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Abstract

In the present era of pervasive computing, system-on-chips (SoCs) play a very important role.

Given the nature of the complexity of these designs, significant verification efforts are required

to ensure their correctness. It has been observed that design debugging has become one of the

most important steps in the development cycle of these SoCs. Simulation-based verification is

never sufficient for ensuring design correctness because of its incomplete nature. Formal tech-

niques like model checking promise to solve this issue through a complete state space traversal

approach. However, because of increasing design complexity, such methods suffer from scala-

bility issues. Guidance-based state space traversal techniques have been proposed in the past to

assist the model checkers in overcoming the complexity bottleneck. Automatically identifying

these guidance hints turns out to be relatively difficult and requires heuristic-based reasoning

procedures. Additionally, to come up with quick fixes during the debug stage, an effective

bug localization strategy is needed. In this thesis, we revisit the paradigm of guidance-based

model checking and propose a methodology to improve these guidance generation mechanisms

for achieving fine-grained bug localization. The proposed technique involves the mining of

invariant-like properties from simulation traces. The mined properties act as probable guidance

candidates for the model checking exercise. To identify useful guidance hints out of possi-

ble ones, we use Bayesian networks that explore conditional dependence between the various

hints at different levels and the target property. These guidance hints are utilized for obtaining

possible buggy regions, which are then analyzed via an iterative model checking methodology

for fine-grained bug localization. The proposed bug localization methodology involves coun-

terexample based reasoning for hypothesizing the bug in terms of related signals. We present

different case studies to illustrate the benefits of the proposed methodology. We also propose an

alternative methodology of bug localization through mining of assertions and assistance from

static analysis. In this methodology, we obtain multiple error traces based on high level func-

tional failure. Starting from an initial error trace, we employ model checking based reasoning



to generate more error traces. We utilize these error traces to extract common conditions which

are utilized for bug localization. We employ static analysis of the design to obtain fine-grained

error localization.

Efficient methods to do online testing of faults in the chips is as important as fixing bugs

in pre-silicon. With the technology scaling and the rise of complex designs, it is becoming

difficult to achieve required faults coverage in manufactured chips. That stresses the need for

online testing approaches which enables testing of the chips even after shipment. Online testing

can be done in two ways: using a Built-In-Self-Test hardware or using a set of instructions

run in functional mode. Since the first approach leads to area and power overhead due to the

additional hardware, the second approach is becoming more popular. But, generic instruction

based testing methods does not always give good fault coverage for the hidden portions like

Forwarding unit. Hence it becomes important to identify test generation methods which is best

for different parts of these units. In the last part of this thesis, we discuss an approach for

testing stuck-at faults in a processor using an auto-generated instruction template. This work

combines constrained random instruction template generation and an approach to convert test

vector to instruction sequences for generating a set of instruction sequences which will detect all

stuck-at faults in the selected module of the processor. The fault simulation using the instruction

sequence generated using the above process delivered a coverage of 97.33%. A detailed analysis

of the non-detected faults revealed the fact that they cannot be applied in functionally using the

existing instruction set of the processor used for test. It proves that the proposed method is able

to generate test for all stuck-at faults, which can be functionally tested, in the forwarding unit

of the MIPS 5-stage pipelined processor.

Keywords - Model Checking, Guided state space traversal, Guideposts, Bayesian mod-

elling, Property extraction.
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Chapter 1

Introduction

Modern electronic systems have created revolutionary transformation in the do-

main of information and communication technology. These systems essentially

contain a large number of components known as System-on-Chips(SoCs). Per-

sistent increase in the number of Intellectual properties (IPs) cores such as em-

bedded processors has led to the enormous complexity of SoCs. This is largely

attributed to the growing integration of functionality on a single chip due to

the demand of miniature size, low cost and power efficient devices. The usage

of these devices in safety critical applications such as those related to space,

aircrafts, biomedical and automotive applications raises serious reliability con-

cerns. Due to the tremendous complexity of these designs, traditional verifica-

tion and testing methodologies employed to ensure customer satisfaction fail to

guarantee product quality compliant with various standards. Given the increas-

ing size of modern designs and the embedding of rich functionalities, complete

verification requires huge efforts and elongated implementation schedules. In

a competitive market space, meeting time-to-market (TTM) deadlines becomes

highly challenging.

Figure 1.1 shows the amount of time spent by design houses in verification
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Figure 1.1: Time spent in verification

activities. It can be inferred that a larger chunk (more than 50 %) of design de-

velopment time is related to verification planning and efforts. Therefore, speed-

ing up the verification process becomes an interesting problem to investigate.

It is worth to note that analyzing verification results becomes the second most

important step. Even after the accelerated verification efforts, bugs stand prob-

able to escape to silicon. Figure 1.2 shows the different causes behind such bug

escapes. It can be observed that design errors are the largest contributor to bug

escapes.

Figure 1.2: Reasons behind bug escapes
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Therefore, it can be clearly understood that enhanced verification need to

be researched upon with a focus on automatic bug localization. One of the most

important aspects of the the bug localization problem is to analyze high-level

failures from a low-level design perspective. Expert knowledge of the design

internals is one option to obtain fine-grained bug identification. However, this

manual intervention adds up to the elongation of the bug localization process.

With the help of automated localization of bugs, the amount of time spent in

verification process can be significantly brought down.

Bentley [6] described following major reasons of different bug types ob-

served during pre/post-silicon validation:

• Inconsistent Specifications: these types of bugs fall into several categories:

SoC architects not communicating their expectations clearly to the design-

ers, misunderstandings between the specifications and design as well as

between different parts of design (e.g. incorrect assumptions about what

another unit was doing).

• Logic Changes: these kind of bugs are caused when the design gets changed,

usually to fix bugs or timing problems, and the designer did not take into

account all the places that would be impacted by the change.

• Random Initialization: these types of bugs may be caused by state not

being properly cleared or initialized at reset. These are related to corner

cases mostly or clock/power gating issues.

• Improper Documentation: something (algorithm, micro-instruction, pro-

tocol) may not be documented properly leading to disconnect between the

final specification and implementation.
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• Late Feature Definition: these kind of bugs are related to features that are

defined very late into the project. Given the complexity of the designs,

integration of new features lead to introduction of unintentional bugs.

Apart from the above scenarios, there are cases when the designer is not fully

confident of the developed design and relies on the verification step to uncover

bugs. Therefore, the verification step becomes very essential for the overall

success of the design implementation methodology. This thesis address the

verification (and subsequent bug localization) problem from a bug agnostic view

point.

1.1 Need for Enhanced Functional Verification

Due to state space explosion, complete formal verification of large designs is

a prohibitive exercise [7]. Different techniques such as abstraction, design

(RTL) slicing assist to solve this problem to some extent. The primary prob-

lem with the generalization of such techniques is their suitability to certain kind

of designs only. For example, bit slicing is very successful usually in datapath-

intensive kind of designs. Semi-formal methods utilize a mixture of formal and

simulation methods to discover design bugs [7, 8]. Furthermore, because of in-

creasing third party intellectual property (IP) integration in the modern designs,

achieving complete functional verification by formal methods also remains a

daunting goal to date. With advancements in model checkers and other formal

techniques, large designs can be verified in a partial or semi-formal manner.

However, it is well known that exhaustive exploration of design state space is

still prohibitive. For formal verification of designs, guided state space traver-

sal [9, 10] methodologies have often been utilized to varying degree of success.
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In this thesis, we revisit the concept of guided state space exploration which

holds the promise of complete formal verification. Similar to the concept of

partitioned model checking, guided traversal is a viable alternative for solving

the scalability problems in model checking. Since it is not trivial to devise

guidance strategies in an automatic manner, identification of the guidance hints

becomes very crucial for a directed traversal of the state space. This directed

traversal can ultimately reduce the time spent in formal verification and also as-

sist in better design debugging. We propose a methodology for identification of

such guideposts and utilize them for debugging purpose. Our goal is to achieve

faster counterexample generation by the usage of guideposts. Experiments on a

complex design show that guidance hints identified with the proposed method-

ology provide significant gains during model checking for different error traces.

1.2 Bug Localization and Coverage Estimation during Func-

tional Verification

The usage of random testbenches or constrained-random testbenches enhances

the quality of the verification process. With the help of proper constraints (based

on design and specifications), comparatively more bugs can be uncovered lead-

ing to observation of higher number of failures in the verification runs [11].

One of the most important steps after observing a functional failure is to find

the root cause behind it. With help of this root cause analysis (RCA), the corre-

sponding fix can be derived. Generally, by observing high-level failures during

pre-silicon verification simulations can hint towards a major block (or region)

in the design. However, such bigger design portions fail to assist in localiz-

ing at a fine-grained level. Therefore, achieving bug localization at low -level
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design description (i.e., at RTL) proves very useful. Additionally, lack of au-

tomation during the bug localization process becomes an obstacle in obtaining

the required design correction.

Figure 1.3 shows a design bug in tlu_tcl module of OPENSPARC proces-

sor. The lines numbered as 1106 and 1107 are the actual RTL code whereas

Figure 1.3: Design bug illustration at RTL [1]

line 1105 (shown in red color) denote the buggy RTL code. It is obvious that

a high-level failure can not directly point towards the exact line (of the design

description) relating to the bug.

There are many different types of coverage used in the verification pro-

cedure. For example, the dominant verification coverage metric in industrial

practice is functional coverage, where the designers and verification engineers

devise a set of functional coverage points that the validation is supposed to hit.

There are even academic proposals for coverage metrics specifically designed

for the lack of observability in post-silicon validation. Code coverage is a use-

ful metric for finding out the bugs which are there in our RTL design. Code

coverage includes two parts:

• Statement Coverage: The fraction of the RTL statements exercised by the

testbenches.

• Branch Coverage: The fraction of all RTL branch directions exercised by

the testbenches.
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Similarly, FSM coverage measures how many finite state machine (FSM) states

have been visited and how many transitions occur during execution of test-

benches. It is worth to note that the above coverage metrics have some potential

in assisting towards bug localization. However, these metrics are not explicitly

related to bug localization efficacy and a linear correlation between them is not

expected. This motivates us to come up with dedicated methods for effective

bug localization. Therefore, in this thesis, we have tried to utilize these coverage

metrics for assisting in the goal of automatic bug localization.

1.3 Functional Test Generation

Test solutions based on Design-for-Testability (DfT) methodologies, such as

scan or built-in self-test (BIST), fail to meet the requirements in various sce-

narios, such as generating test for deeply embedded SoC components. Further,

small delay effects and new type of defects such as those related to device aging

or wear-out as well as process variability are aggravating the situation when we

move down to lower technology nodes. Generating tests to account for these

effects needs looking into new directions and techniques. Software-Based Self

Test (SBST) helps to test inner and less accessible SoC modules through in-field

testing. It does not need any extra hardware and allows at-speed testing thereby

enabling screening of delay defects. However, the challenge here is to address

issues such as the storage of self-test programs, triggering the processor for its

execution along with retrieval and checking of obtained results. Another major

issue is to achieve a high value of effectiveness of such test programs. In many

cases, DfT structures are deliberately made inaccessible thereby terminating the

possibility of their re-use for in-field testing. Under such scenarios, functional
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tests are the only feasible solution. Application of functional tests can help

overcome the limitations imposed by structural fault models and thus it has the

potential to cater to unmodeled defects as well. The complete process of test

application needs to be automated which can lead to reduction in overall test

effort and time when compared to manual generation of functional tests. This

leads to a growing demand of generation of tests which can guarantee detection

of all kind of defects which are appearing more frequently in modern designs

as the technology scaling continues. Development of efficient on-chip testing

mechanisms can help ensure checking the critical features of operation of the

SoC each time before its use.

1.4 Thesis Organization & Contribution

The organization of this thesis (outlined in Fig. 1.4) is as follows.

Model checking

D

Assertion mining

Assertion to RTL

Property (P)

Derived property set

Orion

Guidance hint miner

Guidance hint filter

Bug localizer

RTL lines
Potentially buggy

Aquila

Design (D) Buggy sim. trace

Fault simulation

Stuck-at
fault coverage

ATPG

Test program

Design (D) Module

Filter and rank

Constr rand instr

Figure 1.4: Thesis overview

• Chapter 1 provides an introduction to the thesis.
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• Chapter 2 discuss the prior art. The limitations of the previous work are

also briefly discussed in relevant sections of this chapter.

• Chapter 3 elaborates on guidance hint generation based on static approaches

and their application in model checking.

• Chapter 4 discusses three broader sections of the thesis overview diagram

shown in Figure 1.4. It presents the bug localization approach using guid-

ance hints.

• Chapter 5 discusses bug localization using semi-formal approaches that

utilize assertion mining. It also elaborates on a genetic algorithm-based

framework for intelligent testbench generation.

• In Chapter 6, instruction-based self test approaches targeting structural

faults is discussed.

Finally, the thesis is concluded in Chapter 7 with a listing of contributions and

future scope arising out of the work done in this thesis.
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Chapter 2

Literature Survey

Functional verification is a step of utmost importance in modern design devel-

opment cycle [12]. Given that exhaustive design simulation is rarely possible,

formal methods hold promise in discovering bugs at an early stage. With the

help of techniques like model checking, a mathematical reasoning of the de-

sign correctness can be performed and abnormal behavior can be classified as

belonging to buggy regions in the RTL. However, whenever a model checker

provides a complex and tedious counterexample, the subsequent design debug

process becomes elongated. This results in delay of the bug-fixing step which

in turn delays the overall design development cycle. If the verification engineer

succeeds in localizing the bug behavior to any specific region (say, in range of

certain lines of the RTL code) of the design, the design team can quickly revise

the design and the subsequent steps can begin without any hindrance.

Typically, for large designs, formal methods hit the scalability limits thereby

requiring assistance of heuristics like bit-width slicing [13–15]. These heuristics

can reduce the computational efforts required for state space traversal [10, 13,

14]. In a similar vein, with a mix of simulation and formal methods, design bug

detection becomes relatively easier and has been reported to be successful [7,8].
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However, for guaranteeing completed design correctness, formal methods are

the only techniques available to verification engineers. To tame the scalabil-

ity issues in model checking, guided state space traversal [9, 10, 16, 17] offers

some assistance. This guidance (which is in the form of internal signal values)

helps in partitioning the model checking problem. We utilize this partitioned

model checking technique for fine-grained design bug localization. Abstraction

is also one of the methods to handle the scalability issues of formal methods

in general (and model checking in particular). The obtained counterexamples

have often been utilized to refine the design abstraction or find other complex

bugs [18–20].

2.1 Guided state space traversal in functional verification

Guided state-space traversal was first proposed in [10] and then refined in [9].

Since model checking turns out to be very useful in the process of bug find-

ing, guidance-assistance helps in quicker bug detection too. A case study on

designer provided guidance has been elaborately presented in [21]. However,

the automatic generation of effective guidance hints has been an open research

problem [22]. A semi-automatic methodology for gathering useful guidance

hints through structural dependency graphs was proposed in [16]. Apart from

this, guidance-assisted formal methods have also been explored in the area of

semi-formal bug detection techniques [7]. Along the lines of [16], the proposed

methodology strives to cut down the manual effort by taking the assistance of

Bayesian modeling. An alternative approach of Bayesian modeling could be to

add more nodes (corresponding to designer provided guidance hints) to the net-

work, along with the nodes obtained from the mining process. Through a few
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heuristics, techniques have been described in [23] to decompose large proper-

ties into smaller ones. This work is related to the part where we decompose

properties to get nodes for the Bayesian network. Counterexample guided ab-

straction refinement is discussed in [19] and [20] for model checking the prop-

erties during design verification. In the proposed methodology, we do not uti-

lize abstractions for refining and getting better counterexamples subsequently,

since obtaining abstractions turn out to be an equally challenging problem. The

prior work most closely resembling our approach (specifically the Aquila, i.e.,

bug localization part presented in Chapter 4) is that of [24]. In this work, the

authors have attempted localization of bugs in the SVA (SystemVerilog Asser-

tion) representations assuming that the design is correct. However, we assume

that the properties are correct, while the design is buggy. The approach in [24]

is SAT-based and aims to bring out the inconsistency between a property and

the correctness of the design. While a direct comparison of [24] and the pro-

posed technique is not trivial, we believe that finding the bug in the design is

a more difficult problem since the probable inconsistency (which is the reason

for the bug) is not very evident from a high-level simulation error trace. A

SAT-based methodology for localizing mismatch between gate-level netlist and

design specifications has been proposed in [25] utilizing time-frame expansion

and the knowledge of design hierarchy. However, the scalability of this diag-

nostic technique is limited by the time spent in SAT solving and multiple diag-

nostic runs with obtained counterexamples. Verification of circuits by modeling

them into trace structures is discussed by the authors in [26] for asynchronous

designs.

Hanna et al. [27] proposed ways to identify intermediate states for reaching

the target state from an initial state with less memory requirements and time
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required for the state space traversal. The intermediate states act as starting

states for the model checkers to traverse to the immediate next intermediate

state. Multiple such intermediate states are tried out in parallel to reduce the

possibility of bypassing any essential intermediate state. While the concept of

the intermediate states (or referred to as guide posts in our work) is similar to

this idea, the generation of the same is different in our work. Zamfir et al. [28]

provided methods to generate programs which cause bugs to manifest itself. It

uses statistically found intermediate goals to reach the failure point of program

execution. These intermediate goals help in dividing the search space required

to reach a target into several smaller search spaces. The intermediate goals dis-

cussed in this work is a software equivalent of the guidance hints discussed in

our methodologies. Chopra et al. [29] proposed a method and system to par-

tition integrated circuits for the purpose of verification. The authors discuss

methods to get partitions so that they are contiguous in the design. These parti-

tions are either verified using model checking or through simulation. Our work

proposes a method for debug using guidance hints. The use of guidance hints

in model checking produces speed ups similar to the scenarios where one uses

partitioned model checking. The difference is that we use a different approach

to achieve that speed up. Du et al. [30] discussed a method for the property

verification of different partitions in a circuit. The coverage outcome is selected

from a set of possible outcomes for each partition. The coverage of each el-

ement in the design is calculated using that outcome. Cutler [31] introduced

new methods for software debug that reproduces the program execution flow

which led to the error. This is done by storing the function call information in

the program. This execution flow which is reproduced can be used to localize

the cause of error in the software program. Altekar [32] proposed a cost effec-
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tive reproduction of the program execution flow in the microprocessor and the

related software. The objective is to use that flow for reproducing the errors in

the device functions such as a software bug. The key differentiator here is that

it does low-overhead recording of the program execution with high precision

replay. This replay mechanism is applicable for microprocessors and network

software. Our techniques produces a more efficient debug/error localization (in

hardware designs) mechanism compared to the full reproduction of the program

execution flow (hardware simulation is the equivalent term in this work). Lam et

al. [33] simulates the Verilog design with a testbench with bug detection setup in

it. It consists of a rapid bug detection tool (an assertion which catches the bug in

a cycle) and a bug isolation tool (mechanism to store desired values in memory

for further analysis). It uses checkpoints to rollback simulations when a bug is

detected. It helps in bug isolation. The authors propose one of the methods for

hardware debug. In our work, we have proposed a faster way for bug localiza-

tion using guidance hints. Chang et al. [34] checked for the errors in the outputs

corresponding to a given test vector in the RTL. This is done by comparing the

output with the expected value of the output. When an error is detected, the tool

returns a signal path which might have led to the error. It also gives suggestions

for fixing the error. Similar to our techniques, this work is also operating in the

RTL-level, instead of the gate-level. This proposal requires the debug engineer

to change the RTL design to an enriched RTL form which contains necessary

conditional assignments which helps in identifying problematic signals in the

RTL. With different design practices in writing RTL, it is difficult to generalize

this method. In our experiments, the RTL in the Verilog format can be used

as it is. The authors in [35] obtain the counter example from another source

and annotate different types of values of the signals based on its relationship
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with the failing property. Rahman [36] correlates the (simulation) databases of

different tools corresponding to certain signals. It enables faster fault isolation

in circuits. Safarpour et al. [37] proposed four methods for debugging hard-

ware designs. The first one is time abstraction, second using design abstraction

and refinement, third using QBF formulations and the forth one using max-SAT

debugging formulation. This is discussed as a prior art since the end goal of

our methodologies is also to do debugging and error localization. The authors

in [38] discusses RTL static analysis using the grammar for the Hardware De-

scription Language (HDL). Static analysis similar to this is used for generating

the SDG in our methodologies. Martensson [39] proposed a way to visualize the

signals in the counterexample of a failed property. It helps the user in easier de-

bugging. In our methodologies, we utilize the selection of signals generated by

the Jaspergold tool which generates counterexample using a similar concept as

discussed in [39]. Singhal et al. [40] discussed a mechanism to highlight signal

waveforms in the simulator. The source code corresponding to this highlighted

region can be accessed using the automation proposed by the authors. This

approach can be used for reaching the signal in the hardware which is buggy.

