodes terms testsa testsb testsc

clip 9/ 5 141 150 66 191 409

ldd 9/ 19 142 61 27 38 133

alu2 10/ 6 177 156 131 322 558

x2 10/ 7 46 28 21 28 45

sao2 10/ 4 116 75 43 173 274

cm85a 11/ 3 50 48 19 118 160

cm151a 12/ 2 36 17 24 43 57

alu4 14/ 8 760 635 480 1425 2995

cu 14/ 11 78 22 32 64 92

misex3 14/ 14 871 1306 272 1972 6694

cm163a 16/ 5 35 27 21 29 50

cmb 16/ 4 48 26 18 30 34

pdc 16/ 40 4706 6062 230 2026 26198

pm1 16/ 13 62 37 17 45 52

t481 16/ 1 30 481 51 630 2587

table5 17/ 15 1819 551 308 1247 4289

tcon 17/ 16 24 24 17 21 16

vda 17/ 39 1161 573 125 322 2028

pcle 19/ 9 107 45 29 90 129

sct 19/ 15 124 73 35 92 125

cc 21/ 20 88 45 26 50 79

cm150a 21/ 1 32 17 24 52 65

duke2 22/ 29 642 201 143 357 1206

cordic 23/ 2 90 1180 57 6604 8217

ttt2 24/ 21 243 138 59 227 348

i1 25/ 13 59 27 26 44 61

vg2 25/ 8 269 110 155 293 511

lal 26/ 19 146 102 60 115 172

pcler8 27/ 17 153 61 51 100 181

a Test vectors for full SSAF testability using commercial ATPG
b Test vectors for full MSAF testability in proposed synthesis using DSOP based

algorithm
c Test vectors for full PDF testability in proposed synthesis using DSOP based algo-

rithm
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Table 6.2: Combinational Circuit Test Generation

I II III IV V VI VII

Combinational PI/PO Robdd DSOP SSAF MSAF PDF

benchmarks nodes terms testsa testsb testsc

c8 28/ 18 116 79 43 102 149

frg1 28/ 3 103 119 96 172 532

term1 34/ 10 227 255 122 780 1129

count 35/ 16 200 184 73 209 379

unreg 36/ 16 96 48 48 68 112

b9 41/ 21 220 138 84 176 295

seq 41/ 45 2536 1467 424 2472 9986

cht 47/ 36 181 81 71 110 164

x1 51/ 35 671 304 337 817 1098

e64 65/ 65 2144 65 97 2082 2080

example2 85/ 66 746 367 237 796 1281

x4 94/ 74 628 526 270 1008 1387

o64 130/ 1 130 65 69 81 98

x3 135/ 99 1070 657 393 1737 2377

i6 138/ 67 613 238 220 214 515

a Test vectors for full SSAF testability using commercial ATPG
b Test vectors for full MSAF testability in proposed synthesis using DSOP based

algorithm
c Test vectors for full PDF testability in proposed synthesis using DSOP based algo-

rithm
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Table 6.3: Sequential Circuit Test Generation-

Combinational logic

I II III IV V VI VII VIII

Sequential PI/PO PI+PPI/ Robdd DSOPs SSAF MSAF PDF

benchmarks PO+PPO nodes testsa testsb testsc

s298 3/6 17/20 114 70 48 48 140

s382 3/6 24/27 213 167 64 191 507

s400 3/6 24/27 213 167 67 191 507

s526 3/6 24/27 195 144 79 128 344

s27 4/1 7/4 22 18 11 9 18

s444 4/6 25/27 220 167 75 190 506

s386 7/7 13/13 198 51 51 114 242

s1488 8/19 92/79 632 339 155 217 1006

s1494 8/19 14/25 632 283 153 215 1006

s344 9/11 24/26 135 249 49 276 701

s208 11/2 19/10 76 30 53 68 117

s1196 15/14 33/32 1149 1136 378 1906 5576

s1238 15/14 33/32 1200 1136 382 1928 5576

s953 16/23 45/52 653 235 165 331 1174

s420.1 18/1 34/17 206 169 114 252 425

s820 18/19 23/24 377 127 107 195 519

s510 19/7 25/13 229 110 85 85 298

s1512 29/21 86/78 980 1948 446 17040 20953

s641 35/24 54/43 1157 925 421 1246 4107

s713 35/23 54/42 1130 912 387 1208 4074

s838 35/ 2 67/34 352 114 209 567 903

a Test vectors for full SSAF testability using commercial ATPG
b Test vectors for full MSAF testability in proposed synthesis using DSOP based algorithm
c Test vectors for full PDF testability in proposed synthesis using DSOP based algorithm
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Chapter Summary

