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Abstract

We consider the optimal load assignment problem in a two-server
queueing system operating under stress, where the servers have deter-
ministic service times. In this model, the two-server queueing network
with finite queueing is servicing a sequence of i.i.d. requests charac-
terized by probabilities of accessing the two servers. We study the
problem of determining the probability distribution of the requests
for which the system throughput is maximized. We develop a Markov
chain model which models the behaviour of this system exactly, and
show the following:

1. For balanced servers, the optimal distribution of requests is bal-
anced, irrespective of the amount of queueing available at each
of the two servers.

2. When the servers are not balanced, the optimal distribution of
requests depends on the amounts of queueing at the two servers.

We contrast the optimal distribution under this model with standard
memory-less approximations of the same system and demonstrate that
the first result holds only on this model.

1 Introduction

In this paper, we study the queueing network shown in Fig. 1 (we will refer
to this network as a fork). This network consists of two servers (each with
a server queue) having deterministic service times which are serving a single
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input queue with head-of-line blocking. The following model describes the
behaviour of the system:

• Each job in the queue is destined for one of the servers and each job’s
destination is independent of all other jobs.

• We assume that the fork is under stress i.e. there is always some job
waiting in the input queue.

• When a server becomes free, it picks up the job at the head of its server
queue. A new job can enter the server queue at the same instant of
time. The server remains busy for a fixed amount of time (the service
time) after it picks up a job.

• At each instant in time jobs can move out from the input queue to the
server queues as long as there is room in the respective server queues.

• We assume that there is head-of-line blocking in the input queue; i.e. if
the job at the head of the queue does not have place in the destination
server queue, then it blocks subsequent jobs from moving out.

• At start-up time, we assume that both server queues are empty and
both servers are idle and ready to accept jobs.

As an example, this model can be used to describe the memory sub-system
in a VLSI system. The servers correspond to memories, and the input queue
represents the users of the memory sub-system. The under stress model is
applicable because the users are typically much faster than the memory sub-
system [10] [12]. However, this queueing structure appears in a large class of
electronic and computing systems as well as industrial operations which are
operating under high loads.

Let us label the servers as S1 and S2 and their service times (defined as
the time required to finish a job) as d1 and d2 respectively. The depths of the
queues in front of the respective servers are m1 and m2 respectively. Let x

be the probability that a job is destined for S1 (thus, 1−x is the probability
that a job is destined for S2). We define the throughput T of the fork to
be the steady state rate at which jobs cross the cut C. Our objective is to
determine the value of x that maximizes the throughput of the fork.

The first queueing networks to be analyzed (by Erlang and Jackson) as-
sumed Poisson arrivals, exponential server service times, infinite queue depths
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Figure 1: The Queueing Fork

and i.i.d. job distributions [1] [2] (systems with finite queue depths were as-
sumed to drop jobs when the queues got filled, for the purpose of analysis).
This combination of attributes makes the system completely memory-less.
Most of the research on queueing networks with discrete arrival processes
and service time distributions have modeled the system using Bernoulli and
Geometric random variables [3], which also have the memory-less property.

On the other hand, the queueing fork that we analyze has servers with
deterministic service times, finite queue depths with head-of-line blocking
and an i.i.d. arrival process that stresses the system. (In this paper, we will
also compare the results on our model with standard memory-less models for
the same queueing network, for representative cases.)

Poisson queueing networks with blocking have been studied in [4]. There
have been some studies of deterministic queues with respect to packet trans-
mission over communication networks [5] [7] [6] [8] and ATM networks [9]
[3]. The queueing structure we have studied has some similarities to the
structures in [7] and [6].

To analyze this system, we will use a discrete parameter Markov chain
model. We first present an analysis of the balanced server case (where server
speeds are equal) (in Section 2), and then the case where the servers are
not balanced (in Section 3). We are able to solve the Markov chains ana-
lytically for the balanced server case. For the unbalanced server case, we
use an automated procedure to generate and solve these Markov chains and
obtain the throughput for a given workload assignment. In these cases, we
can numerically determine the optimal workload (up to a specified level of
precision). (We have extended this procedure to the memory-less models
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studied as well.)
In this paper, we show the following:

• When servers are balanced (but queue depths are arbitrary), distribut-
ing the workload equally will maximize throughput. This lack of de-
pendence on queue depths in the balanced server case is surprising.