Vasudevan et al. [41] proposed a decision tree logic-based data miner for min-

ing assertions from the RTL simulation traces. It is similar to the miner in our

work. Continuing along similar lines, the authors in [42] proposes a mechanism

to evaluate the importance score of hardware assertions. It is done by combining

the individual importance score of the variables present in the assertions using

certain metrics-based approaches. A method to automatically generate guid-

ance hints after analysis of signal dependencies of the design through Control

Data Flow Graph (CDFG) construction has been proposed in [16]. However,

this method fails to filter the generated guidance hints resulting in a set of inter-
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mediate signals (and their values) which require multiple iterations to achieve

success during model checking. It may also happen that the design engineer

has provided a set of guidance hints to the verification engineer [21] for guided

formal verification. However, since the designer knowledge is limited only to

specifications or a high-level overview of the design, these sets of guidance hints

have higher chances to be spurious.

2.2 Semi-formal methods of bug localization

Logic simulation remains the highly popular technique to identify design bugs,

due to its scalability. However, simulation-based techniques suffer from insuffi-

cient coverage, hence most often fail to identify all the design bugs. Formal ver-

ification (FV) is an alternative technique to overcome the coverage limitations

of simulation-based techniques, due to its exhaustiveness. Therefore, FV meth-

ods can enable verification engineers to identify intricate design flaws too com-

plex to find using simulation-based methodologies. However, FV techniques

have scalability drawbacks that restrict the size of design components that can

be formally verified. Note that one of the key strengths of FV techniques is

their use of symbolic reasoning, to efficiently explore a huge number of indi-

vidual scenarios that would have not been covered using simulation [7, 43]. As

mentioned before, localizing functional bugs becomes a daunting task in the

design development cycle [44]. Typically, industrial practices involve usage

of waveform-based debugging tools like Synopsys Verdi [45]. However, this

requires lot of manual intervention thereby leading to elongation of the over-

all development process. This is primarily because unless the complete debug

is over, the respective fix/correction can not be embedded into the design. In
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those scenarios, automatic bug localization becomes very important. A few ap-

proaches in the literature have proposed methods of automatic bug localization.

Pal et al. [46] analyzed simulation traces for the purpose of identifying bugs in

the design description based on the commonality of symptoms between them.

However, simulation-based methodologies typically suffer from dependence on

the employed testbenches. In this regard, exploration of semi-formal methods

is an alternative for bug localization during functional verification [7]. During

formal verification, if the property (that we are checking for a given design)

fails, we obtain a counterexample. As counterexamples can turn out to be te-

dious for the subsequent analysis, we need a methodology for the automatic

analysis of these counterexamples. Note that this problem has been acknowl-

edged in the area of software bug localization [47]. Apart from the application

of semi-formal techniques in automatic bug localization, semi-formal methods

have found wider acceptability in speeding up the simulation tasks [48]. Shyam

et al. [49] proposed distance metric-based hybrid verification methodology tar-

geting improvement in testbench quality. Chang et al. [50] proposed methods to

minimize longer error traces into smaller ones through redundancy removal and

a mix of other hybrid methods. SAT-based error trace minimization has been

proposed in various approaches [51–53].

2.3 Instruction-based test generation

One of the very first attempts for automatic test instruction generation was by

Thatte et al. [54]. They used a graph theoretical approach for modelling any

processor by a System graph (S-graph) at the RTL level. Another technique

proposed by Parvathala et al. [55] focussed on the testing-based on random
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instruction generation. The motive behind this work was to do automated test

instruction generation to reduce the test cost. A DFT feature enabled a low

cost tester to load the test patterns using less number of pins, into the on-chip

memory.

A series of different graph modelling approaches have also become popu-

lar in the test generation of processors. Some of the works in this track include

those by Singh et al. [56] and Shaneen et al. [57]. Generation of pseudorandom

test patterns was proposed by Chen et al. [58]. C.H. Chen et al. [59] generated

constrained test patterns using ATPG tools with the information gathered from

the architectural model, RTL description and the gate level netlist. Template-

based test generation was another approach followed by Chen et al. [60]. An-

other method proposed by Guramurthy et al. [61] did the mapping of module

level test vectors into test instructions. Here a bounded model checker was used

for generating test instructions corresponding to the test vectors. Additionally,

researchers have identified that there is no one-stop solution for testing the full

processor. Hence the works like Hybrid-SBST [62] has emerged. Contribu-

tions from Kranitis et al. [62] combines the strengths of deterministic structural

SBST methods (using constrained APTG for e.g.) with Random Test Program

Generation. Work done by Chen et al. [58] discusses the concept of three types

of programs required for testing the faults: Test generation program to gen-

erate test patterns from self-test signatures, test application program and test

response analysis program. These programs along with the signatures can be

loaded into the cache using a low-cost tester. Some of the other works focus on

modelling the processor fully or in parts in graphs and decision diagrams. One

such method propsoed by Shaheen et al. [57] uses SAT solvers on the ADD

(Assignment Decision Diagram) for test generation. Another method proposed
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by Singh et al. [56] introduced the concept of IE (Instruction Execution) graphs

for processor modelling and test. But these methods are yet to be automated and

in some cases really difficult. Some other techniques suggests the test genera-

tion of independent modules inside the processor using powerful commercial

tools and map them to test instructions. One such method was proposed by S.

Guramurthy et al. [61]. The work done by Bernardi et al. [63] makes use of the

theorem propsed by Makar et al., [64] which says that you require only 2n test

vectors to test a generic n-to-1 mux. This concept eliminates the requirement

of introducing all possible data in the instruction sequence At the same time

this concept is applicable only to muxes and cannot be applied to other blocks.

Hence this method will be too specific to the case where only muxes are present

at the input of the module under test. To make the process more generalized and

applicable to other parts of the processors also, we chose to use constrained test

generation method for the remaining faults. Instead of using constrained ATPG

we designed a generic wrapper in Verilog which can be synthesized upon speci-

fying the constraints. The method of using wrapper modules is discussed in the

work done by Tupuri et al. [65]. When these test vectors are applied at the input

of the wrapper, output of the wrapper (which is the input of the forwarding unit)

is assured to be a functional test vector.
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Chapter 3

Guidance Hints for Design Verification

3.1 Introduction

Functional verification is one of the most challenging tasks in the modern de-

sign development cycle. While considerable progress has been made in the

area of model checking to handle the state space explosion problem, developing

automatic methodologies for achieving complete design verification still needs

great attention [9, 49]. By utilizing simulation, formal techniques like model

checking can be guided and made more usable for successfully verifying larger

designs. However, discovering such guidance strategies in an effective manner

is not a trivial exercise [7,21]. Therefore, two important problems emerge out of

this methodology for design verification by formal methods. First, generation

of some guidance for assisting the model checking process. Second, develop-

ing techniques for further pruning out the state space with the help of obtained

traversal (reachability) guidance. The second step is required because the guid-

ance generation step is never a complete one and leads to a large number of pos-

sibilities remaining in the state space which serve as a hindrance in achieving

higher speed-ups during model checking. This chapter proposes a Signal De-

pendency Graph (SDG)-based methodology for solving the second challenge.
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With the help of Signal Dependency Graph built from the RTL (Register Trans-

fer Level) design, the guidance (i.e., the list of internal signals and their values

which act as guidance hints) help us to perform a partially directed analysis of

the design state space. This directed state space search leads to significant gains

in CPU time during model checking for properties. As a result, we succeed in

generating counterexamples in lesser time.

The remainder of the chapter is organized as follows. The preliminary con-

cepts on waypoints are covered in Section-3.2 and the proposed methodology is

elaborately explained in Section-3.3 with a detailed discussion on a case study.

Experimental results and observations are presented in Section-3.6. The related

work is briefly mentioned in Section-3.7. Finally, the chapter is concluded in

Section-3.8 with a discussion regarding the limitations of the proposed way-

point identification methodology and its possible extensions.

Green highlighted regions: States
covered when hints are used.

GP1

GP2: Guidepost 2 (from H2)
GP1: Guidepost 1 (from H1)
I: Initial state

T : Target states
GP2

I
T

Figure 3.1: Guidance-based state space traversal (For illustration purposes only).

3.2 Illustration of guidance-based state-space traversal

We refer to the guidance hints as “waypoints” hereafter in this chapter. For the

sake of brevity, we put forward the following definition:

Let S be the set of reachable states in design. A waypoint WPk is a set of fully
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or partially specified signals (s1, s2, ..., sn) that correspond to a set of states SK

= {S1, S2, ..., Sn} ε S.

SK is also referred to as guidepost (GP) in this thesis. Let us consider the

diagram given in Figure 3.1 which illustrates guidance-based state space traver-

sal. The set of states in the blue boxes (except for the leftmost and rightmost

ones which are the initial and target states) are examples of guideposts (SK) for

reaching the target states T which satisfy the property φ. Along with identifying

the waypoints, it is also important to select one state from the set of states rep-

resented by the guideposts (SK) for the traversal to the subsequent guideposts.

This concept is explained next with an example.

3.2.1 Concept of waypoints

We have designed a system of two counters for explaining the identification of

the starting state for the traversal to the next waypoint. The first counter counts

in steps of 15 and the second one in steps of 5. The maximum counts allowed

for counters 1 and 2 are 150 and 90 respectively. We have another feature in the

design according to which the output of the counter 2 will not go beyond 80 if

counter 1 is full. The target state (φ) is any state which satisfies the following

property.

EF (count2(c2) == 90)

The fully specified hints (i.e., signal with their values) selected for debug-

ging are as follows:

• Initial state (I): count2 = 0

• Waypoint 1 (WP1): count2 = 45
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• Waypoint 2 (WP2): count2 = 60

As per our assumption, all the states with count2 = 45 will be included in

GP1. Let’s say there are two states S1 and S2 in GP1 (there can be many more

states in reality). Note that we did not use any particular criteria in selecting the

starting state while traversing to GP2 and selected S1 arbitrarily. As shown in

the Figure 3.2, f1 (status full signal of counter 1) will become 1 just after GP1

and hence c2 will be stuck at the value 80 (because of the particular nature of

the design due to which c2 will not count above 80 if f1=1). Hence, we would

never reach any of the target states T (state where c2=90) if such a state space

traversal strategy is applied.

This problem could be addressed by selecting the right set of signals which can

help us identify the starting state from waypoint for further traversals, using

Signal Dependency Graphs (SDG) (discussed in Section. 3.3.1). It is clear from

the SDG generated for the signal count2 (Figure 3.4) that the signal count2

depends on full_1 (i.e., f1) which in turn depends on en1. In short, we should

have considered the value of the signal en1 also while picking the states from S1

and S2. This example is just for illustration purposes. However in practice, we

should consider all the dependent signals and it’s values for better SDG pruning.

3.2.2 Utility of waypoints

An example design with four parallel counters

To further elucidate the advantages in using waypoints, we have designed a

system with multi 13-bit counters which has the same clock. The four counters

numbered as 1, 2, 3 and 4 count in steps of 1, 2, 3 and 4 respectively. The target

property (φ) is,
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Figure 3.2: FSM showing Waypoints for the design counters

EF (outputany counter >= 8188)

We performed model checking for the above design for the property specified

above. In the first iteration, we did not apply any waypoint. We have per-

formed model checking using the open source model checker, Yosys [66]. As

mentioned in the Table 3.1, the BMC (Bounded Model Checker) tool took 224

seconds to check the property. We experimented with different number of way-

points. Initially, we have selected one waypoint (outputany counter= 8188/2),

which reduced the time to check the property by almost half (115 s). More

experiments were carried out with two, three and four number of waypoints.

Waypoints for these cases were the nearest integer multiples of 8188/3, 8188/4

and 8188/5 respectively. The reduction in time can be explained from the fact

that at each stage of model checking, the state space is getting reduced succes-

sively.
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Table 3.1: BMC time for different number of waypoints (Counters)

Waypoints 0 1 2 3 4 BMC time (s)

0 224 224

1 58 57 115

2 26 27 27 80

3 16 16 15 15 62

4 10 10 11 10 10 51

3.3 Proposed methodology

The proposed methodology of waypoint identification involves a SDG-based

filtering of the internal signals of the design. The primary motive behind this

filtering is to obtain a list of signals (used to form waypoints) which would guide

the model checking process for counterexample generation in lesser time. Given

an error trace, we formulate the property which is to be formally checked. From

this property, we obtain the Signal Dependency Graph for the target variables

which are further analyzed to select the waypoints. Figure 3.3 shows a high level

overview of the proposed methodology which is illustrated in Section 3.5.2.

Waypoint candidates

Analyze the
error trace

Error Trace

Hints for
SDG reduction

Find target signalsFormulate the Property

Construct SDG

Design

Reduced SDG

Signals deciding WP Extract values of the signals Waypoints

1 2 3

45

6 7

Figure 3.3: proposed methodology of waypoint identification
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full_1

count2 count1

en2 clk en1

Figure 3.4: Signal Dependency Graph for the signal “count2” (count value of the counter 2) of

the design discussed in Section 3.2.1

3.3.1 Signal Dependency Graph (SDG)

SDG is defined as a directed graph (G) with signals (in the RTL description) as

Vertices (V) and the dependence between nodes as directed edges (E). If there

is a directed edge vi → vj, it means that the signal vj depends on the signal vi,

where vi, vjεV and (vi, vj) ε E.

To generate the SDG, we first generate the CDFG (Control Data Flow Graph)

of all the modules in the design. After that the intra-module dependency is

derived by parsing the CDFGs and the inter-module dependencies are extracted

by parsing the RTL description. We derive the final SDG by combining both.

3.3.2 Proposed Methodology for Identifying Waypoints

The concept of waypoint is represented in Figure 3.1 in accordance with the

terminology adopted in [21]. As it is clear from this diagram, the goal is to

identify waypoints (the blue boxes in the Figure 3.1, except for the leftmost and

rightmost one which are the initial and target states) which assist in reaching

from the reset state (or, otherwise a predefined state) to the target state which

satisfies the property.

The proposed methodology takes as input an error trace (ETr) and the

RTL design to find the waypoints. These waypoints assist us in finding a coun-

terexample within lesser CPU time as compared to conventional model check-

26



ing. After construction of SDG for target variables involved in the property, we

need to reduce these graphs to prune out the unnecessary regions (paths) in the

graphs. From the reduced Signal Dependency Graphs, we identify waypoints

based on a heuristic which is basically a path clustering procedure. Similarly,

other heuristics which can be explored are the number of input nodes to each one

of waypoint candidates (WPcand) and the number of toggles in signal values

of each one of WPcand in any simulation trace(SiTr). The proposed method-

ology is presented here as Algorithm 1. Note that step-6 (which is concerned

with selection of effective waypoints) is not fully automated and we repeat the

process for few iterations until we achieve the least BMC time. Furthermore, it

can be argued that multiple error traces are possible which if not accounted for,

may affect this algorithm. However, we observed that multiple error traces lead

to the same property formulation in most of the cases as the final error state re-

mains same. It is worth to note the practical usage of the proposed methodology

lies in obtaining counterexamples in lesser CPU time.

Algorithm 1: FindWaypoints

Input: ErrorTrace(ETr),Design(D)

Output: Waypoints(WP )

1 analyze the error behavior(ETr) observed in the design(D) simulation;

2 formulate properties(P ) related to step1 which are to be given to model checking;

3 select signal(s) from P and construct their Signal Dependency Graph (SDG) using D;

4 reduce the SDG in step3 to generate the reduced SDG (SDG′) with the help of

abstraction techniques(modular similarity, bit-width minimization and slicing);

5 identify waypoint candidates (WPcand) from SDG′;

6 from WPcand, select WP using structural distance-based clustering of signals in the

longest K paths of SDG′. ;

7 for waypoints of the form sigi=m, sigi 6=n or sigi in the numerical/bit-width range of

q to r, D is analyzed to obtain the values of m,n,q,r etc.
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3.4 Design descriptions utilized in experiments

Let’s discuss all the designs used for the case studies in the subsequent chpaters

here.

3.4.1 MESI controller

The first case study in the Chapter 4 is based on a bug in the MESI Coherency

Intersection Controller [2] given in Figure 3.5. The MESI-ISC supports MESI

coherence protocol [67] which is widely employed for performing coherency

maintenance tasks in systems with multiple masters having local caches. Co-

herence systems are used to ensure consistency between different copies of data

with the same memory address when multiple cores with local caches try to

access the same memory location. The cache line in any core can have four

different states: Modified, Exclusive, Shared, and Invalid.

CP Cntl CP Cntl CP Cntl

Coherence port
connector

Coherence port
connector

Coherence port
connector

Coherence port
connector

MP Connector MP Connector

Main Port 2

MP Connector

Main Port 3

Entry 0
Entry 1
Entry 2

Entry m-1

MP Connector

Main Port 0

Entry 0
Entry 1
Entry 2

Main Port 1

Entry 0
Entry 1
Entry 2

Entry m-1

Entry 0
Entry 1
Entry 2

Entry 0
Entry 1
Entry 2

Entry m-1

Entry n-1

CP Cntl

Coherence port 3Coherence port 2Coherence port 1Coherence port 0

mesi_isc_broad_cntl

mesi_isc_breq_fifos_cntl mesi_isc_breq_fifos

mesi_isc_broad

Entry m-1

fifo_2 fifo_3fifo_1fifo_0

broad_fifo

Figure 3.5: MESI-ISC design illustration [2].

There are two buses called the main bus and coherency bus in this imple-
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mentation. The transactions on the main bus are write access, read access,

write broadcast, and read broadcast. They are initiated and driven by the mas-

ters. The main bus communicates with the main memory, and the coherency

controller (i.e., cache controller). The coherency bus is driven by the coherency

controller. The transactions done here are write snoop, read snoop, enable write

and enable read. There is also a priority logic which decides the order in which

the requests from different CPUs are handled. In Chapter 3, we will discuss a

bug which we have introduced into this priority logic which results in the miss

of all requests from the CPU2. The cache coherence process is initiated with

the master requesting memory access. Before that, the master sends a broadcast

request to the main memory. Once the request is received, the coherence con-

troller communicates with the other masters and collects their responses. Then

the controller allows the initiator to perform the memory access.

Note that the verification of cache coherence protocols is a challenging

task [68]. This means that verifying the implementation of such coherence pro-

tocols is equally difficult which necessitates verification by formal methods for

completeness. Moreover, the subtle complexity of cache coherence protocols

makes MESI-ISC a good candidate for case study involving model checking

experiments.

An interesting anecdote regarding the wide-spread incompleteness in check-

ing/verification of cache coherence protocol implementations is reported by Ko-

muravelli et al. [69]. The authors discovered many bugs in the high level im-

plementation of MESI coherence protocol in the popular architectural simulator

(GEM5) even though the implementation was actively used by a large commu-

nity of architectural researchers all across the globe for a time period of more

than six years. Thus, given that the corresponding RTL implementation is more
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detailed and complex in nature, it is highly probable that subtle bugs escape into

the RTL design owing to the incomplete verification.

3.4.2 USB 2.0

Universal serial bus (USB) enables serial communication between PC, and it’s

peripherals. The block diagram of USB 2.0 is given in Figure 3.6. This design

Memory
interface
and arbiter

Function
interface

Control/ status registers

UTMI I/FSSRAM

IP core

UTMI
PL
PE

Figure 3.6: USB design illustration [3].

has the following major blocks. Control/status registers: contains all control

and status registers required to realize the SIE (Serial Interface Engine) func-

tion, PL: handles USB data packets and transactions, UTMI I/F: communicates

with external USB 2.0 transceiver, Memory interface and arbiter: provides ar-

bitration over the access to external SSRAM between the SIE and FI (Function

Interface). In the second case study given in Section 4.4.2 we have discussed a

bug in the PE (Protocol Engine) inside the PL (Protocol Layer).

3.4.3 PCI

The PCI bridge core has two units namely PCI target unit and WISHBONE

slave unit each capable of supporting necessary bridging operations from PCI

to WISHBONE and vice versa by acting as master and slave. It is equipped with

precompiler directives like HOST and GUEST, which is used to configure the

bridge as either master or slave. The bug we discuss in the Chapter 4 is inside

one module (shown in yellow) in the parity-check block where the parity on the
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..
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Figure 3.7: PCI design illustration [4].

data is calculated. The bugs in all the case studies are chosen such that they are

deep inside the design, thereby making their localization sufficiently difficult.

3.5 Case Study: Bugs and Properties

3.5.1 Properties selected for model checking

We have identified two difficult properties for our experiments. To generate

counterexamples, we intentionally injected one subtle design bug (separately

during each property checking experiment) so that design functionality deviates

from the desired specifications. For bringing out the differences between model

checking with and without waypoints, we perform model checking, first by just

providing the design and property to the model checker tool and then repeating

the same with waypoints.

Bug 1: We have introduced a bug in the status_full_o1 signal of FIFO_2. Because of this

bug, the status_full_o never becomes high and FIFO_2 will keep accepting new entries even if

it is full. The new entries will replace the last stored entry. For this reason, there is a chance that

the requests coming from CPU 2 (which is stored in FIFO_2) will get replaced with subsequent

requests.