DSOP based algorithms to derive PDF and MSAF test vectors are described in this chap-

ter. The derived test vectors are listed for some combinational benchmark circuits and

combinational logic of sequential benchmark circuits. Area, power and maximum path

delays of these circuits are compared for before and after BDD based synthesis. The next

section concludes the thesis and gives direction for future work.





Chapter 7

Conclusion and Future Scope

It has become necessary to bring delay testability and multiple stuck-at fault testability

to the forefront in VLSI testing as single stuck-at fault tests are not enough to cover all

defects. Single stuck-at fault tests cover hard short and open defects. The path delay fault

model covers these defects and additionally covers resistive opens, shorts, coupling faults

and aging. Multiple stuck-at fault model covers coupling and bridging faults.

Testing is the most expensive process in chip manufacturing. There is always a

need for test methodology that guarantees fault coverage and demonstrates ease of test

generation. There are two approaches to pursue such a test methodology. One can either

improve test generation algorithms or can develop synthesis approaches that guarantee

testability and have ease of test generation, or both.

In this thesis we have investigated testability issues in combinational logic circuits.

The main contributions of our work is to propose a ROBDD based testable synthesis.

The motivation of the work in this thesis is a combinational circuit synthesis which

demonstrates:

• No redundant paths, all irredundant paths should be testable for path delays using

either robust or validatable non-robust tests

• Entire circuit is testable for multiple stuck-at faults

• Ease of test generation for PDFs and MSAFs, no additional control signals required

7.1 Thesis summary

Binary Decision Diagram based implementations have higher degree of testability than

other circuits. Since the variable ordering is fixed for the Reduced Ordered Binary Deci-

sion Diagram(ROBDD), the representation of the Boolean function is canonical and the

91



92 Conclusion and Future Scope

product terms are irredundant. In this thesis, internal nodes are replaced by 2x1 multi-

plexers. Transformation is applied only to nodes that have one edge connected to leaf

nodes. The transformation maintains testability and aids in test generation without the

requirement of additional control signals.

Each path is now represented by a Disjoint Sum of Products term. Any term which

is orthogonal to the DSOP term will force the output to 0. Since the DSOP terms are

irredundant, no redundant paths exist in the circuit.

We establish complete delay testability of each path by proving the following:

• All single stuck-at faults of the path under test are detectable

• The stuck-at fault corresponding to the delay fault of the literal(where the path

begins) is detectable. The corresponding test vector constitutes v2 of the test pair

(v1, v2).

• The variable xi from where the path begins takes complementary values for v1, v2

vectors.

Due to structure of the ROBDD, paths encompassing certain nodes are not robustly

testable. In such cases we demonstrate how these paths can be tested non-robustly. Thus

we have established conditions for robust and non-robust testabilty. Additionally we

demonstrate that for our BDD based synthesis, the non-robust tests would not be invali-

dated if the robust testable paths are covered first. Validatable non-robust tests are as good

as robust tests. Thus our synthesis method guarantees complete path delay testability us-

ing robust and validatable non-robust tests. It is also possible to know the path lengths at

design time since the muxes in a path are directly proportional to the number of inputs

that constitute the path.

Good testability property of a synthesis method depends on the fault models it cov-

ers. Our testable synthesis covers the path delay fault model which inherently includes

the stuck-at fault model and transition fault model. We now investigate testablity of the

synthesis for the multiple stuck-at fault model.