• When server speeds are not equal, the optimal distribution depends
on the queue depths. In particular the optimal distribution under the
assumption of finite queueing will in general be different from that
under the assumption of infinite queueing, however we observe (over a
large number of cases) that the faster server will get a larger share of
the load irrespective of the queue depths.

This technique can, in principle, be applied to forks with a larger number
of servers. However the number of states in the Markov chain increases
exponentially with the number of servers, and solving the Markov chains
becomes intractable on general purpose computers.

2 The Balanced Server Case

In this section, we will first demonstrate our analysis procedure on a fork
with servers having identical service times. Without loss of generality, we
may assume that the service time is equal to 1 time unit (due to the head-
of-line blocking and the fact that the servers are idle at start-up time, the
instants of time at which there is movement in the system will be multiples of
the common service time). We will refer to the unit time instants as clocks.
At every clock, jobs move out of the input queue until the job at the head
of the queue is destined for a server whose queue is full. Thus, the state of
the system at that clock (after the jobs have moved out of the input queue)
will be such that at least one of the server queues is full, and the state of
the input queue will be such that the job at the head of the queue will be
destined for a server whose queue is full.

We define the state of the system as the ordered pair of lengths of the
queues for the two servers (counting the jobs being served and the job waiting
at the head of the input queue). Because of the stress assumption, we need
to consider only those ordered pairs for which at least one of the queues is
saturated. We can hence list the state space as follows:

SDF2 = {(α, β) : α = m1+2, β ≤ m2+1 or β = m2+2, α ≤ m1+1} (1)
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We label and order the states as follows:

b1 = (m1 + 2, 0)
b2 = (m1 + 2, 1)
b3 = (m1 + 2, 2)

...
...

bm2+2 = (m1 + 2, m2 + 1)
bm2+3 = (m1 + 1, m2 + 2)
bm2+4 = (m1, m2 + 2)

...
...

bm1+m2+4 = (0, m2 + 2)

To obtain the transition probabilities suppose that the present state is
b = (α, β). By the next clock, one additional slot will become free in each of
the server queues and the queues would have Max(α−1, 0) and Max(β−1, 0)
entries in them; at the next clock new jobs would be admitted into the
queues until a state in the state space is reached. Let us take up b1 =
(m1 + 2, 0) as an example: by the next clock, the queue lengths will be
m1 + 1 and 0 respectively. Depending on the entries in the input queue, the
the possible next states (with their probabilities) can be determined in the
following manner: from b1 we can remain in b1 if the next entry in the input
queue (after the one waiting at the head) is also headed for the first server;
we can move from b1 to b2 if the next entry is targeted at server 2, and the
next-to-next entry is targeted at server 1; and so on.

Let us list out the transition probabilities for state b1:

b1 : x

b2 : xy

b3 : xy2

b4 : xy3

...
bm2+2 : xym2+1

bm2+3 : ym2+2

All the remaining states are unreachable from b1 in a single transition.
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Hence, the transition probability matrix for arbitrary m1 and m2 is:












































x xy xy2 . . . ym2+2 0 . . . 0
x xy xy2 . . . ym2+2 0 . . . 0
0 x xy . . . ym2 0 . . . 0

...
...

0 . . . x xy y2 0 . . . 0
0 . . . 0 x2 xy y . . . 0

...
...

0 . . . 0 xm1+1 . . . xy y 0
0 . . . 0 xm1+2 . . . x2y xy y

0 . . . 0 xm1+2 . . . x2y xy y













































(2)

Then, the stationary probability vector π corresponding to the transition
matrix in Eq. (2) is given by

π(bi) =
y

x
π(bi−1) for i = 2, 3, . . . (3)

That is,

π(bi) =
(

y

x

)i−1

π(b1) (4)

Let
γ =

y

x
(5)

Now, two jobs are completed every clock except when in states b1 and
bm1+m2+4, in which only one job is completed every clock. Hence, the ex-
pected throughput R is given by:

R = π(b1) + π(bm1+m2+4) + 2
m1+m2+3

∑

j=2

π(bj) (6)

= 2 − (π(b1) + π(bm1+m2+4)) (7)

= 2 −
1 + γm1+m2+3

1 + γ + γ2 + . . . + γm1+m2+3
(8)

Examining the derivative of this function, we find that the maximum is
attained at γ = 1.