Manifestation of bug: This bug can be noticed by the occasional misses of the requests

from CPU2.
1The signal which goes high when the FIFO is full.
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mesi_isc_breq_fifos.fifo_3.data_o = 41’h560

cpu:3addr:2
... 0101 0110 0000

mesi_isc_breq_fifos.fifo_0.data_o = 41’h4a2

cpu:1addr:2
... 0100 1010 0010

cpu:3
cbus_addr_o = 32’h2

addr:2read

MESI OUTPUT

BREQ FIFOs

cbus_cmd1_o = 3’b011
cpu:1

cbus_addr_o = 32’h2
addr:2write

cbus_cmd3_o = 3’b100

Figure 3.8: Encoding of the signals used in Property 2

Property 1: We have designed a property (as shown in Listing. 3.1) which will expose

this bug. In this property we have a request from CPU0 followed by another request from

CPU2. After sometime CPU0 sends another request. This request from CPU2 does not reach

the BROAD FIFO and hence will be missed at the MESI OUTPUT also. As shown in Tables

3.2 and 3.3 later in this chapter, this property takes few hours for model checking.

Listing 3.1: property1

assert property (

not(

//-------------------BREQ FIFOs--------------------
// FIFO_0contains WR req. fromCPU0 to addr 0
(mesi_isc_breq_fifos.fifo_0.data_o==41’h83

// FIFO_2contains WR req. fromCPU2 to addr 2
and mesi_isc_breq_fifos.fifo_2.data_o==41’h4c1)

// FIFO_0contains WR req. fromCPU0 to addr 2
[*1:$]##1 mesi_isc_breq_fifos.fifo_0.data_o==41’h483

//-------------------BROAD FIFO--------------------
// WR req. fromCPU0 to addr 0
##[1:$](mesi_isc_broad.broad_fifo.data_o==41’h83)

// WR req. fromCPU0 to addr 2
[*1:$]##1 (mesi_isc_broad.broad_fifo.data_o==41’h483)

//-------------------MESI OUTPUT--------------------
// WR req. fromCPU0 to addr 0
##[1:$] (cbus_cmd0_o==3’b011 and cbus_addr_o==32’h0)

// WR req. fromCPU0 to addr 2
[*1:$]##[1:$] (cbus_cmd0_o==3’b011 and cbus_addr_o==32’h2))

);
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3.5.2 Identification of Waypoints using the proposed algorithm

We have followed the steps mentioned in the Algorithm 1 to find the appropriate signals which

decide waypoints.

1. The Error Trace obtained by simulating the design reveals that there could be some prob-

lems with the requests from CPU 2. Note that this Error Trace is provided by simulators

like Modelsim and not the BMC tool.

2. Out of many possibilities where the bug could be, we have shortlisted the area between

BROAD FIFO and the primary inputs as the buggy region. A property was designed

(Listing. 3.1) to check the possible miss of requests from CPU 2 targeting this area.

As per the proposal, other possible buggy regions could be explored if this assumption

turned out to be wrong (i.e., if no counterexample is generated for the property by the end

of this iteration). It’s important to note that if we fail to cover all possible buggy areas

for designing the property at this step, we might miss out a region where the actual bug is

and end up not catching the bug.

3. We have selected the signal cbus_cmd0_o and cbus_addr_o as the target variables since

they are the ones which are closest to the primary output and hence the SDG (Signal

Dependency Graph) corresponding to that will include all the potential signals for way-

points. Selection of these signals from the property is done by analyzing the RTL and

identifying the signals which are structurally near to the primary output. An SDG for

illustration is given in Figure 3.9. The actual SDGs used for this work are not shown here

since they are very large.

4. We used slicing techniques for reducing the size of the SDG generated in the previous

step. This step required extra set of hints which are to be used as the slicing criteria. The

hint which we used from the ErrorTrace is the following: the regions in the design which

doesn’t deal with the data from CPU 2 could be discarded from the SDG. The slicing of

the SDG is done resulting in a modified SDG (SDG′) which does not have the signals

related to BREQ FIFO 1 and BREQ FIFO 3.

5. All signals (except for the elementary ones like clock, reset etc.) in the reduced SDG are

selected as the potential signals for the waypoints.
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6. To identify the candidate signals for the waypoints, we have grouped the signals obtained

in the previous step based on the structural distance in SDG from the root signal. The

structural distance is determined by the number of nodes in the path from one node to

another (note that we are not assigning weights to the edges in the SDG). We have used

each of those signals with their allowed range of values (discussed as the next point) in

the property and compared the speedup in the Model Checker. Higher speed-up in model

checking time was obtained for the following set of signals (i.e., waypoints):

• BREQ (Broadcast Request) FIFO becomes full (status_full).

• Data output of the BROAD (Broadcast) FIFO (broad_fifo.data_o).

As mentioned previously, the selection of the signal which decides waypoint is very im-

portant. For example, the model checking when done using status_full signal, the ob-

tained speedup in CPU time was significant. However, when it was done with ptr_wr (the

write pointer for the BREQ FIFO 2, which is also there in WPcand) the Model checker

went for a time out (T.O.).

7. The data values assigned to each signal is chosen using the design knowledge and the

property. The final waypoints are as follows: status_full == 1, broad_fifo.data_o ==

41’h83 2. Here the Guidepost 1 (GP1) is a set of states where the signals status_full is

equal to 1 and Guidepost 2 (GP2) is a set of states where the signal broad_fifo.data_o is

equal to 41’h83. Please note that obtaining these data values itself is a hard problem and

we have not addressed it in this chapter. Devising techniques to solve this problem is an

open area for future research.

For comparative evaluation, Property1 is checked via the following two ways. The same

is repeated for property 2 (corresponding to Bug 2) as well.

1. Without any waypoint.

2. With waypoints (Property is broken down into 3 parts).

(a) Reach the case where status_full of BREQ FIFO 2 is 1.
2For this particular case, WP2 happens to be there in the property as well. We had to use broad_fifo.data_o in

property 1 to ensure that the final output signals are generated by the requests 41’h83 and 41’h483, and not one of

the many other possible requests which might give the same output values for cbus_cmd0_o and cbus_addr_o at

the primary output of the MESI design.
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Figure 3.9: Signal Dependency Graph for the signal status_full_o in the design

mesi_isc_basic_fifo of MESI-ISC design [5]

(b) Initialize the signal status_full of BREQ FIFO 2 to 1 in the design and check if the

data is correctly transferred from all BREQ FIFOs to BROAD FIFO by specifying

the value of broad_fifo.data_o.

(c) Check for the transfer of data from BROAD FIFO to the primary output of MESI-

ISC.

Bug 2 : We introduced another bug in the priority logic of the BROAD FIFO controller

of MESI-ISC design. It decides the priority at which the requests from the BREQ FIFOs are

passed to the BROAD FIFO. Accordingly, the requests from BREQ FIFO 2 will always be

neglected. In terms of implementation, it is done by introducing a simple AND gate with one

of it’s inputs tied to 4’b1011 and the other one connected to the output of the existing priority

logic.

Manifestation of bug: Due to this bug, the requests from CPU 2 never reach the ouptut

of MESI-ISC resulting in unexpected results (for example, if CPU 2 writes some data to a

particular address and another CPU reads it, the data which is read will be the one which existed

previous to the write by CPU 2. The effects can be in many other ways.

Listing 3.2: property2

assert property(

not(

//-------------------BREQ FIFOs--------------------
// fifo_1contains WR req. fromCPU1 to addr 2
(mesi_isc_breq_fifos.fifo_1.data_o==41’h4a2

// fifo_2contains WR req. fromCPU2 to addr 2
and mesi_isc_breq_fifos.fifo_2.data_o==41’h4c1

// fifo_3contains RD req. fromCPU3 to addr 2
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and mesi_isc_breq_fifos.fifo_3.data_o==41’h560)

//-------------------BROAD FIFO--------------------
// WR req. fromCPU1 to addr 2
[*1:$]##[1:$](mesi_isc_broad.broad_fifo.data_o==41’h4a2

// RD req. fromCPU3 to addr 2
##1 mesi_isc_broad.broad_fifo.data_o==41’h560)

//-------------------MESI OUTPUT--------------------
// WR req. fromCPU1 to addr 2
[*1:$]##[1:$](cbus_cmd1_o==3’b011 and cbus_addr_o==32’h2)

// RD req. fromCPU3 to addr 2
[*1:$]##[1:$] (cbus_cmd3_o==3’b100 and cbus_addr_o==32’h2))

);

Property 2: FIFO_1 will write at address 2 and then BREQ FIFO 2 will also write at the

same address. Then BREQ FIFO 3 will read the value from the address 2. Since there is a

bug in the priority logic, BREQ FIFO 3 will read the value which is written by BREQ FIFO 1

instead of BREQ FIFO 2. As in the case with property 1, there is a significant improvement in

time when we use waypoints.

The waypoint used for checking property 2 is following:

• Data from BREQ FIFO reaches BROAD (Broadcast) FIFO. (WP1: broad_fifo.data_o

with the values 41'h4a2 and 41'h560).

3.6 Experimental results
We utilized JasperGold model checker (from Cadence) for our experiments with the MESI-

ISC design. All the model checking experiments are carried out on Intel-i7 machine running

at 3.4GHz with 16 GB RAM and booting on CentOS. The Tables 3.2 and 3.3 discuss the im-

provements in BMC time and memory usage for the property 1. Similarly Table 3.4 and Table

3.5 discuss the results for the property 2. For property 1, we get a speed up of 11.44x in time.

The reduction of memory usage is 2.34x. Moreover, it is important to note that the property 2

goes for a timeout (after running for more than 10 hours) without waypoints (Table 3.4). Using

waypoints it got completed in 215.9 seconds. Another set of results for property 2 is available

in Table 3.5.

Comparison for bound, time and memory usage is omitted in Table 3.4 since the Model

checker goes for timeout (T.O.) for the case without waypoints, leaving us no data to compare

against. This case strongly shows the benefits of using waypoints as compared to the original
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Table 3.2: Improvements in bound, time and memory usage for property 1 ( with BREQ FIFO

size 2 and BROAD FIFO size 4)

Method Bound
Time

(s)

Memory

(MB)

Bound

(reduction)

Time

(reduction)

Memory

(reduction)

Without

Waypoint
53 7947.6 365.28 0 1x 1x

With

Way-

Point

FIFO_Full 5 0.02 4.25

11 11.44x 2.34x
BREQ FIFO

to BROAD
38 515.6 49.45

BROAD

FIFO to

Final o/p

42 178.9 102.37

Total 42 694.52 156.07

model checking experiment (i.e., model checking without using waypoints). Note that the ex-

perimental results presented here consider only the model checking time and not the time taken

by the algorithm for the generation of waypoints. Also, the manual effort required in the pro-

posed semi-automatic method of effective waypoint identification is not accounted for in these

results.
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Table 3.3: Improvements in bound, time and memory usage for property 1 ( with BREQ FIFO

size 2 and BROAD FIFO size 8)

Method Bound
Time

(s)

Memory

(MB)

Bound

(reduction)

Time

(reduction)

Memory

(reduction)

Without

Waypoint
50 1370.4 151 0 1x 1x

With

Way-

Point

FIFO_Full 5 0.03 3.93

4 3.01x 0.81x
BREQ FIFO

to BROAD
40 249.3 124.58

BROAD

FIFO to

Final o/p

46 204.5 56.71

Total 46 453.83 185.22

Table 3.4: Improvements in Bound, Time and Memory usage for property 2 ( with BREQ FIFO

size 2 and BROAD FIFO size 4)

Method Bound
Time

(s)

Memory

(MB)

Without

Waypoint
T.O. T.O. -

With

Way-

Point

BREQ FIFO

to BROAD
32 215.8 102.30

BROAD

FIFO to

Final o/p

18 0.1 16.08

Total 18 215.9 118.38
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Table 3.5: Improvements in Bound, Time and Memory usage for property 2 ( with BREQ FIFO

size 2 and BROAD FIFO size 8)

Method Bound
Time

(s)

Memory

(MB)

Bound

(reduction)

Time

(reduction)

Memory

(reduction)

Without

Waypoint
24 2 28.48 0 1x 1x

With

Way-

Point

BREQ FIFO

to BROAD

13 0.4 14.77

6 3.33x 0.86x

BROAD

FIFO to

Final o/p

18 0.2 18.12

Total 18 0.6 32.89
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3.7 Discussion

The usage of semi-formal methods can ease out the challenges of state space exploration of the

designs in many ways. One of them is generating high quality inputs used for functional verifi-

cation. Plethora of work has been reported in this direction which utilize abstraction techniques

in addition to guiding the random simulation-based state space search [17, 49, 70, 71]. Simi-

larly, supplying guidance assists in faster state space traversal also. Yang et al. [9] proposed

the idea of a guidance-based search strategy for invariant proving and bug finding. Typically,

this scheme is highly successful in discovering subtle design bugs which are missed out by ran-

dom or constrained-random simulation [7,14,72]. Various strategies for generation of guidance

for a successful verification methodology based on semi-formal techniques are summarized

in [7,10,73]. Abstraction is one of the most common ways to glean some hints which can assist

in directed state space traversal. Techniques of abstraction are also useful for the minimiza-

tion of the length of error traces. However, abstraction techniques are generally very useful

for circuits dominated by data paths such as arithmetic circuits only. In this regard, guidance-

based verification becomes essential for semi-formal/formal verification of circuits dominated

by control paths. Note that abstraction can still be used in conjunction with guidance-based

methodologies [7, 14, 74].

3.8 Conclusion

This chapter proposed a methodology for identifying guidance hints, known as waypoints for

better design debugging by model checking. With the help of waypoints, the state space traver-

sal becomes faster leading to significant speed-up while property checking. With the pro-

posed semi-automatic methodology for the identification of waypoints, we achieved significant

speedup during counterexample generation. For large designs, a larger number of waypoints can

significantly reduce the achievable gain in model checking time (i.e., CPU time). An extension

of this work is a simulation-based strategy which assists the Signal Dependency Graph-based

analysis. The methodology involves generation of constrained-random simulation traces from

the initial state to the first waypoint, from the first to second waypoint and so on. After care-

ful analysis of these simulation traces, the subset of states corresponding to the intermediate

waypoints can be identified automatically.
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Chapter 4

Design Debugging with

Guidance-based Model Checking

4.1 Introduction

As mentioned in the previous chapters, functional verification continues to occupy a key po-

sition in the design implementation process [7, 8, 44]. With significant advancements in ver-

ification strategies and emulation tactics to overcome the bottleneck of simulation speed, bug

localization is still challenging and needs significant manual expertise [7]. To cope up with

time-to-market targets for an integrated circuit (IC) design, automatic bug localization becomes

essential so that the design fixes/corrections can be quickly carried out. Given that exhaustive

design simulation is rarely possible, formal methods like model checking hold promise in dis-

covering bugs at an early stage. Typically, a counterexample, CEX (which is the output of

model checker), provides opportunities to expose the bug more explicitly (in terms of a few sig-

nals) compared to a lengthy simulation trace. However, automatic bug localization from tedious

counterexamples is not trivial and leads to elongation of the debug step. In the proposed bug lo-

calization methodology, we begin with a buggy simulation trace (consisting of only system-level

behavior failure) and perform guided model checking of the design with the help of properties

written on the assumption of probable broader buggy regions. Model checking of large designs

is a challenging task because of different scalability issues requiring assistance of heuristics

like bit-width slicing [13, 14]. These heuristics can reduce the computational efforts required

for state space traversal [10,13,14], which in turn enhances the feasibility of the model checking

exercise. Guided state space traversal [9,10] methodologies have often been utilized to alleviate
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some of the obstacles due to scalability issues. We revisit this paradigm of guidance-assisted

model checking for automatic bug localization at RTL.

An intelligent selection of the guidance hints/mechanisms in an automatic manner turns

out to be an equally challenging problem [14,16,21,75]. Therefore, we propose a methodology

to automatically obtain guidance hints such that after the application of these hints, the model

checking problem becomes easier. The proposed technique involves usage of simulation-based

mining of properties of the design and their subsequent incorporation into Bayesian reasoning

for filtering of the most profitable ones. The guidance hints, essentially, act as assistance for bug

localization into smaller regions of the design through iterative model checking of properties

targeting these regions. These smaller model checking instances turn out to be easier than the

original model checking problem. Therefore, with the obtained guidance hints, probable buggy

sub-regions can be obtained as candidates for further analysis. After that, through static analy-

sis, RTL lines of the design responsible for the buggy behavior can be identified by utilizing a

technique similar to counterexample guided abstraction and refinement (CEGAR) analysis [19].

We do not attempt the bug coverage assessment with the derived properties (written from the

buggy region assumptions after observing the high-level system behavior); however, we show

in our experiments that the proposed approach indeed succeeds in effective bug localization for

different case studies. In practice, writing properties from the assumption of buggy regions of

the design is akin to modeling of bugs or faults for the purpose of automatic test generation [23].

The rest of the chapter is organized as follows. Section 4.2 describes in detail the pro-

posed technique (Orion) for guidance hint generation along with preliminaries (concepts and

associated terminologies) for the proposed methodology. The fine-grained bug localization

methodology (Aquila) is presented elaborately in Section 4.3. Designs that have been utilized

in our experiments are presented in Section 3.4. Section 4.4 and 4.5 describe the case studies

(of different designs) on fine-grained bug localization with the proposed methodology. Finally,

the chapter is concluded with a few directions on future research in Section 4.6.
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4.2 Orion: Proposed methodology for effective guidance hints

identification

4.2.1 Guidance hint mining

4.2.1.1 Basic procedure of mining

Similar to the assertion mining techniques described in [76,77], we utilize simulation traces for

mining the assertions. The simulation traces are obtained with the help of either constrained-

random or designer-provided testbenches. The mining step can yield a large number of asser-

tions, out of which many may not be relevant to the guided state space traversal problem. So, we

supply structural constraints to the miner framework for generating assertions (φ1, φ2.......φn).

Specifically, our miner framework implements a mining procedure with the help of classification

and regression trees. The miner framework generates assertions with the following considera-

tions:

1. From the simulation traces, breadth-first method is used to obtain classification and re-

gression trees. Based on whether the target signal (for assertion φk) is discrete-valued

(i.e., 0 or 1) or continuous- valued, either decision/classification tree or a regression tree

is generated, respectively.

2. For regression tree, an additional argument (a threshold on the number of leaves), which

forms the stopping criterion for regression tree is required. This hyper-parameter is cal-

culated by a cross-validation method.

3. Assertions are generated by taking the previous value of target signal as features for pre-

vious ‘T’ clock cycles.

4. To calculate the range of temporal information in assertions, it sums up the execution

depth (which is defined as RTL static analysis-based distance between nodes in CDFG of

the respective modules of the design) of all the signals that appear in the assertion (taking

execution depth of previous value of the target feature as zero).

4.2.1.2 Toy example for illustrating assertion mining

Consider a circular queue of capacity 4, which gives the simulation trace for a few clocks as

shown in Table 4.1.
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Table 4.1: Sample simulation trace for the toy example.

cycle read/write full empty front rear

1 0 0 1 5 5

2 1 0 0 1 1

3 0 0 1 5 5

4 0 0 0 1 1

5 0 0 0 1 2

6 0 0 0 1 3

7 0 0 0 1 4

8 0 1 0 1 4

9 0 1 0 1 4

10 1 1 0 1 4

11 1 0 0 2 4

12 1 0 0 3 4

13 1 0 0 4 4

14 0 0 1 5 5

Suppose, rear is the target feature for which assertions have to be generated. We take the

following assumptions into account.

1. Execution depth of read/write, full, empty and front is 1. Past values of rear (for e.g.,

rear[t− 1], rear[t− 2]), etc. have an execution depth of 0.

2. We will consider only two past values (T = 2) of rear i.e., rear[t− 1], rear[t− 2].

For the above simulation trace the modified trace for generating temporal assertion be-

comes as shown in Table 4.2. The parameter fitting function gets 3 as the optimum number of

leaves as the threshold in the classification and regression tree shown in the Figure 4.1. This

threshold forms the base criterion to stop further splitting.

