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Abstract

Today, VLSI systems for computationally demanding ap-
plications are being built as Systems-on-Chip (SoCs) with a
distributed memory sub-system which is shared by a large
number of processing elements. The memory sub-system is
a potential performance bottle-neck in the system. In this
paper, we consider such a distributed memory sub-system
and study the impact of address space distribution on sys-
tem performance. For a given application on such a sys-
tem, we introduce the notion of address assignment qual-
ity. We show that this assignment quality metric is strongly
correlated with memory sub-system throughput over large
regions of the design space. We show this using open loop
performance modeling of the memory sub-system, and jus-
tify this using a queueing and a Markov chain analysis.
Further, we develop a detailed memory sub-system model
for a multi-processor simulation system built on the Aug-
mint [14] framework. Using two (highly parallel) applica-
tions (matrix multiplication and bubble sort) we show that
application throughput and assignment quality are strongly
correlated over large regions of the design space. We infer
that maximization of the assignment quality metric can be a
fundamental goal in designing memory sub-systems and in
developing applications in such Systems-on-Chip.

1 Introduction

Many VLSI systems for demanding applications of to-
day such as network processing, wireless and storage net-
works are being built as Systems-on-Chip (SoCs) [1] [2]
which integrate a number of different circuit modules (e.g.
processors, memories, buses, hardware accelerators) on to
a single chip. For high performance, parallelism is incorpo-
rated by replicating components on the chip.

We visualize an SoC as consisting of four interacting
sub-systems:
• Processing sub-system: responsible for computations

and operations on data.
• Memory sub-system: responsible for storage and re-

trieval of data.
• Interconnect sub-system: responsible for the commu-

nication of data between different parts of the system.
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Figure 1. The SoC Memory Sub-system

• Peripheral sub-system: responsible for providing an
interface to the external world.

The memory sub-system is organized as a distributed
shared memory (DSM) constructed using available mem-
ory technology (SRAMs, DRAMs, CAMs). Of the four
sub-systems listed above, the memory sub-system is likely
to be a performance bottle-neck since memory speeds are
not scaling as rapidly as processor speeds [4] [3] and the
shared memory property restricts the amount of parallelism
that can be incorporated.

Among the reported VLSI system design approaches,
there is a trade-off between the use of detailed models [5]
[7] [6] (with simulations being used to evaluate designs) and
the use of simple models or metrics [8] (where analytical
optimization techniques can be applied). It is not feasible
to use simulations to explore a large design space and sim-
ple models may not accurately predict actual system perfor-
mance, hence hybrid approaches (where metrics are used to
obtain an initial design and simulations used to refine the
design) are attractive options [9]. Our research work is di-
rected towards identifying simple models and metrics for
the SoC memory sub-system and establishing their validity.

The memory sub-system receives data accesses from the
rest of the SoC. Each access is directed towards a logical ad-
dress which resides in one of the physical memory devices
(or modules). The memory sub-system interacts with the
rest of the system as shown in Figure 1. From a memory
performance perspective, we expect the address space as-
signment, which is the map between logical addresses and
physical locations, to play an important role. In this paper
we establish this relationship using empirical and analyti-
cal arguments by studying a metric for the address space
assignment problem: our objective is to maximize memory
sub-system throughput, and hence SoC throughput.

We start (in Section 2) by introducing three models for
the SoC memory sub-system: an elementary model, an open



loop performance model and a detailed simulation model
(which also captures the interaction with the processing
sub-system). Using the elementary model, we define (in
Section 3) an assignment quality metric for any given ad-
dress space assignment. Using the open loop performance
model (Section 4) and the simulation model (Section 7)
we study the correlation between assignment quality and
throughput. We find a strong correlation over a large region
of the design space (but not over the entire design space).
The simulation data also establishes the validity of the open-
loop performance model for the memory sub-system.

In order to understand the observed correlation, we have
used a queueing model (under Poisson approximations)
and a discrete parameter Markov Chain analysis (for small
sizes) of the memory sub-system (the details can be found
in [16]). Using the results of these analysis we show that as-
signment quality is directly related to memory sub-system
throughput (in Section 5 and Section 6 respectively), thus
confirming the empirical observations.

2 Memory Sub-system Models

In this section, we introduce a series of three models for
the SoC memory sub-system in increasing order of detail.

2.1 The Elementary Model

This model comprises the following simple visualization
of the memory sub-system:
• The memory sub-system consists of a set of memory

modules M = {M1, M2, . . .Mp}. Each module (Mi)
has a storage capacity Ωi, access rate µi and an access
latency τi. The data size for all accesses is fixed.

• The application views the memory sub-system as a
logical address space A = {S1, S2, . . . Sk}. Each log-
ical address corresponds to the same amount of storage
and the relative frequency of accesses to each address
is known (let the access frequency to Sj be fj).

• The logical addresses are assigned to the physical
memory modules.

In this model, it is assumed that each module works in paral-
lel on the accesses directed towards it, and the time taken to
completely process the trace is determined by the module
that takes the longest time to complete its sub-trace. The
throughput of the memory sub-system in this model (de-
fined as number of accesses served per second) can then be
shown to be µ = mini µi/Fi, where Fi is the relative access
frequency to module Mi.