Using the foundations of pseudoexhaustive testing, we investigate the MSAF testa-

bility of one 2x1 mux. Pseudoexhaustive testing involves partitioning a circuit into smaller

sections and testing those sections exhaustively. We apply this technique to exhaustively

test one sub-circuit(one 2x1 mux). Since the circuit is testable for path delay fauts, sen-

sitizing and propagation paths already exist. However, due to the contitions existing on

the nodes described earlier, it is not possible to deliver exhaustive input conditions to the

sub-circuit. So we augment this process with another approach.
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We apply the MSAF testability property of 2 level irredundant AND-OR implemen-

tations to our sub-circuit. We prove that the deliverable test vectors to each node detect all

MSAF combinations of the input nets. Since our implementation is irredundant, internal

MSAFs are covered too. Thus all MSAFs of the sub-circuit are covered. The classical

BDD manipulation method to derive test vectors for each node is found to be computa-

tionally expensive; The test generation complexity is O(|C|3), where C is the size of the

ROBDD. Our other contribution is that we propose an original method that uses Disjoint

Sum of Products(DSOPs) to generate the test vectors which has test generation complex-

ity of O(m × n); m is the number of DSOPs and n is the number of primary inputs. This

contribution also shows that the test generation method for MSAF can also be used to

derive tests for PDFs. The PDF test set is a superset of MSAF tests.

One of our major contributions is to systematically prove that, when MSAF tests

derived for all nodes are applied to the circuit, MSAF combinations of the entire circuit

are covered. Thus our synthesis is fully testable for MSAFs.

We have performed experiments on combinational circuits and combinational sec-

tions of sequential circuits. Synthesis tool is guided to perform unoptimized synthesis

with constraints to use only 2x1 muxes and 2 input AND/OR gates. It can be deduced

from the results that synthesis for complete testability may lead to increase in area, power

and delay. However, this is not the case for all circuits. If the logic is more decision based

then area, power and delay increase marginally. Single output circuits have larger ratio of

increased area as compared to multi-output circuits due to absence of shared ROBDDs.

The advantage of this synthesis is the direct use of multiplexer cells which are readily

available in submicron technologies which eventually aid in restricting the area. Another

conclusion that can be derived from the experiments is that unavailablity of MSAF sim-

ulators prohibits test compaction leading to a large MSAF test volume as compared to

SSAF test volume. The test generation methodology is scalable as long as BDDs are con-

structed. Tests can be generated for larger circuits if tools that can create BDDs for larger

circuits, are developed.

7.2 Future Scope

The synthesis method proposed by us is complete but it throws up scalability issues. The

method is for BDD based synthesis only. BDD tools have limitations regarding the size of

the circuits. As the circuit size increases, the BDD tool times out. Other point of argument

is the sacrifice of operating speed for testability. As ROBDD node depth increases, path

lengths increase, which is an undesired outcome. In order to overcome both these issues
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an approach that considers testable two level synthesis with BDD based synthesis can be

investigated. A synthesis method which combines Sum of Pseudo Products(SPPs) and

BDD implementation was proposed in [16]. The aim of the synthesis is to reduce the

node depth. The resultant circuit is fully testable for SAFM. The concept of partitioning

the design into 2-level implementation and BDD implementation can be induced from

this work.

One of the challenges with delay testability is the delivery of test vector pairs. Test

vectors are delivered to the logic via serial scan flops. To perform a PDF test, first, the

combinational circuit is initialized with vector v1 to generate an output vector o1. The

transition vector v2 is then applied to induce logic transition on the path to be tested.

Finally, the result output o2 from the combinational circuit is latched into flip-flops. The

time interval between the application of v2 and the capture of o2 must be kept exactly the

same as in a normal operation, the expected delay of the circuit. For delivery of such

(v1, v2) pairs, the scan flop hardware is modified to enhanced scan[11]. In the thesis we

have shown that the test vector pair (v1, v2) differ in one bit only. Once v1 is scanned

in, only one bit has to be flipped to get v2. This can be achieved using Random Access

Scan(RAS)[3]. Le et al.[32] have combined enhanced serial scan with RAS for reduction

in test application time. This method has a potential application in scheduling test delivery

for synthesis proposed in this thesis.
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