In the above tree, solid nodes represent the nodes where splitting is done using some feature and

hollow nodes represent the leaf nodes, to which some label is assigned. An assertion is formed

by traversing the path from root upto leaves and merging the clauses if the same splitting feature

appears in the path more than once. For e.g., consider the path with the following edges,

(rear[t− 1] ≤ 4) , (front ≤ 4) , (rear[t− 1] ≤ 2)
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Table 4.2: Modified simulation trace for the toy example.

read/write full empty front rear[t-1] rear[t-2] rear

0 0 1 5 1 5 5

0 0 0 1 5 1 1

0 0 0 1 1 5 2

0 0 0 1 2 1 3

0 0 0 1 3 2 4

0 1 0 1 4 3 4

0 1 0 1 4 4 4

1 1 0 1 4 4 4

1 1 0 2 4 4 4

1 0 0 3 4 4 4

1 0 0 4 4 4 4

0 0 1 5 4 4 5

It generates the following assertion (φ)

(front ≤ 4)&& (rear[t− 1] ≤ 2) |− > ##[0 : 1] (rear[t] == 2)

where [0:1] indicates that the assertion can be true with a 0 to 1 cycle delay. This 1-cycle delay

is calculated by adding up the execution depths of all the unique atomic clauses that appear in

the path of an assertion from root to leaf. So, execution depth of only front is added because

rear[t − 1] has an execution depth of 0 with respect to rear[t]. After the mining of assertions,

they are fed to a model checker for removing the spurious ones.

rear[t− 1]

front

rear[t− 1]

2

≤ 2

4

> 2

≤ 4

5

> 4

≤ 4

1

> 4

Figure 4.1: Classification and Regression Tree (CART) illustration.
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4.2.2 Application of Bayesian analysis

A Bayesian model can be utilized to reason about the conditional occurrence of a series of events

[78–80]. This type of modeling is ideally suited for the problem of guidance hint selection

because it is very difficult to provide guarantees on the usefulness of guidance hints (Hij) from

the mining step alone since a large number of hints given by the miner might not guide the

model checker in the right direction. Hence, we aim to capture the usefulness guarantee of the

guidance hints in a probabilistic manner and rank them for the final selection to assist the model

checking of the property P and subsequent bug localization procedure. The Bayesian analysis

part in our framework is motivated by the techniques in [78] and [80].

4.2.3 Toy example for Bayesian Modeling

To explain the application of Bayesian method in the proposed methodology, we consider a

design with four independent 13-bit counters counter1, counter2, counter3, and counter4,

which count in the steps of 1, 2, 3 and 4 respectively. This example is similar to the one

discussed in the Section 3.2.2 used for explaining the utility of waypoints. The counters have

enable signals depicted by en1, en2, en3, and en4, respectively. The target property under

consideration is: P = EF (outputcounteri >= 16′h1ff8) for i ∈ {1,2,3,4}. Let’s consider that a

part of this property Pα represented by outputcounter4 >= 16′h1ff8. Pα is shown as S4 in Figure

4.2, which shows the Bayesian network for experiments on this design. The guidance hints

used in this example are shown in Table 4.3. Although we performed analysis with a few other

guidance hints as well, we present here the interesting case of two such hints: outputcounter4

and en4. The former is the output of the fastest counter (i.e., counter 4) while the latter is the

enable signal (en4) for the same counter.

Table 4.3: Nodes in the Bayesian network for the toy example.

Node H Signal with value

S0 H11 outputcounter4 = 16’h1f90

S1 H12 en4 = 1

S2 H21 outputcounter4 = 16’h1fb0

S3 H22 outputcounter4 = 16’h1fd0

S4 Pα outputcounter4 = 16’h1ff8
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By simulating the design with a constrained-random testbench, we calculate the condi-

tional probabilities for the edges (i.e., Sj → Si). We obtained the conditional probability values

and subsequently fed it to the Bayesian network (shown in Figure 4.2) for analysis.

For illustrating the calculation of conditional probability values from the simulation trace,

let’s take the example of the node S2. From the structure of the Bayesian network, we extract

the incoming nodes to S2 (which are S4 and S3) and construct the Table 4.4 with the input nodes

in topological order. From the table, we find out the input combinations which need to be traced

from the simulation trace. The first two columns of Table 4.4, respectively, represent whether S4

and S3 are true (1) or not (0). The remaining column depicts the conditional dependency on S4

and S3 in case of S2 becoming false (0) and true (1) respectively1. The conditional probability

entries in the column S2 of Table 4.4 (calculated using the method which will be discussed in

Section 4.2.4) are fed to the Bayesian network (BModel) as inputs.

S4

S0 S1

S3
S2

Figure 4.2: Bayesian model (BModel) for the toy example.

Table 4.4: Conditional probabilities for the node S2.

S4 S3 S2

0 1

0 0 1 0

0 1 0.004 0.996

1 0 0.009 0.991

1 1 0.004 0.996

The first column of Table 4.5 denotes different log-likelihood values obtained as a result

of Bayesian analysis.

From the respective final queries,2 S0 is selected as a more useful guidance hint than S1.

Note that this toy example discusses only step-1 of the two-step Bayesian filtering discussed in

1Values in rows 4 and 6 are the same since S4 and S3 occur too close to each other in this particular design.
2The process of calculating a particular probability distribution from the network is referred to as querying.
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Table 4.5: Queries from the Bayesian model for the toy example.

Likelihood Value

ll (S0,S2,S3,S4) 1.6307

ll (S1,S2,S3,S4) 1.6203

the first part of our proposal (Section 4.2) for simplicity.

4.2.4 CPD calculation details

As mentioned earlier, the conditional probabilities for each of the edges in the Bayesian network

is calculated from the simulation trace. The simulation trace is first divided into frames of size

frame_size. It is a parameter called that can be modified. For our experiments we used a value

of 1000. The toy example shown in Section 4.2.3 uses a signal-value combination as the node.

It is important to note that in the proposed framework, all the nodes of the Bayesian Network are

assertions and not signal-value combinations. The CPD calculation is done using an in-house

simulation trace analyzer, which looks for the assertions corresponding to the start and the end

nodes of the particular edge of the network. The time interval between them is calculated for

all occurrences of this edge in all the frames of the simulation trace (SiTr). After that, we

calculate the minimum time interval among all those and divide it by the frame_size to get

the conditional probability corresponding to that edge. Instead of the minimum time interval, it

could have been the average time interval also. For Bayesian model implementation, we utilized

the BNT toolbox [81] in MATLAB.

4.2.5 Effective Guidance Hints Generation

As stated previously, we develop a methodology (referred to as Orion) for the identification

of effective guidance hints.3 An overview of the complete framework is given in Figure 4.3.

With this methodology, we obtain filtered guidance hints which is to be utilized during the bug

localization step.

The identification of better quality guidance hints begins with designing a property (P )

assuming a broader buggy region which can include multiple modules or regions in the design.

3We derive this name from the fact that Orion is a prominent constellation in the night sky, often acting as a

guide during sky-walks.
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Simulation

BN construction

CPD calculation

BN query

Negation of the
property (P)

Guidance hint
miner

SDG & COI
generation

Filtered guidance hints

Design (D)

Figure 4.3: Overall flow of proposed methodology for hint generation (Orion).

The negation of this property will generate a counterexample if the assumption on broader

buggy region is correct. This region is shortlisted based on the preliminary analysis of the

erroneous simulation trace4. The steps in Figure 4.3 are outlined below.

• Constraint random simulation of the design targeting the regions, which are considered

to be the potential broader buggy regions while writing the property.

• Extraction of the COI (Cone Of Influence) signals for the signal in the property, which is

closest to the primary output of the design. This signal is referred to as root signal in the

algorithm. It is extracted from a Signal Dependency Graph (SDG), an example of which

is given in Figure 3.9. Feed the signals in the COI as constraints to the guidance hint

miner so that it can mine assertions (φ) for those signals from the simulation trace.

• Filtering the mined hints using Bayesian analysis.

In accordance with the illustration in Section 4.2.2, Bayesian modeling can be done by

constructing a network where nodes depict events of interest, and edges represent the condi-

tional dependency among them. In our framework, these nodes are assertions (either the mined

ones, φk, or parts5 of property, Pα). Bayesian analysis involves the following steps for pruning
4The erroneous simulation traces are identified based on the deviation from the expected behavior mentioned

in the design specification.
5These are parts of the property obtained by decomposing P into smaller properties/assertions without altering

its temporal meaning.
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out (rejecting) the ineffective guidance hints.

Step-1: Bayesian network with good guidance hints at the next level.

• At any current level, construct a Bayesian network with the guidance hints at that level

and the selected/shortlisted hints (also referred to as good hints) for the next level (the

filtering for which has already been done using a similar process) along with parts of the

main property.6

• Obtain the ll (log-likelihood) values for each of the guidance hints at the current level as

shown below.

ll (Hij , H(i+1)j ,Pα): log-likelihood of a guidance hint Hij (jth guidance hint of ith level)

along the good guidance hint(s) of the next level H(i+1)j (jth guidance hint of (i + 1)th

level) and Pα becoming true. The ll value actually gives the likelihood of the occurrence

of a path from the current guidance hint to the main property through the immediate next

guidance hint. The guidance hint(s) with the higher ll values are shortlisted for further

processing in the step-2.7

The objective of step-2 is to eliminate those hints which might be taking a path to the

target state, which is not through the good guidance hints at the next level.

Step-2: Bayesian network with bad guidance hints at the next level.

• At any current level, construct a Bayesian network with the guidance hints at that level

and the rejected hints (also referred to as bad hints) for the next level along with parts of

the main property.

• Obtain the ll (log-likelihood) values for each of the guidance hints at the current level

(which were selected in step-1) as shown below.

ll (Hij , H ′
(i+1)j): log-likelihood of a guidance hint (Hij: jth guidance hint of ith level)

along the bad guidance hint of the next level (H ′
(i+1)j: j

th guidance hint of (i+1)th level)

becoming true. We select the hints with lower ll values in this step as the good candidates

for guidance hints at the current level. This is because the hints with higher ll values will

mislead the model checker to pass through the bad hints at the next level, which is against

our expectations.
6Henceforth main property is referred to as the property, which is written assuming a broader buggy region for

Orion. Negation of this property gives a CEX if the assumption about the broader buggy region is correct.
7We might require more than one guidance hint at each level based on the size of the design.
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The methodology is presented in a high-level manner as Algorithm 2. This algorithm

internally utilizes two minor algorithms, GetStructuralConstr(P , D), for the computation of

structural constraints andBuildRegClassTree for the construction of the tree used in assertion

mining. Step 4 utilizes model checking for the removal of probable spurious assertions obtained

as a result of the mining step.

Algorithm 2: Orion: Guidance hint generation.
Input: P (Property), D (Design), SiTr (Errortrace)

Output: GuidanceHints

1 Constr← GetStructuralConstr(P , D);

2 RegClassTree← BuildRegClassTree (SiTr, Constr);

3 MineProp←Mine RegClassTree;

/* Get assertions in SVA format. */

4 FinalProp← SpuriousRemoval(MineProp);

5 BNodes← FinalProp and P ;

6 EdgeV al← getCPD (BNodes);

/* Compute conditional probability distribution (CPD) values for

edges constituted by nodes from BNodes. */

7 BNet← ConstructBNet(BNodes, EdgeV al);

/* Construct Bayesian network (BN) for the current level. */

8 GuidanceHints← BNqueryStep2(BNqueryStep1(BNet));

Note that the guidance hints (Hij) essentially correspond to the mined assertions (φk)

obtained from our guidance hint generation strategy.

4.3 Aquila: Proposed methodology for fine-grained bug lo-

calization

4.3.1 Description of methodology steps

We utilize the guidance hints for effective bug localization in an automatic manner. Specifi-

cally, we aim to localize the buggy RTL line(s) in the design description. An overview of the
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proposed methodology, Aquila is presented in Figure 4.4.8 In this technique, we use iterative

model checking by modifying the target property (P ) using certain selected signals from the

counterexample traces of the failing properties.

Save last appended signal

Modify FPi

Property for the sub-region

Design (D)

Good & bad
assertions for
sub-region

Signals associated with
buggy RTL line

Buggy
sub-region

Orion

N

Y

FPi

i += 1

Failed properties (FP)

Negation of a the property assuming

P

CEXs

CEXi

Buggy simTrace

bug in one region

Select sigs from CEXi

Precondition
fails & property

passes

Figure 4.4: Overview of the bug localization methodology (Aquila).

In the guidance hint generation methodology (Orion) discussed in Section 4.2 we consider

a large region (typically consisting of a few modules/a part of one module in some cases) as the

potential broader buggy region. Then we write the properties (i.e., set of P ) which would pass

(i.e., the negation of it would generate a counterexample) if the assumption about the broader

buggy region is correct. It is worth noting that in Orion, we do not consider each possible

bug in the design and write property targeting that. It is not practically possible. Instead, we

consider broader regions in the design, the outputs from where become buggy due to many

potential/probable bugs in that region. In summary, we consider the manifestation of many

possible bugs in one large region in a combined manner. Once we obtain a counterexample

for the negation of such a property using the guidance hints at different levels, we proceed to
8We name our methodology as “Aquila” since this constellation is surrounded by a large number of dim clus-

ters and nebulae, yet it retains its presence in a prominent way. Analogously, the particular buggy sub-region is

surrounded by a large number of unimportant regions (i.e., lines in the RTL description).
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Aquila portion of our framework for localizing the RTL line(s) where the bug is present.

Through the usage of Orion methodology, we obtain the module/blocks of RTL lines

containing those guidance hints as the sub-region on which Aquila works for localizing the

buggy RTL line(s). Therefore, the inputs to Aquila technique are the following:

• The sub-region of the design (in our case studies, we have considered the modules), which

contains the potential buggy RTL line(s).

• The good and bad9 guidance hints in that sub-region.

There will be many sub-regions in the design corresponding to the partitions in the main

property decided by the guidance hints shortlisted by the Orion algorithm10. To prioritize the

sub-regions which Aquila should look at, we consider speedup in the CEX generation time

when the hints at different levels are used in Orion. The sub-regions corresponding to those

hints with maximum speedup is given initial preference for Aquila algorithm. The rationale

behind this selection process is that if the CEX generation is faster in Orion using certain hints,

then those hints will be closer to the bug and the sub-region where the hint belongs to might

have the bug.

The first step in Aquila methodology is to use the standard Formal Property Verification

approach and write properties for the good design targeting the above-mentioned sub-region.

Some of those properties would fail because of the bug. If no property fails, then we were

either wrong about the assumption of the potential buggy sub-region given to Aquila or did

not write enough properties targeting this sub-region. If it is the first case, we need to go

back to the Orion step and select another sub-region corresponding to guidance hints at a

different level. Our implementation requires the properties to be written in the sequence form

(Eg: (p == 1)| => (q == 2)| => (r == 3)). We select one of those properties which

failed and modify it with the negation of a signal-value combination selected from the CEX

(for example, ppend with ~(t == 1) if the CEX trace has (t == 1) in it) at the particular

cycle where that signal value combination occurs. The choice of signal from the CEX trace

is discussed in Section 4.3.2. The appending of the signals is done backward from the last

9The notion of good and bad is linked with the possibility of the guidance hint speeding up/down the model

checking process.
10The sub-regions corresponding to the partitions in the property are currently selected based on the location of

signals in the RTL, present in the partition.
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cycle where the sequence fails (i.e., where the model checker gives all preconditions11 pass,

property failed scenario). If we consider the case where (t == 1) appeared one clock before,

the modified property will be (p == 1)| => ((q == 2)&& ~(t == 1))| => (r == 3). If,

during model checking of this property, the precondition 2 fails, it means that the bug/effect of

the bug appears in the signal t.

With the knowledge that precondition 2 fails, we can succeed in fine-grained bug localiza-

tion compared to the case where we had only the original property, when we just knew that the

effect of the bug appears in the signal r. For many designs, it is very much probable that there

will be a large number of clock cycles between the clocks at which the precondition 1 passes,

and the last condition (r == 3) fails. In those scenarios, it is not practical to attempt appending

signals for all those intervals. Hence, it is important to decide the number of cycles backward

we should go before moving to the next signal from the CEX trace. It can be decided based

on the nature of the design. For our first case study, MESI-ISC design, we have fixed this as 5

clocks considering the depth of the FIFO in the design along with other parameters.

The Aquila algorithm in Figure 4.4 has a parameter i which denotes the number of prop-

erties tried out for the sub-region. Note that, in our case studies given in Section 4.4, we have

shown only one property for the selected sub-region.

4.3.2 Selection of the signals from CEX trace

The following steps are to be adopted for selecting the signals from the CEX trace. Let us

consider the same failed property sequence (p == 1)| => (q == 2)| => (r == 3) discussed

above for illustration purposes.

• Select the signals within max-COI-level12 distance (from the signal r) in the COI of the

signal r.

• Remove the signals present only in the assertions corresponding to bad hints. This step

ensures that we do not waste time on signals which are not aiding the model checking

process in Orion. These hints are supposed to be not influenced by the bug.

• Find the common patterns in signal-value combinations along with time-stamps across all

11precondition 1: (p == 1), precondition 2: (q == 2) for this example.
12It’s a parameter which indicates how deep in the Cone-of-Influence COI we should explore for signals to be

added to the failing property.
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those CEXs corresponding to the other failed properties for the current sub-region. Then

give first preference to signals in those patterns.

The Aquila methodology is presented as Algorithm 3. Comments are added whenever

important steps are mentioned.

4.3.3 Toy example for illustrating bug localization methodology

Let’s consider the design description provided in Listing 4.1.

Listing 4.1: Example module for the illustration of Aquila.

module top(clk, in1, s, out);

input clk, in1, s; output out;

reg out, r1; wire w1;

mod1 m1(.clk(clk),.a(in1),.b(w1));

always @(posedge clk) if (s) out = w1; else out = 1’b0;

always @(posedge clk) r1 = ~w1 ;

endmodule

module mod1(clk, a, b);

input clk, a; output b; reg b, d;

always @(posedge clk) b = a ; d = ~a;

//originalline: always @(posedgeclk) b = ~a ; d = a;
endmodule

This design has a bug and the equivalent non-buggy line is shown as a comment (beginning

with “//”). Using the specification used to write this code, we write the following property (P ),

which should pass if there is no bug.

(in1 == 1)&&(s == 1)| => ##1(out == 0)

When we attempt model checking P , it gives us the counterexample with a trace spanned over

3 cycles giving in1 == 1 and s == 1 in the first cycle and in third cycle signal out == 1.

Clearly, this is a violation of the property (P ) described above.

Using steps discussed in Section4.3.2 we have selected the signals to be used to modify

the preconditions in the property. The different values of the signals in CEX are the following

• Cycle 1: in1=1, s=1, a=1

• Cycle 2: b=1, w1=1

• Cycle 3: out=1
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Algorithm 3: Aquila: Bug localization.
Input: D, P , sub-region, good-hints, bad-hints, max-COI-level.

Output: suspectSigs.

1 FP ← Failed property set;

2 for each FPi in FP do
/* CEX analysis to find common sig-value combinations. */

3 FPi← ith failing property;

4 end

/* Find signals related to buggy RTL line */

5 for each FPi in FP do

6 CEXi← Counterexample for FPi;

/* Select signals from CEXi */

7 sigListi = ()

8 for each s in CEXi do

9 s← A signal present in CEXi;

10 if s not only in bad-hints then

11 sigListi.append(s);

12 end

13 end

/* Consider signals which are at a distance max-COI-level from the

root signal in P used to construct the COI. */

14 for 0 < sigLevel < max-COI-level do

15 for each s in sigListi do

16 FP ′
i ← FPi modified using s;

17 modelCheck(FP ′
i );

18 if precondition fails then

19 suspectSigs.append(s);

20 end

21 end

22 end

23 end
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In the next step we augmented original property with the selected signals (a, w1, etc.) from

CEX one by one and checked for the cases where the precondition fails. The modified property

for the case when the signal a is considered is,

(in1 == 1)&&(s == 1)| => ˜(a == 1)| => ##1(out == 0)

Since the precondition fails and the property passes for this modified property, we conclude

that the bug is related to a or the effect of the bug appears in a. We investigate the RTL lines

where a is present and localize the buggy RTL line. If the bug was not found, we would have

to perform a secondary analysis on the signals which decide the value of a and so on. The first

case study given in Section3.4.1 is an example where such a secondary analysis is required to

find the buggy RTL line, whereas the other two case studies (Section 3.4.2 and 3.4.3) expose

the buggy RTL line in the primary analysis itself.

4.4 Case studies

4.4.1 MESI-ISC

4.4.1.1 Orion (guidance hint mining)

The bug: The bug we discuss here is in fifo_2, which stores the requests from the CPU-2. The

original (non-buggy) behavior of the design is such that if the FIFO is full, then the new input

data along with the write enable signals (wr_i) will not be replacing any of the already stored

entries. Due to the bug, the new data_i values which come along with wr_i would replace the

entry at the top of the FIFO, leading to a loss of the stored data.

Buggy RTL line: else if (wr_i)

Original RTL line: else if (wr_i & !status_full)

The manifestation of the bug: In the simulation trace it is observed that the signals corre-

sponding to certain requests from the CPU-2 occasionally13 are not generated at the output of

the MESI-ISC design.