This distribution (γ = 1) maximizes expected throughput independent
of the queue depths. Note, the distribution with γ = 1 equally balances the
workload across the two servers. Thus, we have the following result
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(m1, m2) Model − C Model − G Model − Q

(1, 2) 0.514 0.507 0.505
(1, 4) 0.514 0.506 0.510
(1, 8) 0.508 0.503 0.513

Table 1: Optimal Workload for Balanced Servers under Memory-less Models

Theorem 1 When the servers in the deterministic fork are balanced (have
equal service times), the optimal load distribution (for an i.i.d. stream of
jobs) is also balanced, irrespective of the queue depths in front of the two
servers.

We have also studied the fork under the following behaviour models
(which have the memory-less property) [11]:

• the servers have exponential service times and the fork is under stress
(labeled as Model-C)

• the servers have geometric service times and the fork is under stress
(labeled as Model-G)

• the servers have exponential service times and the job arrival process
is a Poisson process: we determine the workload distribution that will
support the maximum job arrival rate (labeled as Model-Q).

We have used the automated procedure mentioned in the introduction to
obtain the optimal distribution for Model-C and Model-G. For Model-Q, we
have derived an expression for the throughput [11] and then determined the
point of maximum numerically.

In Table 1, we show the optimal distribution (up to a precision of three
decimal places) for the following configurations of the fork with two servers:
both servers have identical service time distributions with mean 1 time unit,
the queue in front of the first server has depth 1 and the queue in front of the
second server has depths 2, 4, 8 (for Model-G we keep the mean of the service
time process at 2 clocks because a geometric process with mean 1 reduces to
a deterministic process).

As we can see, Theorem 1 does not hold for memory-less models of the
fork. In the next section, we take up the case where server speeds are not
equal.
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3 The Unbalanced Server Case

Let us next consider a fork with servers having arbitrary service times. With-
out loss of generality, we can select the clock to correspond to the highest
common factor of the service times of the two servers (due to the head-of-line
blocking and the fact that the servers are idle at start-up time, there will be
movement in the system only at time instants which are multiples of this
highest common factor).

Let the service times be in the ratio d1 : d2 (where d1 and d2 are mutually
prime integers). Now, the state of the system becomes the ordered set of
lengths of the queues (counting the jobs being served and the job at the
head of the input queue) and the number of pending clocks for the job being
served, on each of the servers:

SDF2 = {(α, β, zα, zβ) : α = m1 + 2, 1 ≤ β ≤ m2 + 1 or

β = m2 + 2, 1 ≤ α ≤ m1 + 1, zα = 1, 2, . . . d1, zβ = 1, 2, . . . d2}
⋃

{(α, β, zα, zβ) : α = m1 + 2, β = 0, zα = 1, 2, . . . d1, zβ = 0}
⋃

{(α, β, zα, zβ) : α = 0, β = m2 + 2, zα = 0, zβ = 1, 2, . . . d2}(9)

Let us take up the case where d1 = 1, d2 = 2, m1 = 1, m2 = 1. We label
the states as follows:

b1 = (3, 0, 1, 0)
b2 = (3, 1, 1, 2)
b3 = (3, 1, 1, 1)
b4 = (3, 2, 1, 2)
b5 = (3, 2, 1, 1)
b6 = (2, 3, 1, 2)
b7 = (2, 3, 1, 1)
b8 = (1, 3, 1, 2)
b9 = (1, 3, 1, 1)
b10 = (0, 3, 0, 2)
b11 = (0, 3, 0, 1)
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The transition probability matrix is as follows:













































x xy 0 xy2 0 y3 0 0 0 0 0
0 0 x 0 xy 0 y2 0 0 0 0
x xy 0 xy2 0 y3 0 0 0 0 0
0 0 0 0 x 0 y 0 0 0 0
0 x 0 xy 0 y2 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 x2 0 xy 0 y 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 x3 0 x2y 0 xy 0 y 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 x3 0 x2y 0 xy 0 y 0













































(10)

Then the expressions for the stationary probabilities are (we take π(b1) =
1 and will scale the expression for expected throughput appropriately later):

π(b1) = 1 (11)

π(b2) =
y

x2
(12)

π(b3) =
y

x
(13)

π(b4) =
y2

x4
(1 + xy) (14)

π(b5) =
y2

x3
(1 + x) (15)

π(b6) =
y3

x5
(1 + xy) (16)

π(b7) =
y3

x4
(1 + x) (17)

π(b8) =
y2

x6
(1 + xy) −

3y3

x4
(1 + x) −

y4

x5
(1 + xy) −

y2

x
(18)