The assumption about the broader buggy region: The debug engineer who is not aware of

the bug has a lot of assumptions on what could have gone wrong in the design. The bug could

be in the breq_fifo control logic, broad_fifo (inside the request broadcast logic), the priority

logic (which prioritizes the requests), etc. By following proposed approach, we will consider

13It does not always happen since this anomaly appears only in those cases where fifo_2 is full.
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one such region at a time. The broader buggy region considered here includes fifo_2 and

broad_fifo. Based on the assumption that this region is buggy, we have designed the property

given in Listing 4.2. For this property we consider two levels of guidance hints.14 In this case

study we will show how to identify the guidance hints for the first level. The guidance hints

are calculated in the reverse order. First, the hints corresponding to the higher levels, which are

closer to the target state where the property fails, are calculated and then backward. We assume

that the hint for the second level is already found using a similar process and is incorporated

into the property, as shown in Listing 4.3. All further steps refer to that property.

Listing 4.2: Original property for MESI-ISC.

assert property(not(

(fifo_2.data_i==41’h4c1 and fifo_2.wr_i==1)

##[1:8](fifo_2.data_i==41’h4c5 and fifo_2.wr_i==1)

##[1:8]((fifo_2.data_i==41’h8c9 and fifo_2.wr_i

and fifo_2.data_o==41’h4c1)

##[1:4](fifo_2.data_o==41’h8c9))

##[1:16]((broad_fifo.data_o==41’h4c1)

and (cbus_addr_o ==32’h2)##2(cbus_cmd2_o==3’b100))

##[3:20]((broad_fifo.data_o==41’h8c9)

and(cbus_addr_o==32’h4)##2(cbus_cmd2_o==3’b100))));

Listing 4.3: Original property for MESI-ISC with waypoint assertions at level-2.

assert property(not(

(fifo_2.data_i==41’h4c1 and fifo_2.wr_i==1)

##[1:8](fifo_2.data_i==41’h4c5 and fifo_2.wr_i==1)

##[1:8]((fifo_2.data_i==41’h8c9 and fifo_2.wr_i

and fifo_2.data_o==41’h4c1)

##[1:4](fifo_2.data_o==41’h8c9))

(broad_fifo.entry[1]=41’h4c1)

##[1:16](broad_fifo.entry[0]==41’h8c9)

##[1:16]((broad_fifo.data_o==41’h4c1)

and(cbus_addr_o==32’h2)##2(cbus_cmd2_o==3’b100))

##[3:20]((broad_fifo.data_o==41’h8c9)

and(cbus_addr_o==32’h4)##2(cbus_cmd2_o==3’b100))));

Structural constraints generation: From the property, the signals closer to the primary

output in the design are selected for deriving the constraints. These are a set of signals which

are supplied as input constraints to the guidance hint miner. The signal selected for this example

is cbus_cmd2_o. We have generated the COI (Cone Of Influence) signals from the SDG (Signal

Dependency Graph) for this signal and the signals present in the COI are given as constraints to

the miner.
14This decision on the number of levels is based on the size of the broader buggy region.
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Some of the level-1 waypoint assertions (guidance hints) mined from the simulation trace

are shown in Table 4.6.
Table 4.6: Level-1 assertions mined from simulation trace (MESI-ISC).

No: Assertion

H11 fifo_2.wr_i == 1 and fifo_2.ptr_wr == 0 ##1 fifo_2.ptr_wr == 0

H12 fifo_2.wr_i == 1 and fifo_2.ptr_wr == 1 ##1 fifo_2.ptr_wr == 0

H13 fifo_2.wr_i == 1 and fifo_2.ptr_wr == 1 ##1 fifo_2.ptr_wr == 1

H14 fifo_2.rd_i == 1 and fifo_2.ptr_rd == 0 ##1 fifo_2.ptr_rd == 1

H15 fifo_0.wr_i == 1 and fifo_0.ptr_wr == 0 ##1 fifo_0.ptr_wr == 0

H16 fifo_0.wr_i == 1 and fifo_0.ptr_wr == 1 ##1 fifo_0.ptr_wr == 0

H17 fifo_0.wr_i == 1 and fifo_0.ptr_wr == 1 ##1 fifo_0.ptr_wr == 1

H18 fifo_0.rd_i == 1 and fifo_0.ptr_rd == 0 ##1 fifo_0.ptr_rd == 1

The good and bad level-2 guidance hints are shown in Table 4.7.

Table 4.7: Level-2 assertions used in filtering process.

Type Assertion

Good (H21) broad_fifo.data_o == 41’h4c1 ##2 broad_fifo.data_o == 41’h4c9

Bad (H ′
21) broad_fifo.data_o == 41’h4c1 ##2 broad_fifo.data_o == 41’h4c5

The parts of the main property, converted into the form of an assertion15, that is used in

the Bayesian analysis is the following:

cbus_addr_o == 32’h2 ##0 cbus_addr_o == 32’h2

The results of the Bayesian filtering process is shown in Table 4.8. The selected assertion

(for level-1) when embedded into the property mentioned in Listing 4.3 is given in Listing 4.4.

Listing 4.4: Property for MESI-ISC with waypoint assertions at level-1 and level-2.

assert property(not(

(fifo_2.data_i==41’h4c1 and fifo_2.wr_i==1)

##[1:8]((fifo_2.data_i==41’h4c5 and fifo_2.wr_i==1)

and(fifo_2.wr_i==1 and fifo_2.ptr_wr==0

##1 fifo_2.ptr_wr==0))

##[1:8]((fifo_2.data_i==41’h8c9 and fifo_2.wr_i

15Since every node in the Bayesian network is an assertion.
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Table 4.8: Likelihood values for two-step filtering of waypoints.

Guidance Hints (H) ll at step-1 ll at step-2 Selected/rejected

H11 0.2738 0 Selected

H12 0.2109 0.2109 Rejected in step-2

H13 0.2479 0.2368 Rejected in step-2

H14 0.2738 0.2738 Rejected in step-2

H15 0 NA Rejected in step-1

H16 0 NA Rejected in step-1

H17 0 NA Rejected in step-1

H18 0 NA Rejected in step-1

and fifo_2.data_o==41’h4c1)

##[1:4](fifo_2.data_o==41’h8c9))

(broad_fifo.entry[1]==41’h4c1)

##[1:16](broad_fifo.entry[0]==41’h8c9)

##[1:16]((broad_fifo.data_o==41’h4c1)

and (cbus_addr_o==32’h2)##2(cbus_cmd2_o==3’b100))

##[3:20]((broad_fifo.data_o==41’h8c9)

and(cbus_addr_o==32’h4)##2(cbus_cmd2_o==3’b100))));

The model checking results for the guidance hints selected during the Bayesian filtering

along with some of the hints which are not selected are shown in Table 4.9. These results are

generated using Jaspergold model checker from Cadence in a PC with Intel Core i7-7700 CPU

@3.60GHz x 8 processor running on Ubuntu 18.04 LTS with a RAM of 8GB.

Table 4.9: Model checking results for MESI-ISC with different hints.

Guidance Hints (H) Time for model checking (s)

Original property without any hints 7303

H11 5844

H12 T.O. (Terminated at 15,544 s)

H13 T.O. (Terminated at 17,748 s)

H14 T.O. (Terminated at 16,8888 s)

Note that with the hint H11, we are able to complete the model checking in lesser time

compared to the time taken by the original property. Though it’s desirable, it is not always

guaranteed that we obtain gain in CPU time during model checking the property with assistance
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of guidance hints. We observed in our experiments for a wide range of properties that CPU gain

is a strong function of the properties under consideration and the guidance hints obtained with

our methodology. In the other two case studies, we observed a slight increase in CPU time

when model checking of properties is attempted with assistance from the guidance hints. Since

the next part (Aquila) requires a comparison of model checking time between different hints at

a level and not with the original property; this is not a concern for the current work.

4.4.1.2 Aquila (bug localization)

Using the steps to select signals from the CEX we have arrived at the signals given in Table

4.10 for this property. For those signals, we find the values present in various clock cycles.

Then use those signal-value combinations at the appropriate places in the property sequence

and see whether we obtain a case in which preconditions fail. The model checking results

for the properties modified using these signals are also shown in Table 4.10. The Listings

4.5 to 4.11 show the original property written for good design and various versions of it after

appending the signals with IDs 1-6. Note that as per the CEX signal selection methodology

discussed in Section 4.3.2 the signal ptr_rd (with signal ID 3) should not be considered for the

bug localization process. However, we have shown it in Listing 4.8 just to illustrate that it does

not help in localizing the bug.

Table 4.10: Model checking results for MESI-ISC with different signals from CEX.

ID Selected signal-value combinations Model checking status

1 fifo_2.fifo_depth_decrease==1 Preconditions fail, property passes.

Selected to find buggy lines.

2 fifo_2.fifo_depth_increase==0 Preconditions fail, property passes.

Selected to find buggy lines.

3 fifo_2.ptr_rd==0 Preconditions pass, property fails.

4 fifo_2.ptr_wr==0 Preconditions pass, property fails.

5 fifo_2.status_empty==0 Preconditions fail, property passes.

Selected to find buggy lines.

6 fifo_2.status_full==0 Preconditions fail, property passes.

Selected to find buggy lines.
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Listing 4.5: Original property written for good design (MESI-ISC).

assert property((

fifo_2.data_i==41’h4c1 and fifo_2.wr_i==1)

|=>(fifo_2.rd_i==1)

|=>(fifo_2.data_i==41’h4c5 and fifo_2.wr_i==1

and fifo_2.rd_i==0)

|=>##[0:1](fifo_2.data_i==41’h4c9 and fifo_2.wr_i==1

and fifo_2.data_o==41’h4c1)

|=>(fifo_2.rd_i==1)|=>(fifo_2.data_o==41’h4c5));

Listing 4.6: Appending signal ID 1 from CEX (MESI-ISC).

assert property((

fifo_2.data_i==41’h4c1 and fifo_2.wr_i==1)

|=>(fifo_2.rd_i==1)

|=>(fifo_2.data_i==41’h4c5 and fifo_2.wr_i==1

and fifo_2.rd_i==0 and fifo_2.fifo_depth_decrease==1)

|=>##[0:1](fifo_2.data_i==41’h4c9 and fifo_2.wr_i==1

and fifo_2.data_o==41’h4c1)|=>(fifo_2.rd_i==1)

|=>(fifo_2.data_o==41’h4c5));

Listing 4.7: Appending signal ID 2 from CEX (MESI-ISC).

assert property((

fifo_2.data_i==41’h4c1 and fifo_2.wr_i==1)

|=>(fifo_2.rd_i==1)|=>(fifo_2.data_i==41’h4c5

and fifo_2.wr_i==1 and fifo_2.rd_i==0

and fifo_2.fifo_depth_increase==0)

|=>##[0:1](fifo_2.data_i==41’h4c9

and fifo_2.wr_i==1 and fifo_2.data_o==41’h4c1)

|=>(fifo_2.rd_i==1)|=>(fifo_2.data_o==41’h4c5));

Listing 4.8: Appending signal ID 3 from CEX (MESI-ISC).

assert property((

fifo_2.data_i==41’h4c1 and fifo_2.wr_i==1)

|=>(fifo_2.rd_i==1)|=>(fifo_2.data_i==41’h4c5

and fifo_2.wr_i==1 and fifo_2.rd_i==0 and fifo_2.ptr_rd==0)

|=>##[0:1](fifo_2.data_i==41’h4c9 and fifo_2.wr_i==1

and fifo_2.data_o==41’h4c1)|=>(fifo_2.rd_i==1)

|=>(fifo_2.data_o==41’h4c5));

Listing 4.9: Appending signal ID 4 from CEX (MESI-ISC).

assert property((

fifo_2.data_i==41’h4c1 and fifo_2.wr_i==1)

|=>(fifo_2.rd_i==1)|=>(fifo_2.data_i==41’h4c5

and fifo_2.wr_i==1 and fifo_2.rd_i==0 and fifo_2.ptr_wr==0)

|=>##[0:1](fifo_2.data_i==41’h4c9 and fifo_2.wr_i==1

and fifo_2.data_o==41’h4c1)|=>(fifo_2.rd_i==1)

|=>(fifo_2.data_o==41’h4c5));
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Listing 4.10: Appending signal ID 5 from CEX (MESI-ISC).

assert property((

fifo_2.data_i==41’h4c1 and fifo_2.wr_i==1)

|=>(fifo_2.rd_i==1)|=>(fifo_2.data_i==41’h4c5

and fifo_2.wr_i==1

and fifo_2.rd_i==0 and fifo_2.status_empty==0)

|=>##[0:1](fifo_2.data_i==41’h4c9 and fifo_2.wr_i==1

and fifo_2.data_o==41’h4c1)

|=>(fifo_2.rd_i==1)|=>(fifo_2.data_o==41’h4c5));

Listing 4.11: Appending signal ID 6 from CEX (MESI-ISC).

assert property((

fifo_2.data_i==41’h4c1 and fifo_2.wr_i==1)

|=>(fifo_2.rd_i==1)|=>(fifo_2.data_i==41’h4c5

and fifo_2.wr_i==1 and fifo_2.rd_i==0

and fifo_2.status_full==0)

|=>##[0:1](fifo_2.data_i==41’h4c9 and fifo_2.wr_i==1

and fifo_2.data_o==41’h4c1)|=>(fifo_2.rd_i==1)

|=>(fifo_2.data_o==41’h4c5));

The RTL lines in the design which contain the signals in Table 4.10 for which precondi-

tions fail are presented later in Listing 4.25 in the Section 4.5. These lines are investigated for

the bug using the knowledge from the design specification. In this case study, the bug was not

found in any of those lines. Hence we do a secondary analysis on the lines which contain the

signals which influences the signals considered in Table 4.10 in Listing 4.25. Such an analysis

on wr_i takes us to the buggy RTL line shown in the secondary analysis section of the Listing

4.25.

The values of the signals given in Table 4.10 also helps in the primary and secondary

analysis as shown below.

• The use of signal ID 1 indicates that ~(fifo_depth_decrease == 1) is a must for the

property to fail. The following line from fifo_2 says that either wr_i = 1 or rd_i = 0

should happen.

215 assign fifo_depth_decrease = !wr_i & rd_i;

• The use of signal ID 2 indicates that ~(fifo_depth_increase == 0) is a must for the

property to fail. The following line from fifo_2 says that wr_i = 1 and rd_i = 0 should

happen.

211 assign fifo_depth_increase = wr_i & !rd_i;
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• From previous steps it can be concluded that wr_i has to be one and rd_i has to be zero

for the bug to appear.

• Signal ID 6 indicates that ~(status_full == 0) is essential for the bug to appear.

4.4.2 USB 2.0

4.4.2.1 Orion (guidance hint mining)

The bug: The bug is in usbf_pe (Protocol Engine inside the Protocol Layer) module of USB

design.

Buggy RTL line:

IDLE : if((!match_r)&&(!ep_disabled)&&(!pid_SOF ))

Original RTL line:

IDLE : if((match_r)&&(!ep_disabled)&&(!pid_SOF ))

The bug relates to the signal match_r being negated by a design mistake. When the logic

inside the if condition is true, then the state can transition to states other than IDLE.

The manifestation of the bug: The register files were getting updated with wrong values.

The reason for this behavior is the following. When the signal match_r is zero, the FSM in the

protocol engine is supposed to stay in the state IDLE. But because of the bug, it moves out

of the IDLE state and proceeds to UPDATE2 state in situations where other signals are in

favor of the state transition. This bug won’t be exposed if the other signals are not in favor of

this transition. That is the reason why this bug is excited only occasionally. In the UPDATE2

state, a signal uc_sta_set_d is set to 1, which enables the writes to register files.

The assumption about the broader buggy region: The debug engineer considers the possi-

bilities for register updates and shortlists the modules Protocol Engine and Packet Disassembler

as the potential broader buggy region. After that, they designed a property that ensures signal

flows which eventually enables one possible way of register file update. As in the previous

case study, there can be other possibilities which the engineer would consider if this assumption

proves out to be wrong; i.e., the negation of the property written with this assumption on the

bug passes. The property is shown in Listing 4.12. Following the approach similar to that of

the earlier case study on MESI-ISC, we have the modified property with level-2 guidance hint

as shown in Listing 4.13.

Listing 4.12: Original property for USB 2.0.
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assert property(not(

(~u1.u2.tx_dma_en_r)throughout(u1.u2.size==14’h8

##[1:$]u1.u2.sizd_c==14’h20

##[1:$](u1.u2.sizd_is_zero_d==14’h1

##1 u1.u2.idma_done==1))

##[1:$]u1.u3.state==10’b000000_0001

&&(~u1.u3.match||u1.u3.pid_SOF)

##0 u1.u3.uc_bsel_set==1’b0 ##1 u1.u3.uc_bsel_set==1’b1));

Listing 4.13: Original property for USB 2.0 with guidance hint assertion at level-2.

assert property(not(

(~u1.u2.tx_dma_en_r)throughout(u1.u2.size==14’h8

##[1:$]u1.u2.sizd_c==14’h20

##[1:$](u1.u2.sizd_is_zero_d==14’h1 ##1 u1.u2.idma_done==1))

##[1:$]u1.u3.state==10’b000000_0001

&&(~u1.u3.match||u1.u3.pid_SOF)

##[0:$](u1.u3.state==10’b010000_0000

##[1:$]u1.u3.state==10’b100000_0000)

##0 u1.u3.uc_bsel_set==1’b0 ##1 u1.u3.uc_bsel_set==1’b1));

Structural constraint generation: The signal selected for the generation of the COI signals

in this example is u1.u3.uc_bsel_set. Similar to the previous example, the signals present in

the COI are given as inputs to the guidance hint miner.

Some of the level-1 hints mined from the simulation trace are shown in Table 4.11.
Table 4.11: Level-1 assertions mined from the simulation trace (USB 2.0).

No: Assertion

H11 (~u1.u3.ep_disabled && u1.u3.ep_stall ##1 u1.u3.state==10’b000000_0010)

H12 (~u1.u3.ep_disabled ##10 u1.u3.rx_ack_to_clr_d==0)

H13 (u1.u3.token_valid && u1.u3.pid_ACK ##1 u1.u3.state==10’b010000_0000)

H14 (u1.u3.rx_active ##1 ~u1.u3.tx_data_to_cnt)

H15 (u1.u3.uc_stat_set_d ##1 u1.u3.uc_dpd_set)

The good and bad level-2 guidance hints are shown in Table 4.12.

Table 4.12: Level-2 assertions used in the filtering process (USB 2.0).

Type Assertion

Good (H21) (u1.u3.state==10’b010000_0000 ##[1:$] u1.u3.state==10’b100000_0000)

Bad (H ′
21) (u1.u3.state==10’b000000_0100 ##[1:$] u1.u3.state==10’b000000_1000)
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The parts of the main property, which is used in the Bayesian analysis, is the following.16

u1.u3.uc_bsel_set == 1’b0 ##1 u1.u3.uc_bsel_set == 1’b1

The results of the Bayesian filtering process is shown in Table 4.13.

Table 4.13: Likelihood values for two-step filtering of waypoints.

Guidance Hints (H) ll at step-1 ll at step-2 Selected/rejected

H11 0.4955 0 Selected

H12 0 NA Rejected in step-1

H13 0 NA Rejected in step-1

H14 0.497 0.497 Rejected in step-2

H15 0 NA Rejected in step-1

The selected assertion (for level-1) when embedded into the property mentioned in Listing

4.13 is given in Listing 4.14.

Listing 4.14: Property for USB 2.0 with waypoint assertions at level-1 and level-2.

assert property(not(

(~u1.u2.tx_dma_en_r)throughout(u1.u2.size==14’h8

##[1:$]u1.u2.sizd_c==14’h20

##[1:$](u1.u2.sizd_is_zero_d==14’h1 ##1 u1.u2.idma_done==1))

##[1:$]u1.u3.state==10’b000000_0001

&&(~u1.u3.match||u1.u3.pid_SOF)

##[0:$]( u1.u3.ep_disabled && u1.u3.ep_stall

##1 u1.u3.state==10’b000000_0010)

##[0:$](u1.u3.state==10’b010000_0000

##[1:$]u1.u3.state==10’b100000_0000)

##0 u1.u3.uc_bsel_set==1’b0 ##1 u1.u3.uc_bsel_set==1’b1));

The model checking results for the waypoint selected during the Bayesian filtering along

with some which are not selected is shown in Table 4.14.

4.4.2.2 Aquila (bug localization)

The CEX given by Model Checker, with the signals of interest, is the following.

• Cycle 1: (match = 1).

16Unlike the example of MESI-ISC, we have a part of the main property available in an assertion format itself

in the case of USB 2.0.
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Table 4.14: Model checking results for USB 2.0 with different hints.

Guidance Hints (H) Time for model checking (s)

Original property without any hints 121.4

H11 123.3

H12 Property passes

H13 Property passes

H14 140

H15 220.4

• Cycle 2: (csr[22] = 0), (state = IDLE), (match_r = 1), (ep_disabled = 0),

(pid_SOF = 0), (send_token_d = 0).

• Cycle 3 (send_token = 0).

Listing 4.15: Original property written for good design (USB 2.0).

assert property(

(match==1)##1(pid_SOF==0)&&(pid_PING==1)

&&(mode_hs==1)&&(csr[22]==0)

|=>(send_token==1));

Listing 4.16: Appending signal ID 1 from CEX (USB 2.0).

assert property(

(match==1)##1(pid_SOF==0)&&(pid_PING==1)

&&(mode_hs==1)&&(csr[22]==0)

|->(ep_disabled==0)

|=>(send_token==1));

Listing 4.17: Appending signal ID 2 from CEX (USB 2.0).

assert property(

(match==1)##1(pid_SOF==0)&&(pid_PING==1)

&&(mode_hs==1)&&(csr[22]==0)

|->(ep_disabled==0)&&(State==IDLE)

|=>(send_token==1));

Listing 4.18: Appending signal ID 3 from CEX (USB 2.0).

assert property(

(match==1)##1(pid_SOF==0)&&(pid_PING==1)

&&(mode_hs==1)&&(csr[22]==0)

|->(ep_disabled==0)&&(State==IDLE)&&(match_r==1)

|=>(send_token==1));
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Listing 4.19: Appending signal ID 4 from CEX (USB 2.0).

assert property(

(match==1)##1(pid_SOF==0)&&(pid_PING==1)

&&(mode_hs==1)&&(csr[22]==0)

|->(ep_disabled==0)&&(State==IDLE)&&(match_r==0)

|=>(send_token==1));

The precondition17 fails for the property shown in Listing 4.19. Using the last appended

signal match_r we perform the fine-grained bug localization to arrive at the suspicious lines

shown in Listing 4.26 in the Section 4.5.

4.4.3 PCI

4.4.3.1 Orion (guidance hint mining)

The bug: The bug for PCI design is in the module pci_perr_en_crit block inside the pci_parity_check

(parity checker block).

Buggy RTL line:

perr= (par_err_response_in||perr_generate_in) && (non_critical_par_in∧pci_par_in);

Original RTL line:

wire perr = par_err_response_in&&perr_generate_in &&(non_critical_par_in ∧

pci_par_in);

The manifestation of the bug: Due to this bug, the signal pci_perr_oe_o goes high, indi-

cating that there is a parity error, when it’s not supposed to do so.

The assumption about the broader buggy region: The erroneous signal pci_perr_oe_o is

a primary output of the PCI design. It comes from the module pci_io_mux, which gets some

of its inputs from the pci_parity_check block. Using this information the verification engineer

selects the region containing the modules pci_parity_check and pci_io_mux as the broader

buggy region. The property designed considering bug in this region is given in Listing 4.20.

Also, the modified version of this property with the level-2 guidance hint incorporated in it is

shown in Listing 4.2118.

Listing 4.20: Original property for PCI.

assert property(not(

17The precondition referred here is part of the property before send_token == 1 in Listing 4.19.
18The redundant ##0 in the level-2 guidance hint present in Listing 4.21 is due to the particular output format

of the assertion miner.
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parity_checker.pci_par_en_in##1~pci_perr_oe_o;));

Listing 4.21: Original property for PCI with waypoint assertions at level-2.

assert property(not(

parity_checker.pci_par_en_in

##0(parity_checker.pci_perr_en_out ##0 pci_io_mux.perr_en_in)

##1~pci_perr_oe_o;));

Structural constraint generation: The signal selected for the generation of the COI signals

in this example is pci_perr_oe_o. Similar to the previous example, the signals present in the

COI are given as inputs to the waypoint miner.

Some of the level-1 waypoint assertions/guidance hints mined from the simulation trace

are shown in Table 4.15.
Table 4.15: Level-1 assertions mined from the simulation trace (PCI).

No: Assertion

H11 (parity_checker.par_err_response_in

&& parity_checker.perr_generate

##1 parity_checker.pci_perr_en_out)

H12 (~parity_checker.non_critical_par

&& ~parity_checker.pci_par_in

##1 ~parity_checker.pci_perr_en_out)

H13 (parity_checker.non_critical_par

&& ~parity_checker.check_for_serr

##0 ~parity_checker.pci_serr_out)

H14 (parity_checker.pci_frame_reg_in

&& parity_checker.frame_dec2

##[1:$] parity_checker.check_for_serr_on_second)

H15 (parity_checker.pci_frame_en_in

&& parity_checker.frame_dec2

##[1:$] parity_checker.check_for_serr_on_second)

Good and bad level-2 guidance hints are shown in Table 4.16.

The parts of the main property which is used in the Bayesian analysis is the following:

pci_perr_oe_o == 0 ##0 pci_perr_oe_o == 0
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Table 4.16: Level-2 assertions used in the previous filtering process (PCI).

Type Assertion

Good (H21) (parity_checker.pci_perr_en_out ##0 pci_io_mux.perr_en_in)

Bad (H ′
21) (parity_checker.pci_serr_en_in ##1 parity_checker.pci_serr_en_out)

Table 4.17: Likelihood values for two-step filtering of waypoints.

Guidance Hints (H) ll at step-1 ll at step-2 Selected/rejected

H11 0.498 0 Selected

H12 0 NA Rejected in step-1

H13 0 NA Rejected in step-1

H14 0.4965 0.4775 Rejected in step-2

H15 0.4965 0.4775 Rejected in step-2

The results of the Bayesian filtering process is shown in Table 4.17. The selected assertion

for level-1 when embedded into the property mentioned in Listing 4.21 is given in Listing 4.22.

Listing 4.22: Property for PCI with waypoint assertions at level-1 and level-2.

assert property(not(

parity_checker.pci_par_en_in

##[0:$](parity_checker.par_err_response_in

&& parity_checker.perr_generate

##1 parity_checker.pci_perr_en_out)

##[0:$](parity_checker.pci_perr_en_out

##0 pci_io_mux.perr_en_in)

##1 ~pci_perr_oe_o);

The model checking results for the guidance hints selected during the Bayesian filtering

along with some which are not selected is shown in Table 4.18.

4.4.3.2 Aquila (bug localization)

The original property written assuming the design is good is given in Listing 4.23. After follow-

ing a sequence of modifications to the property we get one version for which the preconditions

fail and the property passes. That version of the property is given in Listing 4.24. Identifying

the last appended signal and following similar steps as earlier case studies, we arrive at the

buggy RTL line highlighted in Listing 4.27.

Listing 4.23: Original property written for good design (PCI).
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Table 4.18: Model checking results for PCI with different guidance hints.

Guidance Hints (H) Time for model checking (s)

Original property without any hints 0.7

H11 0.8

H12 1.6

H13 Property passes

H14 17.8

H15 16.5

assert property(

(pci_par_en_in==1)##1(par_err_response_in==0)

|->(perr_mas_detect_out==0));

Listing 4.24: After appending all shortlisted signals from CEX (PCI).

assert property(

(pci_par_en_in==1)

|->((perr_en_crit_gen.non_critical_par_in==1)

&&(perr_en_crit_gen.par_generate_in==0)

&&(perr_en_crit_gen.pci_par_in==0)&&

(perr_en_crit_gen.par_err_response_in==1))

|->(perr_en_crit_gen.perr==0)##1(par_err_response_in==0)

|->(perr_mas_detect_out==0));

4.5 Summary of Experimental results

The output of the entire framework is a set of lines in the RTL code, which we can say contains

the bug or can lead us to it. The results from our case studies are summarized in Table 4.19.

The RTL lines which are shortlisted for each of the designs is available in Listings 4.25 to 4.27.

It is to be noted that the number of RTL lines shortlisted depict those lines where the selected

signals19 are present. In other words, these lines need to be investigated for fine-grained bug

localization. For example, if the particular signal which we have identified is getting a particular

value assigned using some other signals, the bug could be in any of those signals also. One will

have to investigate those signals as well to catch the bug. Our method saves time by assisting the

verification engineer that they need to look only backward from a particular signal. Therefore,

with the proposed technique, we can easily arrive at a set of lines in the design responsible for
19for which the preconditions fail in Aquila.
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the buggy behavior. Table 4.19 summarizes the results for all three case studies where it can be

observed that the number of RTL lines (shown in the third column) is within 1% of total signals

in the design (shown in the fourth column).

Table 4.19: Summary of bug localization results.

Design # Signals related

to the bug

# of RTL lines

shortlisted

# Total lines in

the RTL

MESI-ISC 3 7 990

USB 2.0 1 5 4,062

PCI 1 3 16,693

Listing 4.25: The shortlisted RTL lines (MESI-ISC).

709 else if(fifo_depth==1&fifo_depth_decrease)

716 else if(fifo_depth==0&status_full&fifo_depth_decrease)

status_full<=0;

718 assign fifo_depth_decrease=!wr_i&rd_i;

711 else if(fifo_depth==0&status_empty&fifo_depth_increase)

715 else if(fifo_depth==FIFO_SIZE-1&fifo_depth_increase)

status_full<=1;

717 assign fifo_depth_increase=wr_i&!rd_i;

714 if(rst)status_full<=0;

---------------------------------------------------------

Secondary analysis from wr_i

120 else if (wr_i)

Listing 4.26: The shortlisted RTL lines (USB 2.0).

1864 always@(posedge clk)match_r<=match;

2005 always@(posedge clk)abort<=buffer_overflow|

(match&(state!=IDLE))|(match_r&to_large);

2024 always@(posedge clk)int_upid_set<=match_r&!pid_SOF&

((OUT_ep&!(pid_OUT_r|pid_PING_r))|(IN_ep&!pid_IN_r)

|(CTRL_ep&!(pid_IN_r|pid_OUT_r|pid_PING_r|pid_SETUP_r)));

2036 always@(state or ep_stall or buf0_na or buf1_na

or pid_seq_err or idma_done or token_valid or pid_ACK

or rx_data_done or tx_data_to or crc16_err or ep_disabled

or no_bufs or mode_hs or dma_en or rx_ack_to or pid_PING

or txfr_iso or to_small or to_large or CTRL_ep

or pid_IN or pid_OUT or IN_ep or OUT_ep or pid_SETUP

or pid_SOF or match_r or abort or buffer_done or no_buf0_dma

or max_pl_sz)begin

2050 IDLE:if(match_r&&!ep_disabled&&!pid_SOF)begin

Listing 4.27: The shortlisted RTL lines (PCI).
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12503 wire perr=(par_err_response_in||perr_generate_in)

&&(non_critical_par_inp̂ci_par_in);

12510 perr_en_reg_out<=#1 perr;

12512 assign perr_en_out=perr||perr_en_reg_out;

The prior work most closely resembling to our approach (specifically the Aquila i.e., bug

localization part of the work) is that of [24]. In this work, the authors have attempted localization

of bugs in the SVA representations assuming that the design is correct. However, we assume

that the properties are correct while the design is buggy.

4.6 Conclusion

This work proposed a methodology for design debugging with the assistance of the model

checking technique. While formal methods like model checking are useful in exhaustive func-

tional verification, they are hindered by scalability issues. This can be tackled to a significant

extent through guidance-based strategies. However, providing guidance hints in an automatic

manner is a non-trivial exercise. In one case study, the proposed technique of guidance filtering

provides suitable hints to the model checker such that CPU time is reduced. During debugging

by formal methods, efficient bug localization is often exacerbated by tedious counterexamples.

The proposed method of counterexample analysis assists in bug localization with the support

of guidance hints. The proposed work can be extended in multiple directions. First, enhancing

the quality of guidance hints generation with the help of directed testbenches during the mining

step. Second, the selection of signals from the counterexample trace (for Aquila) can also be

significantly improved to obtain a lesser number of RTL lines as suspect candidates during the

bug localization step. Third, automatically obtaining the broader buggy regions (for Orion)

needs to be investigated to ensure the minimization of false positives during the debug step.

Fourth, the guidance hint generation methodology needs to be further improved for obtaining

speed up in model checking for all designs.
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Chapter 5

Bug localization with Semi-formal

Techniques

5.1 Introduction

Bug localization is one of the most challenging steps in achieving the time-to-market deadlines

during integrated circuits development [82] [44] [83]. Automatic bug localization from simula-

tion traces is generally very tedious and requires multiple iterations [46, 84]. Effective design

bug localization offers significant benefits in quick design fixes [85,86]. However, for localiza-

tion to succeed, we require testbenches that can trigger interesting execution scenarios in the

design that can probably hint towards the bug. We refer to them as intelligent testbenches. This

approach’s rationale is that the testbenches can excite some design paths and lead the execution

to some internal states that are in an explicit/implicit relationship with the bug. We utilize a

genetic algorithm (GA)-based framework to obtain such testbenches.

As stated in the previous chapters, despite the wide usage of simulation-based verification

strategies, the completeness of the correctness can not be guaranteed [84, 87]. This problem of

completeness can be significantly solved by formal verification methodologies such as model

checking. However, automatic bug identification from the model checking process turns out to

be a tedious exercise [16, 25, 47, 75]. As a result of the growing design complexity, analyzing

generated counterexamples requires manual intervention for fine-grained bug localization. We

address this problem in this work through an automated methodological approach. Typically,

semi-formal methods have been found to be useful in bug hunting [7] and accelerating the veri-

fication tasks [10,48]. However, straightforward usage of semi-formal techniques for automatic
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bug localization is not trivial. We employ a mixture of formal and semi-formal methodologies

to address the bug localization in RTL design descriptions given a failing property.

5.2 Intelligent Testbench Design using Genetic Algorithm

Genetic Algorithm (GA) is a search-based optimization technique based on the principles of

Genetics and Natural Selection [88]. It is frequently used to find optimal or near-optimal so-

lutions to difficult problems which otherwise would take a relatively huge amount of time to

solve. Note that it is a probabilistic approach, thereby giving one or more than one solution de-

pending on the particular problem formulation. It includes the process of selection, crossover,

and mutation.

5.2.1 Basic Terminology

In any genetic algorithm-based framework, the basic terminology involves gene, population,

chromosome, individual, fitness, and selection. We briefly explain these terms here to elucidate

their usage.

5.2.1.1 Gene, Chromosome & Population

Fig. 5.1 represents a pictorial view of a population matrix. There are four arrays named A1, A2,

A3 and A4, each of them, is a chromosome. A chromosome is also called an individual. One

signal element of an individual is called Gene. The complete matrix is referred to as population.

Thus gene is the smallest set and population is the largest set.

Chromosome/
individual

A1

A4

A2

A3

0 0 0 0 0

0 0 1 0

1 0 1 0 1

0 1 1 0 0

1

Population

Gene

Figure 5.1: The concept of gene, chromosome and population in GA
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5.2.1.2 Fitness Function

The notion of fitness denotes the quality of a chromosome. In this way, the fitness function eval-

uates the fitness of a chromosome in the context of the particular problem getting formulated.

As it varies from one usage scenario to another, we explain in detail the chosen fitness function

in the experimental section.

5.2.1.3 Selection

After calculating the fitness, the mating parents are selected, which will give a new crossover

child. The selection of the mating parents are made on various strategies like rank-based selec-

tion, tournament selection, roulette wheel selection, etc.

Table 5.1: Rank-Based Selection

Chromosome Fitness Value Rank

A 10.06 3

B 15.01 1

C 13.02 2

D 9.67 4

E 1.97 5

Table 5.1 represents the fitness score of the chromosomes and their corresponding rank.

Rank is decided based on the fitness value. The higher the fitness higher will be the rank. Thus

if for mating, three parents need to be selected on the basis of rank, then parents B, C, and A

will be selected for the crossover.

5.2.1.4 Crossover & Mutation

In the process of crossover, some genes of the mating parent get swapped based on the crossover

point. The above Fig. 5.2 represents the one-point crossover strategy in which a crossover point

is chosen at the midpoint and half of the genes get swapped. By this process, new offspring

created, which works as the parent for the next generation. There are other types of crossovers

called the two-point and uniform crossovers. The generalization of one point and the two-point

crossover is referred to as uniform crossover.
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00 0 0 0 0
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A1

A2

A1

A4

0 0

1 1 1

01 1 1

0 0 0

A3
Crossover point

Figure 5.2: One Point Crossover

By the process of mutation, some bits in the chromosome get flipped. The process of

mutation happens very rarely, and it is performed after crossover. It is done to maintain diversity

in the offspring. In the below Fig. 5.3, three bits are flipped in a chromosome.

0 01 1 1 11 0 0 0 1 1

After mutationBefore mutation

Figure 5.3: Mutation

.

5.2.2 Proposed GA-based Methodology

Constraint

model

Test

vector Design

simulation

Simulation

trace Fitness

calculation

Check

termination

condition

stop

SelectionCrossoverMutationNew population

Figure 5.4: Diagram of GA-based Methodology

Fig. 5.4 represents a general GA framework. In the first run, the new population will be the

initial population, which is randomly generated by the GA framework. Based on the decoding

logic for the population, using the constraint model we will generate a file that contains the test
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vectors for the Design-under-Verification (DUV). Then, the design is simulated, and simulation

traces are obtained. Based on the Finite State Machine (FSM) coverage numbers, the fitness is

calculated. After that, we check for the termination conditions.

We have provided two termination conditions, 1st if the target reached and 2nd if the upper

limit of the generation, which is taken as 100. If any one of these two conditions is met, then we

stop the simulation. If the condition is not met then, we continue with the process of crossover,

mutation and get the new set of parents. The mutation is not done in each generation. We have

specified the mutation frequency for each generation that determines if the mutation is to be

performed or not.

5.3 Experiments and Results of GA-based Methodology

To run the experiments, we have used Modelsim simulator, beginning with a constrained-

random testbench. The fitness values are calculated by parsing the branch and FSM coverage

reports produced by Modelsim. The Genetic algorithm framework is a modified version of the

code available in GitHub.

This section discusses a Proof-of-concept example of a FIFO and two other experiments

on USB 2.0 [3] and PCI [4] designs from Opencores.

5.3.1 First In First Out (FIFO) of Various Sizes

FIFO of different sizes like 16, 64, and 256 are taken for the first experiment. We have set the

objective to make FIFO full, as buffer overflow is one of the trigger points of bugs, and it is an

important part of FIFO verification. The population size has been chosen as 8×6 i.e. there are

eight chromosomes, and each chromosome has six genes.

5.3.1.1 Chromosome Encoding

We constructed a constrained-random testbench that executes read (RD), write (WR), and reset

(RS) operations on FIFO. All the operations will be done consecutively, i.e., if there are six read

operations, then all the read operations are performed consecutively. We refer to specific values

of these operations/parameters as input directives. Let the sequence {RD, WR, RS, RD-6, WR-

5, RS-7} be an input directive. In this directive, the initial three words of RD, WR, RS represent
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the order in which the operation will perform, and later three words represent the frequency of

operation. So this directive means there will be six reads, five writes, and seven reset operations.

Table 5.2: Chromosome Encoding in FIFO

14 20 11 5 6 7

Table 5.2 represents decimal encoded directive of FIFO, here initial three genes, i.e., 14,

20, 11 are the weights of WR, RD, and RS sequence respectively, thus sequence of operation

will be {RD, WR, RS} and the last three genes, i.e., 5, 6, 7, are the frequency of operation

of WR, RD and RS operations, respectively. Thus, this chromosome will be decoded as the

generated test vector for {RD-6, WR-5, RS-7} operation sequence.

5.3.1.2 FIFO Design Bug Scenarios

One case of FIFO bug is if buffer_full signal comes one cycle later. Due to this bug, data will

be overwritten. The fitness function for this case is defined as below: eq. 5.1

Fitness = number of (write− read) operations (5.1)

Another case of buggy scenario in FIFO is if buffer_empty signal delayed by one cycle.

Due to this issue, the wrong data will be read by the user. Fitness is evaluated by the below

eq. 5.2

Fitness = number of (read− write) operations (5.2)

5.3.1.3 General Chromosome Encoding

In the previous experiment, we have taken a tightly constrained testbench, which does not in-

clude all the operations. So for all other modules of the design, we decided to proceed with an

unconstrained test setup. We formally define a term called sequence mentioned below in eq. 5.3

Sequence = all the signals in a design module except clock + no. of cycles (5.3)

79



Table 5.3: General Structure of a Chromosome

Sequence 1 Sequence 2 ... Sequence N

Table 5.3 represents a pictorial representation of a general unconstrained chromosome.

The parameter N will be chosen based on the design knowledge. The minimum no. of cycles

is equal to the total no. of states. The binary encoding scheme is selected for all the next

experiment as it gives more flexibility and the range of signals can be specified properly.

5.3.2 IDMA module of USB 2.0

5.3.2.1 The bug

In this experiment, we have selected a bug in the IDMA module of the USB 2.0 design. Due

to the bug, the signal idma_done goes high. The objective of the GA experiment is to get a

simulation trace that will contain the root cause of this bug. We follow two approaches to get the

simulation trace. In the first approach, we used branch coverage/hits to selected branches for the

fitness calculation. In the second approach, FSM state coverage is used for the same purpose.

Even though in terms of implementation, FSM coverage is a sub-set of branch coverage, FSM

coverage helps in faster convergence of the GA operation in some cases.