π(b9) =
y3

x5
(1 + xy) (19)

π(b10) =
y3

x7
(1 + xy) −

y4

x5
(2 + 2x + x2) −

y3

x2
(20)

π(b11) =
y2

x7
(1 + xy) −

3y3

x5
(1 + x) −

y2

x2
(21)
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Figure 2: Workload Distribution for Maximum Throughput (I)

Now, one job is completed on the first server in every state where zα =
1 and similarly one job is completed on the second server in every state
where zβ = 1. Hence, the expression for expected throughput for the above
configuration is given by:

R = π(b1) + π(b2) + 2π(b3) + π(b4) + 2π(b5)

+π(b6) + 2π(b7) + π(b8) + 2π(b9) + π(b11) (22)

Numerically, we find that this function attains its maximum at x = 0.721
(precision up to three places of decimal).

Next, we have automated the procedure to generate and solve the Markov
chain for any given system configuration and job distribution. We have
studied the optimal distribution (up to a precision of three decimal places)
for a number of configurations of the fork. In Fig. 2 we present the optimal
distribution (labeled as p∗) for the following configurations: server service
times are in the ratio 1 : 2, 1 : 4, 1 : 8, both queue depths are kept equal and
the joint queue depth (labeled as m) is varied from 0 to 31.

We observe the following trends:

• the optimal distribution has a dependence on queue depths,

• as queue depths are increased the optimal distribution converges to-
wards the distribution that distributes the workload in the inverse ratio
of the service times (we will refer to this as the optimal distribution
under infinite queueing),
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d2 Original Model − C Model − G Model − Q

2 0.721 0.845 0.793 0.716
4 0.872 0.964 0.953 0.864
8 0.949 0.991 0.990 0.941

Table 2: Optimal Workload for Queue Depths 1 across all Models

• at smaller queue depths the optimal distribution places a larger share
of the load on the faster server.

At this point, let us compare the data for the optimal distribution with
the corresponding data using the memory-less models. In Table 2 we present
the data for the following configurations: the first server has mean service
time 1 and the mean service time for the second server is varied as d2 = 2, 4, 8,
both queue depths are 1.

As we can see, the values for optimal distribution depend on the system
model being used.

Next, let us return to our original model and look at the trends when
queue depths are not equal. (For this presentation we show the plots for
service time ratio 1 : 4 only, however we have verified the trends observed
on the configurations with service time ratios 1 : 2 and 1 : 8 as well.) In
Fig. 3 we show the plots when m1 and m2 are varied independently between
0 and 15. We observe that the optimal distribution places a larger share of
the load on the faster server as compared to the optimal distribution under
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infinite queueing, in all cases. In Fig. 4 we show the plots for m1 fixed at
0 and m2 varied between 0 and 127, and vice versa. The earlier observation
holds for each of these configurations.

It is clear that in the unbalanced server case, the optimal distribution has
a strong dependence on queue depths (which contrasts it with the balanced
server case).

4 Conclusions

In this paper, we have examined a queueing system (with servers having
deterministic service times) under stress. This model describes several real
life situations more accurately than the traditional memory-less queueing
network models. In particular, memory sub-systems in VLSI systems can be
modeled in this manner. For the two server case, we have presented a discrete
time Markov chain model in order to determine the workload distribution
that optimizes throughput.

Based on the analysis, we have shown that if the servers are balanced,
then the optimal load distribution is also balanced, irrespective of the queue
depths. This result can be contrasted with the behaviour of memory-less
queueing systems with finite queueing, in which the optimal load distribution
depends on the depths of the queues in front of the servers. Note that this
result is true under the assumption that the destinations of the jobs are i.i.d.
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Bursty distributions of the jobs would certainly change the conclusion.
For the unbalanced servers case, we find that the optimal distribution

depends on the service times as well as the queue depths. Based on our
observations, we make the following conjecture: the optimal distribution
favours the faster server (as compared to the distribution in the inverse ratio
of service times) irrespective of the queue depths.

Thus, it is clear that the two server fork under stress has behaviour pat-
terns that are different from the memory-less queueing networks. That is,
the established results from the analysis of queueing networks (M/M/1 to
M/G/n) are not applicable in this model. Since this model seems appro-
priate for many real-life situations, further study of such networks would be
valuable. In particular, the case of more than two servers with non-i.i.d.
arrivals is of great interest.
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