5.3.2.2 FSM coverage

The first step is to identify the state at which the idma_done signal is set to 1. We can see

that MEM_RD3 is the state we are looking for. Once the target state is identified, we need to

identify a possible set of states which can lead to the target state. Those states are referred to

as desired states. The states which are left out in the FSM after this process are grouped in the

category of undesired states.

In this example, the target state is MEM_RD3, and after the target state is identified,

we select a path from the initial state to the target state. Table 5.4 represents the desired and

undesired states for this example.

Table 5.4: Desired and Undesired States in the IDMA Module of USB 2.0

Desired states Undesired states

IDLE, MEM_RD1, MEM_RD2, MEM_RD3 WAIT_MRD, MEM_WR1, MEM_WR2
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5.3.2.3 Fitness function

Fitness is the most important parameter for the GA framework. It should be a progressive

parameter, not a binary parameter. As in the case of the binary, we will not be able to decide

whether we are moving in the right direction or not. The fitness function should be designed

such that there should be an indication of whether we are moving in the right direction or not.

In other words, the right direction would mean more hits to the desired states. The underlying

thought here is that the more the hits to the states in the paths leading to the target state, the

more is the chance for eventually reaching the target state. While this need not always be true

for all designs, this approach gave us promising results.

A simple version of the fitness function is given in Equation 5.4. We have also performed

experiments with fitness functions with varying weights given to hits to different states. In cases

where the simple fitness function didn’t help the GA converge, fitness functions with varying

weights seem to help.

Fitness = total hits to desired states (5.4)

The GA run converged for some runs and did not converge for others. For the runs which

converged, it took a maximum of 100 generations. For the runs which did not converge, we

experimented with different possible desired states. For example, the state IDLE was avoided

from the set of desired states in some runs. We observed that the high fitness value was some-

times due to the hits to only the IDLE states, misleading the GA framework giving it a false

feeling of progressing towards the target state. Manual interventions like these are required

while running GA for the new designs.

5.3.2.4 Branch coverage

The second approach for fitness calculation is using hits to selected branches during RTL simu-

lation. Following the same approach as that of the FSM coverage, we need to identify branches

in the RTL which can potentially lead to the target condition. Here, the target condition is the

signal idma_done becoming 1. The branches which were identified for this purpose are shown

in Table 5.5. To demonstrate the use of branch coverage, we have taken the branches (case

statements) corresponding to the states considered in Section above.
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Table 5.5: Desired branches in the IDMA module of USB 2.0

Desired branches

line 332: MEM_RD1:begin

line 338: MEM_RD2:begin

line 342: MEM_RD3: begin

5.3.2.5 Fitness function

The fitness function used in this experiment is shown in Equation below. The weight is an

integer number with one assigned to the lowest line number. The number is incremented by one

for the next higher line number and so on.

Fitness =

numdesiredstates∑
i=1

weighti ∗ hitsstatei (5.5)

The GA run converged within 60 generations providing us a simulation trace where the

target branches are hit.

5.3.3 PE (Protocol Engine) module of USB 2.0

In the second experiment with USB 2.0 we have chosen the protocol engine (PE) module inside

the protocol layer (PL).

5.3.3.1 The bug

Here, the signal match_r is inverted by a design mistake. The buggy and correct RTL lines are

shown below.

Buggy RTL line :

IDLE : if((!match_r)&&(!ep_disabled)&&(!pid_SOF ))

Original RTL line:

IDLE : if((match_r)&&(!ep_disabled)&&(!pid_SOF ))

When the match_r signal is zero, the FSM should remain in the IDLE state, but due to this

bug, it can traverse from the IDLE to the UPDATE2 state. In UPDATE2 state, uc_stat_set_d
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signal becomes 1, which enables the register write operation. This leads to an invalid register

write, causing data corruption in the register file.

5.3.3.2 FSM coverage

It is probable that the debug engineer can think that in UPDATE2 state resister write signal is

enabled. Thus UPDATE2 state is selected as the target state. Table 5.6 shows good states and

bad states. Considering various paths which lead to the target state from the IDLE state, a set of

desired and undesired states is identified. It is shown in Table 5.6. This table shows two cases

for two different experiments we have run.

Table 5.6: desired and undesired states of USB_PE module

Case Desired states Undesired States

1 IDLE, IN, IN2, UPDATE, UPDATE2 OUT, OUT2A, UPDATEW, TOKEN

2 IDLE, OUT, OUT2A, UPDATE, UPDATE2, UPDATEW IN, IN2, TOKEN

The fitness function used in this experiment is shown in Equation 5.6. We have chosen a

weight of 5 in this experiment.

Fitness = (fitness value 2 ) + (weight) ∗ (fitness value 2 ) (5.6)

The hits to the target states were achieved within 100 generations.

5.3.3.3 Branch coverage

The branches identified as desired branches for this experiment are shown in Table 5.7.

Table 5.7: Desired branches in the PE module of USB 2.0

Desired branches

line 732: 10’b000001_0000:

line 742: 10’b000010_0000: // This is a delay State

line 761: 10’b010000_0000:begin // Interrupts

line 768: 10’b100000_0000: begin // Update Register File

The fitness function used is a weighted sum of the hits to the desired branches, as discussed

in one of the previous sections. We were able to get hits to the target states in more than half of

the experiments.
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5.3.4 Wishbone module of PCI

The Wishbone master module (wb_master) of the Peripheral Component Interconnect (PCI)

[4] design module is selected for the experiment.

5.3.4.1 The bug

The bug is related to states assigned inside if and else conditions are swapped by designer

mistake.

Buggy RTL line :

if(last_data_from_pciw_fifo_reg)

n_state = S_TURN_ARROUND;

else

n_state = S_WRITE_ERR_RTY;

Original RTL line:

if(last_data_from_pciw_fifo_reg)

n_state = S_WRITE_ERR_RTY;

else

n_state = S_TURN_ARROUND;

Due to this bug, FSM can traverse to S_TURN_ARROUND state while the last transaction

is not completed while it was supposed to go to S_WRITE_ERR_RTY state and cleanup the

previous transaction. Because of this issue, FIFO might not be cleared from the last event before

starting the next transaction. This would lead to data corruption root cause of which would be

difficult to detect at a later stage.

5.3.4.2 FSM coverage

Once the erroneous data is observed, the debug engineer can come to the conclusion that the

data corruption might have happened in the current cycles or any cycle before that. It becomes

difficult to identify the good states only based on that assumption. Hence they need to identify

84



different states which will be covered to finish one full write operation. They can also refer to

the simulation trace with the erroneous behavior present in it, to reach a conclusion on desired

states. Out of many possible desired states, we will discuss the set of states which would

reproduce the bug in the simulation trace. It is given in Table 5.8.

Table 5.8: Desired and undesired states in the pci_wb_master module of PCI

Desired states Undesired States

S_WRITE, S_TURN_AROUND S_IDLE, S_WRITE_ERR_RTY , S_READ, S_READ_RTY

The fitness function used in this case is the same as the one given in Equation 5.5. After

adjusting the weights to the hits given to each of the desired states, we were able to convergence

in the GA experiment within 30 generations. As the end results, we obtained simulation traces

traversing through different paths, eventually reaching S_TURN_AROUND. Some of them

contain the state transitions related to the bug.

5.3.4.3 Branch coverage

Following the approaches mentioned above, we arrive at the set of desired branches shown in

Table 5.9.

Table 5.9: Desired branches in the pci_wb_master module of PCI

Desired branches

line 821: S_WRITE: // WRITE from PCIW_FIFO to WB bus

line 864: 3’b010 : // If writing of one data is terminated with ERROR

line 879: else // if there wasn’t last data of transfer

line 1107: default: // S_TURN_ARROUND:

The fitness function used in this experiment is similar to the one given in Equation 5.5.

In this experiment, we were able to produce a simulation trace, which can expose the buggy

scenario within 50 generations. To give a sense of timing, on average, it took 70 minutes to run

GA for around 100 generations. Again, this will depend on the complexity of the design.

5.3.5 Discussion

In the light of running different experiments on various designs, we can conclude that Genetic

An algorithm-based framework can be used for generating targeted simulation traces which can
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reproduce a buggy scenario. However, we observed during experiments that if the bug is too

deep inside the state space, it will require many runs and fine-tuning of the parameters of the

GA. Especially, the way we design the fitness function can play an important role. Additionally,

tuning the mutation parameter can help in getting faster convergence in cases where the scenario

we want to reproduce in the RTL simulation is not straightforward.

5.4 Assertion-based bug localization

Given the complexity of designing perfectly tuned testbenches for bug localization (as is clear

from the previous sections), we propose an alternative automated fine-grained bug localization

method. This method does not have strict requirements of a high-quality testbench. The specific

objective of this method is to get a set of potential buggy RTL lines which contain the root cause

of the failure of a property. The input of this RTL bug localization flow is a failing property and

the buggy design. Once we have the failing property, the first step is to generate more failing

properties. To achieve this, we modify the original failing property and run model checking

on them using the Jaspergold model checker [89]. The exact methodology of modifying the

original property is discussed later. The traces of the modified properties along with the trace

generated by the original property are used by the assertion miner (similar to the one presented

in Chapter 4) to generate assertions. Mined assertions are checked for their correctness using a

model checker. Those assertions that pass this step are analyzed in the subsequent steps. The

assertions are then filtered to avoid redundant assertions. The filtered assertions are then ranked

based on their potential to point towards the buggy RTL lines. In the last step, the RTL lines

pointed to by the high-ranked assertions are identified. These lines are the ones that potentially

contain the root cause of the failure of the original property. The overview of the proposed

assertion-based bug localization approach is given in Figure 5.5.

5.4.1 Steps of Proposed Methodology

Following are the major steps in the proposed assertion-based bug localization methodology:

1. Multiple failure trace generation

2. Assertion mining from the failure trace

3. Assertion filtering
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Generate more CEX

Original Counterexample (CEX)

Rank assertions

Filter assertions

Mine assertions from CEXs

Potential buggy RTL lines

Map assertions to RTL lines

Figure 5.5: Assertion-based bug localization

4. Assertion ranking

5. Assertion to RTL line mapping

5.4.2 Multiple Counterexample(CEX) Generation

As said before, we have a failing property from where the proposed methodology begins. Our

approach requires multiple traces with the same failure observed in each trace. We generate a

collection of such counterexample traces by iteratively modifying the property with the signal-

value combinations selected from the original counterexample. Since there is a large number of

signals in real designs, we need to identify a set of target signals that we need to look for in the

original counterexample for modifying the property. We will discuss that in the next section.

5.4.2.1 Target Signals

The outputs of all the modules to which the signals in the original failing property belong are

identified first. To cut down the number of signals further, we consider only the control signals

among them. The next step is to find the control signals in the Cone of Influence(COI) of each

of the signals identified above. A union of all these signals is considered as target signals.
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5.4.2.2 Property modification and counterexample generation

We take the original property and modify it multiple times by negating the signal-value com-

bination of the control signals present in the COI of target signals. The idea here is to find

different ways of exposing the bug. If the modified property is failing, we get a counterexample

to excite the bug. Hence, finally, we get multiple simulation traces from the failing original

property as well as the modified properties that failed.

When we modify the property with the signal-value combinations selected from the coun-

terexample trace, it is possible that the condition mentioned in the modified property is not

feasible in the design. Those properties will lead to cases where pre-condition failure happens

in the model checker. Such properties will be categorized by the tool as vacuously proven prop-

erties. We ignore such properties in our approach. On the contrary, when a property fails, there

is a chance that it leads to a different path to the bug. Many such counterexample traces ensure

that we cover a large number of scenarios where the bug is exposed. Mining assertions from

such traces will give us the relations between signals which are potentially pointing us towards

the bug. The procedure of assertion mining is discussed next.

5.4.3 Assertion Mining

The miner used in this section is a modified version of the one discussed in Section 4.2.1 of

Chapter 4. The key changes are given below.

5.4.3.1 Support to mine from counterexamples

The previous version of the miner was used to generate assertions from the RTL simulation trace

provided by the simulators like Modelsim (in the list format). This version of the miner accepts

the counterexample traces provided by the model checkers like Jaspergold (in the VCD format).

In short, this is a more generic version which that accepts the VCD files from simulators, model

checkers, etc.

5.4.3.2 Only single-bit signals

The modified version of assertion miner generates assertions with only single-bit signals. In the

previous version, the output was an assertion with > and < in it. Since we were considering
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multi-bit signals, the possibility of getting false assertions mined from the simulation trace was

very high. The modified version does not use > or < operators, instead use only == symbol.

5.4.3.3 Assertions with only selected signals

The miner involves building a decision tree using the signals present in the simulation trace.

When the designs become large, the size of the tree will increase, making the process of mining

time-consuming. Hence, we introduced a feature to mine the relations between only selected

signals. These signals can be stored in a file where the miner can access them. We generate a list

of control signals in the Cone of Influence(COI) of the target signals. These signals, in addition

to target signals stored in the above-mentioned file. The list of signals also has temporal signals.

Hence it also tells us if the value of a signal some clock cycles before the current cycle affects

the value of the target signal or not. For example, if [3]sig_a is present in the COI of a target

signal, it means that the value of the signal [2]sig_a before three cycles affects the value of the

target signal in current cycle.

5.4.3.4 Improved approach for temporal assertion generation

In the previous version of the miner, we used to feed a file with delay associated with each

signal with respect to the consequent signal. This was generated through structural approaches.

This approach led to more invalid assertions. Hence we eliminated the need for such an input

file and used the counterexample trace itself to generate the temporal information, as discussed

above.

The signal-value table will have entries with and without the temporal information present

in it. The decision tree will be constructed with all those signals, and assertions will be gen-

erated with the temporal value of signals still present at the start of the signal. This temporal

information present at the beginning of each signal is later converted to standard delays denoted

by ##temporal_value accepted by the SystemVerilog Assertions (SVA) format. The algo-

rithm used to convert begins with first finding the highest delay present in all the signals present

in the antecedent of the assertion. Then we divide the antecedent signals into different groups

corresponding to the same delays. Finally, we start writing the signals group-wise, starting with

the group with the highest delay and going in decreasing order of the delays while using the dif-

ference between consecutive groups to join two adjoining groups with sign ##. Let’s consider

an example where the CART decision tree generates the following assertion.
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[3]a && [2]b && [1]c |-> d

where a, b, c and d are the names of the signals in the design. It will be converted to a

standard SVA format, as shown below.

a ##1 b ##1 c |-> ##1 d

As discussed in Section 4.2.1, we pass the mined assertions through a model checker and

remove those which fail the model checking process.

5.4.4 Assertion Filtering

This step involves removing the redundant assertions. It is possible that multiple assertions lead

to the same path while trying to expose the bug. We need to take only one of these assertions,

and the other is declared redundant/common assertions.

Following are the rules to determine whether two assertions are common (similar to the

methodology presented in [46]).

• The consequent of both assertions have the same signal-value pair.

• The temporal delay between successive conjunctions in the antecedent of both assertions

are identical.

• Each of the conjunctions in both assertions should consist of the same set of propositions.

Here, conjunction is a set of signal-value pairs in the antecedent which have the same

temporal delay. If all three rules are followed, those two assertions are declared as common.

Finally, we get a list of unique assertions which we will be using for the next process. During

the filtering process, we also note the number of times an assertion was common with the other.

The assertion which has come common more times is more likely to point towards the bug.

5.4.5 Assertion Ranking

Ranking of the assertions is done to ensure that we give high priority to those assertions which

have more potential to localize the bug. The overview of the assertion ranking approach is given

in Figure 5.6.

The four parts of the assertion ranking step are discussed next.
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Figure 5.6: Assertion Ranking flow

5.4.5.1 Cone of Influence(COI) calculation of assertions

We calculate the combined cone of influence (COI) of all the signals present in the antecedent

of all assertions. As done in the mining, we consider only the control signals in the COI for

the final list of signals corresponding to an assertion. This is primarily because control signals

cover a relatively large portion of the design.

5.4.5.2 Intersection with original property COI

The next step is to calculate the control signals in COI of signals present in the antecedent of

the original failing property. For each assertion, we calculate its intersection with the original

property COI that gives us common signals in COI of both. Afterward, we normalize these

number of common signals for each assertions using the following formula to get the COI

factor.

COI factor = Number of common signals
Maximum number of common signals for any assertion

The final ranking is done on the basis of the COI factor. The assertions which have higher COI

factor are ranked higher.

5.4.5.3 Guarantee parameter

We calculate a guarantee parameter which means that we give a number on the basis of our

analysis which says that these number of top assertions out of the total ranked assertions are

enough for consideration. This is needed because the number of assertions can still be high after

filtering. Thus, we do not want the less important ones to hamper our final localization results.
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For calculating this parameter, we take the sum of the helpfulness factor of all assertions. Now

we start taking cumulative sum of the helpfulness factors from the top and when the cumulative

sum gets greater than a specific percent (e.g., 50%, variable) of total sum, we stop and say that

only the assertions from the top till the one where we stopped should be used for next process.

5.4.6 RTL Mapping

This is the final step of the proposed flow which maps the assertions to RTL lines. The overview

of the approach is given in Figure 5.7.

RTL lines

Extract branch statements

Assertion

Filter branches with antecedent signals

Filter branches based on module

Union of RTL lines with branches

Figure 5.7: RTL Mapping flow

5.4.6.1 Extraction of branch RTL lines data

As discussed earlier, we utilize static analysis to get CFG for our design. The CFG also contains

the lines where the control signals are present. By extracting these line numbers, we can know

all the branches present in our design since the control signals are present in the conditional

statement of branches. Thus we extract RTL line numbers of branches of types if-else, case,

and always statements.

We make two sections according to the type of branches. One section has information

about the case and if-else statements, while the other has information about always statements.

We remove the information of always statements, which only have a clock in their arguments

as it misleads us in terms of bug localization most of the time.
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5.4.6.2 Mapping RTL lines according to antecedent signals

For each assertion, we have determined the antecedent signals, and we also have information

about branch line number, branch type, and signals present in the conditional statement of

that branch. Now, for every assertion, we determine all the branches which have at least one

antecedent signal in their conditional statement. Again, we keep the tally of branches of each

line separated into two sections based on branch types, as stated before.

5.4.6.3 Module wise RTL Line filtering

After the last step, we get a high number of mapped RTL lines for each assertion. We deter-

mine the union of modules to which all the antecedent and consequent signals belong to each

assertion. For each assertion, out of all the mapped RTL lines, we consider only those branches

which belong to the union of the modules determined for that assertion. This gives us the RTL

lines mapped by each of the assertions.

5.4.6.4 RTL line ranking

In this step, we take the union of all the mapped RTL lines obtained after module-wise mapping

for all assertions. With this step, the assertion to RTL line mapping is completed. These mapped

RTL lines can be passed over to the verification engineer so that he/she can prioritize these RTL

regions for bug localization.

5.5 Experimental Results of Assertion-based Bug Localiza-

tion

An overview of the bug localization results is given in Table 5.10. Additional results in terms

of the percentage of the localized code can also be generated.

Table 5.10: Bug localization results

Design Bug number # Mined assertions # Filtered assertions # Ranked assertions
Rank of the

buggy always block

Rank of the

buggy case/if block

USB 2.0 1 2269 646 100 1 3

USB 2.0 2 101 60 58 1 2

PCI 1 1357 592 202 3 ∞
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The rank is shown as∞ in the table if the desired always or case/if block is not found in

the ranked assertion set.

5.5.1 USB 2.0

5.5.1.1 Bug 1

The first bug in the USB 2.0 design is given below.

Line 3117: IDLE: if(match_r && !ep_disabled && !pid_SOF) begin // correct

Line 3117: IDLE: if(!match_r && !ep_disabled && !pid_SOF) begin //buggy

The property which failed due to this bug is as shown below.

(!u1.u3.match_r)&&(u1.u3.state == 1)##1(!u1.u3.match_r)

[∗1 : $]|− > (u1.u3.uc_dpd_set == 0)

In this experiment, the rank of line 3100 (always block containing bug) as per always

ranking is 1. Also, the rank of line 3117 (case block containing bug) as per case+if ranking

is 3. To localize the bug, one should consider high-ranked if/case statements inside the high

ranked always statements first. If the bug is not found, look for lower-ranked if/case blocks

inside the high-ranked assertions and so on. Once all the if/case statements inside an always

block, move to the lower-ranked always blocks and repeat the process.

5.5.1.2 Bug 2

The first bug in the USB 2.0 design is given below.

Line 1772: else if(pid_TOKEN && rx_valid && rx_active && !rx_err) begin // correct

Line 1772: else if(pid_TOKEN && rx_valid && rx_active) begin // buggy

The property which failed due to this bug is as shown below.

(u1.u0.state == 2)&&(u1.u0.rx_err)|− > ##1u1.u0.state! = 4;

In this experiment, the rank of line 1753 (always block containing bug) as per always

ranking is 1. But the rank of line 1772 (if block containing bug) as per case+if ranking is same

as remaining 19. So, we need to give equal priority to all the lines inside the always block while

looking for the root cause of the bug.
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5.5.2 PCI

5.5.2.1 Bug 1

The first bug in the PCI design is given below.

Line 6839: n_state = S_IDLE; // Correct

Line 6839: n_state = S_READ_RTY ; // Buggy

The property which failed due to this bug is as shown below.

(pci_target_unit.wishbone_master.first_wb_data_access == 1)&&

(pci_target_unit.wishbone_master.rty_counter_almost_max_value == 0)&&

(pci_target_unit.wishbone_master.c_state == ‘WB_FSM_BITS ′h3)|− > ##1

(pci_target_unit.wishbone_master.c_state! = ‘WB_FSM_BITS ′h4);

In this experiment, the rank of line 1753 (always block containing bug) as per always

ranking is 3. The case statement(line 6832) with the buggy RTL (line 6839) is present in the

mapped RTL Lines. The rank of case/if block is shown as∞ for this experiment since its was

not in one of the top ranked assertions.

5.5.3 Discussion

We present some of the subtle differences between iterative model checking-based bug local-

ization (presented in Chapter-4) and assertion-based bug localization:

• In the former approach, we begin with a failing simulation error trace, while in the latter

approach, we start the localization procedure with a failing counterexample.

• Guidance hints are needed in the former approach (the hints assist in speeding the model

checking process), whereas these hints are not utilized in the latter approach. Given

the complexity of obtaining effective guidance hints, we believe that the latter approach

would find wider applicability. Although mining is used in both approaches, the former

technique requires mining from simulation traces to obtain assertions that are used as

guidance hints, whereas in the latter approach, assertion (used directly for bug localiza-

tion) are mined from a set of failing counterexample traces.
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• In the former approach, we need to construct a set of properties (targeting specific buggy

scenarios) that aid in the process of localization, while in the latter approach, the set of

properties is not required. Because of this reason, the former approach can not be fully

automated (as construction of property set is a manual step and error-prone), while the

proposed assertion-based bug localization can be fully automated without any manual

intervention.

5.6 Conclusion

Effective bug localization during verification is a challenging step in the development cycle of

complex hardware designs. While meeting different coverage goals/metrics is possible in the

verification process, yet bug localization can not be easily related to such goals. We proposed

a two-step methodology to achieve fine-grained design bug localization. In the first step, we

generate assertions from counterexample trace(s) through a mining exercise. As the second

step, the mapping of the assertions leads to specific lines (in RTL descriptions), which are the

root cause of the design bug. Experimental case studies substantiate the efficacy of the proposed

methodology. We also proposed a genetic algorithm-based testbench generation technique that

strives to overcome the inefficacy of random or constrained-random testbenches.
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Chapter 6

Instruction-Based Test

6.1 Introduction

Owing to the constraints for test time and cost, the full testing of chip is not a feasible option.

Hence, we require methods which will enable the chip to test for itself once manufactured.

These methods can also enable us to do the testing even after the chip is shipped (in-field

testing). There are two ways by which you can do the self testing, also termed as Built In Self

Test (BIST): hardware and software-based BIST (SBST). The traditional hardware-based SBST

leads to area overhead and additional power consumption. Hence, software-based self testing

becomes more attractive. Once test vectors are generated they are mapped to test instructions

using the information available in RTL and ISA. This ensures that all possible structural faults

are tested using the instructions. The main difficulty of this method is the generation of con-

straints required for the mapping process. One needs to have good knowledge of the RTL to

generate those constraints. The difficulty in generating the test instructions from the test vectors

also depends on the component under test. However, for the modules like Forwarding unit the

mapping process might take a good amount of time. Also the constraint extraction for all the

paths from the inputs of the forwarding unit to the primary input of the processor will cover a

good percentage of the design. With different coding styles followed by designers, it becomes

even more difficult to automate the process, which in turn would require manual intervention at

some stages.

We have identified drawbacks of both the template-based instruction sequence generation

method as well as the method of mapping of test vectors into test instructions. Very often in

the first case, the size of the test instruction sequence explodes and in the second case, the
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constrained test vector generation as well as mapping of test vectors into instructions are the

challenges. Broadly we can say that none of these methods are ideal for testing the full pro-

cessor. Some methods work really well for certain parts of the processor and performs poorly

for some other parts. Hence, the real challenge is to map different sections of the processor

with test generation methods ideal for it. To understand the real difficulties, we had to select

a block for which test instruction generation will not be straight forward. We have chosen the

forwarding unit of the MIPS pipelined processor [90] for that reason. The first step is to identify

the blocks in the forwarding unit and understand which test method which best suits them. It

became clear that for testing the control logic of the forwarding unit, we can easily generate

test instruction templates deliberately introducing dependencies. However, it is not guaranteed

that all the faults in the forward control logic will be detected using the above method, because

the faults should also propagate through the forward muxes which has 32-bit data inputs. These

faults along with the remaining faults in the left over parts of the forwarding unit (which con-

tains 6 muxes) need to be tested with appropriate method. Generating all possible combinations

of the data input is not required and also is not practical.

We chose to design the wrapper instead of specifying the constraints in the ATPG tool

because of two reasons. First one is the limitation of the Tetramax ATPG tool in accepting

certain constraints. Secondly, we wanted to keep the possibility of automating the constraint-

based test generation process. These test vectors are then converted into test instructions. Out

of multiple combination of test instructions which will serve the purpose of applying the test

vectors at the input of the forwarding unit, we have identified two major templates which will

cover all possible functional test vectors for the forwarding unit The test application is verified

by running Modelsim simulation using the testbench generated. In brief, the main contributions

of this chapter are the following.

• Validates the concept of mapping different design blocks with the optimum SBST testing

method [91] with forwarding unit testing

• Concept of generic wrapper design using constraints

• Proposes two instruction templates which can apply all possible functional test vectors in

the forwarding unit

It is also important to note that the generic methods might not give good fault converage for

all sections of the processor. Research by Gizopoulos et al. [92] demonstrating poor coverage
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for the pipelined logic is relevant in that sense. Results from their work show that customization

in standard SBST programs which targets functional blocks is needed to get good fault coverage

for special blocks like the pipelined logic. Since we are targeting maximum fault coverage for

the forwarding unit in this chapter, outputs from Bernardi et al. [63]’s research is also relevant.

They were successful in generating an instruction sequence template for testing the comparator

and muxes inside the forwaring unit. But it is to be noted that manual effort was involved in

generating the test data inputs needed for testing the MUXes.

6.2 Proposed methodology of Functional Test Generation

6.2.1 Forwarding unit operation

D_Rs1

D_MEM

M1

D_Rs2

D_MEM

D_WB

M3

D_Rt1

D_MEM

M2

D_Rt2

D_MEM

D_WB

M4

D_Rt2

D_MEM

D_WB

M5

Forward control logic

Rs1

D_Rs1

Rt1
Rs2
Rt2
R_MEM
R_WB
we_MEM
we_WB

Mux control signals

IF&ID RF EX
M1M1

MEM WB

Figure 6.1: Forwarding unit of MIPS 5-Stage pipelined processor

We are using the Forwarding unit of 5-stage MIPS pipelined processor available in Open-

cores [90] with minor modifications. It has six muxes (2 in the Register Fetch stage and 3 in

the Execution stage) and a forward control logic. D_Rs1, D_Rs2, D_Rt1, D_Rt2 are the 32-bit

data which will be passed through the registers if there is no data dependency. R_MEM and

R_WB are the destination registers of the instructions at the MEM and WB stages respectively.

Also D_MEM and D_WB are the data forwarded from the Memory and Write-Back stages

respectively. The 1-bit control signals we_MEM and we_WB are the write enable signals cor-

responding to the instructions at the MEM and WB stages.
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Table 6.1: Forwarding cases

R_MEM = D_Rs1 && we_WB = 1

R_MEM = D_Rt1 && we_WB = 1

R_WB = D_Rs2 && we_WB = 1

R_WB = D_Rt2 && we_WB = 1

R_MEM = D_Rs2 && we_MEM = 1

R_MEM = D_Rt2 && we_MEM = 1

R_MEM = R_WB = D_Rs2 && we_WB = we_MEM = 1

R_MEM = R_WB = D_Rt2 && we_WB = we_MEM = 1

The objective of this work is to generate a test instruction sequence which can detect

all possible functionally excitable stuck-at faults in the forwarding unit of the MIPS 5-stage

pipelined processor. We followed the steps mentioned below.

6.2.2 Work flow

The first step in this process is to identify the test instruction generation methods which best

suits each block inside the forwarding unit. Once that is done, test instruction sequences are

generated using those methods. These are then combined them to make a single testbench for

the processor. The synthesized gate-level netlist of the processor is then simulated in Modelsim

to generate the output VCD file which is used to do the fault simulation of the processor in

Tetramax ATPG tool. As shown in the Figure 6.2, we first do the full process with the testbench

which has only the instructions for testing the forward comparator logic as given in Section

6.2.3. In further iterations, it picks the test vectors generated using the method mentioned in

6.2.4 and use the instructions generated from them using the method mentioned in Section 6.2.5.

The relevant blocks for this step is highlighted in the Figure 6.3. After each iteration of fault

simulation, the faults which are detected by the simulation are stored in a table for the further

analysis.

6.2.3 Instruction template to test forward comparator logic

A detailed analysis will tell you that we can generate a test instruction template which will

emulate all the data dependencies given in Table 6.1. We use a combination of four instructions

100



Simulate designTest instr. gen. Fault sim.

Fault sim.

Simulate design TV to TI,
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TV: Test Vector
TI: Test Instruction
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Figure 6.2: Constrained random instruction sequence generation

Simulate designTest instr. gen. Fault sim.

Fault sim.

Simulate design TV to TI,
Merge previous TI

Fault sim.

TB

TV: Test Vector
TI: Test Instruction
TB: Testbench

TB
ATPG

Processor netlist

Module netlist

Covered all TV?

VCD

TV remaining?

Undetected faults

Figure 6.3: Test instruction generation from the test vectors
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for each dependency as given in Table 6.2.

Table 6.2: Instruction template to test the forward comparator logic

ADD R_WB, Rx1, Rx2

ADD R_MEM, Rx3, Rx4

ADD Rx5, Rs2, Rt2

ADD Rx6, Rs1, Rt1

6.2.4 Constraint-based wrapper design and test vector generation

Fault simulation is done using a VCD file. This file is generated from the simulation of the

processor netlist using the testbench which contains the a sequence of instructions as given in

the Section 6.2.3. The faults which are not detected using this simulation are used for generating

test patterns. We give them as the input fault list to the ATPG along with the extracted netlist

of the forwarding unit. To make sure that the test vectors are functionally applicable, we have

designed a wrapper module in Verilog which is connected at the input of the forwarding unit and

generated test for the combined module. The functional test vectors for the forwarding unit are

extrated from the gate level simulation results (in the form of a list file from Modelsim) of the

block given in Figure 6.4. The test vectors are then extracted from the simulation results which

contains the inputs to the forwarding unit. The constraints which we have used for designing

the wrapper are given in Table 6.3.

Design Under Test
(Forwarding unit)

Functional
inputs

Wrapper

Test Vectors

Figure 6.4: Wrapper and the forwarding unit
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Table 6.3: Constraints used for wrapper design

Case Constraint

A If (we_MEM = 0) then R_MEM = 5’h0

B If (we_WB =0) then R_WB = 5’h0

C If (Rt1 = 5’h0) then D_Rt1 = 32’h0 else if (Rt1 = Rs1) then D_Rt1 = D_Rs1

D If (Rs1 = 5’h0) then D_Rs1 = 32’h0 else if (Rs1 = Rs2) then D_Rs1 = D_Rs2 1

E If (Rs2 = 5’h0) then D_Rs2 = 32’h0 else if (Rs2 = Rt2) then D_Rs2 = D_Rt2

F If (Rt2 = 5’h0) then D_Rt2 = 32’h0 else if (Rt2 = Rt1) then D_Rt2 = D_Rt1

6.2.5 Test vector to test instruction conversion

We have identified two cases of test instruction templates which can be used for applying all

possible functional test patterns at the input of the forwarding unit. Table 6.4 and Table 6.5

contains the sample test patterns and the instruction templates which will apply that test pattern

at the input of the forwarding unit.

Store (SW) instructions are appended at the end of each set of instructions to ensure ob-

servability of the results.
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Table 6.4: Sample test pattern and the instruction template corresponding to that (Template 1)

we_MEM 1

we_WB 1

Rs1 00001 (R1)

Rt1 00010 (R2)

Rs2 00011 (R3)

Rt2 00100 (R4)

R_MEM 00101 (R5)

R_WB 00110 (R6)

D_Rs1 000A00AA

D_Rt1 000B00BB

D_Rs2 000C00CC

D_Rt2 000D00DD

D_MEM 000E00EE

D_WB 000F00FF

Loading registers

I1: LUI R9, 000C

I2: XORI R3, R9, 00CC

I3: LUI R10, 000D

I4: XORI R4, R10, 00DD

I5: LUI R11, 000A

I6: XORI R1, R11, 00AA

I7: LUI R12, 000B

I8: XORI R2, R12, 00BB

I9: LUI R13, 000E

I10: LUI R14, 000F

Buffer instructions

I11: SW R15, 0(R16)

I12: SW R17, 0(R18)

Instructions for test application

I13: XORI R5, R13, 00EE

I14: XORI R6, R14, 00FF

I15: ADD R7, R3, R4

I16: ADD R8, R1, R2
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Table 6.5: Sample test pattern and the instruction template corresponding to that (Template 2)

we_MEM 0

we_WB 0

Rs1 00001 (R1)

Rt1 00010 (R2)

Rs2 00011 (R3)

Rt2 00100 (R4)

R_MEM 00000 (R0)

R_WB 00000 (R0)

D_Rs1 000A00AA

D_Rt1 000B00BB

D_Rs2 000C00CC

D_Rt2 000D00DD

D_MEM 000E00EE

D_WB 000F00FF

Loading registers

I1: LUI R9, 000C

I2: XORI R3, R9, 00CC

I3: LUI R10, 000D

I4: XORI R4, R10, 00DD

I5: LUI R11, 000A

I6: XORI R1, R11, 00AA

I7: LUI R12, 000B

I8: XORI R2, R12, 00BB

I9: LUI R13, 000E

I10: XORI R5, R13, 00EE

I11: LUI R14, 000F

I12: XORI R6, R14, 00FF

Buffer instructions

I13: SW R15, 0(R16)

I14: SW R17, 0(R18)

Instructions for test application

I15: SW R5, 0(R0)

I16: SW R6, 0(R0)

I17: ADD R7, R3, R4

I18: ADD R8, R1, R2
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6.3 Experimental Result

The processor is simulated using the testbench with the instructions generated according to

the template mentioned in Section 6.2.3. The fault simulation of the full processor with only

the faults in the forwarding unit added to the fault list resulted in a fault coverage of 77.35%

[Total faults: 2060, Detected (DT): 1556, Possibly Detected (PT): 75, Undetectable (UD): 36,

Not Detected (ND): 393]. We used the faults from PT, UD and ND (Total: 504) as the input

fault list to the ATPG to generate test for the forwarding unit with wrapper (Section 6.2.4).

Fault simulation using the instructions generated by the methods discussed in 6.2.5 detected

449 faults out of the 504 faults. There are 55 faults which are Not Detected (Not Controlled: 4,

Not Observed: 51). Out of these 55 Not-Detected faults, 36 were anyway Undetected as per the

first simulation. In short, there are 19 faults which are structurally applicable but functionally

not applicable. Using the full test instruction set which combined the instructions from both

methods gives the result as given in Table 6.6.

Table 6.6: Fault coverage

Detected (DT) 2005

Not Detected (ND) 55

Fault Coverage (FC) 97.33%

6.4 Conclusion

Software-based self test is an attractive alternative to structural test. In this chapter, we at-

tempted to solve the automatic functional test generation problem. We have identified the need

for selecting optimum test generation methods for different blocks inside the processor and

validated it using the forwarding unit as an example. Subsequently, we need to generalize the

classification process of various other components (like hazard detection unit) for validation

of the proposed methodology. Additionally, the constraint extraction portion of the proposed

methodology needs to be fully automated to improve the quality of functional tests generated.
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Chapter 7

Conclusion and Future Work

Functional verification and test is an important problem in the overall design development and

execution cycle. Traditional approaches suffer from a range of problems. In this thesis, few of

these problems have been addressed. While formal methods like model checking are useful in

exhaustive functional verification, they are hindered by scalability issues. This can be tackled to

a significant extent through guidance-based strategies. For functional verification, we addressed

the model checking problem and bug localization issue. We have also addressed the functional

test pattern generation through mapping from structural faults-based test patterns to instructions

of a MIPS processor.

7.1 Conclusion

For formal verification of designs, guided state space traversal [9,10] methodologies have often

been utilized to varying degree of success. In this thesis, we revisited this concept with special

focus on automatically discovering effective guidance strategies. However, the complexity of

model checking problem does not get significant reduction unless suitable guidance is provided.

To address this issue, we have proposed a Bayesian model-based methodology for guidance

identification which also utilizes design static analysis and simulation traces based on high

level functional failure. With the help of a Bayesian modeling-based reasoning technique, we

succeed in significantly reducing the number of probable candidate states which can act as

guideposts. With the help of these guideposts, we achieve reduction in CPU time during the

model checking exercise. Additionally, in few cases, we are able to solve the time out problem

thereby taming the complexity of the design (and the particular property).
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During debugging by formal methods, efficient bug localization is often exacerbated by te-

dious counterexamples. To address this, we proposed a methodology for design debugging with

the assistance of the model checking technique. We also proposed a two-step methodology for

bug localization using assertions and the help of static analysis of the design description. First,

we obtain multiple error traces from the failing counterexample. Starting from the initial coun-

terexample error trace, we employ iterative model checking to generate different error traces

that are utilized to mine important assertions. In the second step, we utilize these assertions

for fine-grained design bug localization. In experimental case studies, we observed that the

proposed technique is able to obtain fine-grained bug localization at RTL.

Due to manufacturing at lower technology nodes, various kinds of defects can escape to

the manufactured silicon. Although structural tests are widely successful in solving manufac-

turing tets, complex functionalities (for instance, forwarding) of processor-based systems can

not be sufficiently tested. To solve this, functional tests can be applied. However, there are

challenges to ensure the fault detection with these type of tests. We proposed instruction tem-

plates for mapping the obtained functional tests to the forwarding unit of the MIPS processor.

Through usage of this technique, we observed that quality of functional tests can be significantly

enhanced.

7.2 Future Work

The proposed work can be extended in multiple directions.

• As mentioned before, providing guidance hints in an automatic manner is a non-trivial

exercise. In one case study, we observed that the proposed technique of guidance filtering

provides suitable hints to the model checker such that CPU time is reduced. Enhancing

the quality of guidance hints generation with the help of directed testbenches during the

mining step can be an important direction of this work. First, the Bayesian model can be

improved through better consideration of simulation traces. Second, the completeness of

sub-properties can be enhanced by writing more temporal properties. The enhanced guid-

ance hint generation methodology can assist us in obtaining speed up in model checking

for all designs.

• The selection of signals from the counterexample trace (for Aquila) can also be signif-

icantly improved to obtain a lesser number of RTL lines as suspect candidates during
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the bug localization step. Also, automatically obtaining the broader buggy regions (for

Orion) needs to be investigated to ensure the minimization of false positives during the

debug step. Hierarchical analysis of the design can be helpful in this step.

• The generated guidance hints can be analyzed for probable usage in the design abstrac-

tion. With the help of such abstraction, design approximation can also be carried out.

Since, the guidance hints can assist us in identifying the important design regions, we

believe that the proposed methodologies can be helpful in this direction also. Moreover,

guidance hints can help in the assessment of sensitive areas for probable information

leakage during design execution.

• Scalability issues of the proposed assertion-based bug localization technique can be inves-

tigated through experiments on large open-source designs like OPENSPARC processor

modules. Typically, such complex designs have very large number of modules which

would require many interactions of model checking the partitioned instances of the main

property. Therefore, a second level refinement of internal signals corresponding to these

partitions is necessary for reducing the probable buggy region candidates.

• The proposed functional test generation method needs to be tested for other hidden areas

in the design like hazard detection blocks. Moreover, the constraint extraction technique

needs to be automated. Improving the design of the generic wrapper can also be another

direction of extension of this work.

• Usage of deep learning approaches in different aspects of the addressed challenges is also

an important direction. For example, selection of guidance posts based on a training-

based model can be a viable alternative to the identification (and ranking) methodolo-

gies outlined in this thesis. Similarly, improving the quality of testbenches based on

deep learning techniques (like neural networks-based training) can be attempted. This

has enormous opportunities given the decades of product development/academic research

done so far in this area. This can enable us to a database of design bugs from published

errata documents and other publications.
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