2.2 The Open Loop Performance Model

The next model looks at the memory sub-system as an
isolated system which responds to a sequence of accesses:
• The physical view is as shown in Figure 2. We assume

that the ports, nets and arbiter have a very high band-
width and very low latency, hence memory module ac-
cess times and queue sizes are the only performance
critical parameters.
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Figure 2. Open Loop Performance Model
• The parameters for a module include those in the ele-

mentary model and the size of the queue in front of the
module (mi) in terms of number of accesses.

• The application provides an access trace to the mem-
ory sub-system, which may be known or generated by
a stochastic process.

In this model we assume that the memory sub-system is
under stress: there are always accesses waiting at the in-
put port. The access at the head is placed into the queue of
the module it is directed towards as soon as there is space,
blocking subsequent accesses in the mean time. Each mod-
ule serves the access at the head of its queue at intervals
of its cycle time (reciprocal of access rate). The head-of-
line blocking at the input port causes an under utilization
of the modules: some modules may be idle when they have
accesses blocked at the input port.

2.3 The Memory Sub-system Simulation
Model

This is a detailed model for the SoC memory sub-system,
for a simulation system that is also intended to accurately
capture the interaction with the processing sub-system. We
assume that the SoC is synchronous and all measurements
of time are in terms of the system clock.

The physical view is in the form of a template and shown
in Figure 3. This template is general enough to model a
wide range of distributed memory sub-systems and contains
the following components:
• Memory modules: These are the main data storage

components. Each module is a simple random access
device and is characterized by an access cycle time.

• Ports: These are points of entry or exit for the memory
sub-system, and provide connections to the processors.

• Queues: These serve as a first-in-first-out (FIFO) tem-
porary storage space for accesses and are characterized
by their size in terms of number of accesses.

• Arbiters: These devices arbitrate at points where mul-
tiple paths converge. The default policy is first-come-
first-served (FCFS) and they are characterized by a cy-
cle time (time required to make one decision).
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Figure 3. Simulation Model

• Distributors: These devices direct the accesses at
points where multiple paths diverge and are character-
ized by a cycle time.

• Wires: These are long distance interconnects, they
may be pipelined and are characterized by number of
stages.

The path taken by a typical access is also indicated in
Figure 3. The write accesses are presently assumed to return
an acknowledge before the processor thread can continue
and also follow the same path as the read accesses.

The application programs are written as parallel algo-
rithms in a high level language. The simulator is intended
to simulate the application running in parallel on multiple
processors in tandem with the memory sub-system model.

Our present models treat all accesses as having equal
data size, however it is simple to extend these models to
account for different access data sizes. Our present mod-
els also neglect techniques such as caching and row buffer-
ing (these techniques can be applied independently of the
address space assignment). It is easy to incorporate such
techniques into advanced versions of each of the models.

3 Address Space Assignment Quality

Recall the elementary model for the memory sub-system
and note that µ0 =

∑p
j=1 µj is the maximum access rate

(throughput) the memory sub-system can support.
An Address Space Assignment (Θ) allocates each address

to a module subject to the storage capacity constraints:

Θ : AS → M such that∑
i:Θ(Si)=Mj

1 ≤ Ωj j = 1, 2, . . . p

Given an assignment Θ, the relative access frequency to
module Mj is Fj =

∑
i:Θ(Si)=Mj

fi. We define the effec-
tive load on the module as lj = Fj/µj and the total load on
the memory system as L(Θ) = maxj lj .

Expected access rate is given by: R(Θ) = 1/L(Θ). The
assignment that gives maximum expected access rate (let
Rb = µ0) will balance the effective load across all modules:

lj =
Fj

µj
= c ∀j ⇒ c = 1∑

p

j=1
µj

The assignment that gives minimum expected access rate
assigns the entire load to the slowest module: Rw =
minj µj . We define assignment quality ‘q(Θ)’ as:

q(Θ) = R(Θ)
Rb−Rw

− Rw

Rb−Rw

The assignment quality metric ranges from 0 to 1, and is
linearly related to expected access rate in this model.

In the subsequent sections we will establish the rela-
tion between assignment quality and performance on the
more realistic open loop performance model and also on
the detailed simulation model. We expect assignment qual-
ity to give a reasonably good estimate of system perfor-
mance when the access stream is i.i.d. across the address
space. Formulating appropriate metrics for an access stream
with correlations and time-varying distributions form sepa-
rate directions of research. Certain aspects of time-varying
access patterns have been addressed in [13].

4 An Empirical Study on the Open Loop Per-
formance Model

In this section we take up the open loop performance
model and generate i.i.d. access traces. We have used
PARTSim, an SoC performance modeling and simulation
tool suite for trace generation and simulation.

We study memory sub-systems built up of 2, 4, 8, 16
and 32 (non-pipelined) modules. In this paper we present
data for the 16 module case. We have observed identical
trends over the entire range from 2 to 32 modules [17]. For
each system size we consider various sets of module access
rates (labeled ds 1 - 5) ranging from a system with identi-
cal modules to one where the maximum imbalance in mod-
ule access rates is 1:20. We consider all modules to have
identical queue size m, which we vary between 1 and 50.
We vary assignment quality from 0.0 to 1.0 in steps of 0.05
and corresponding to each assignment quality we generate
a random set of module access frequencies.

In Figure 4 we present the observed dependence of mem-
ory sub-system throughput (T (Θ)) on assignment quality
(q(Θ)) for select queue sizes (for ds 1). In Figure 5 we
present the observed correlation between throughput and as-
signment quality as the queue size is varied.

We observe a strong correlation in all cases and this cor-
relation improves as queue sizes are increased. The mini-
mum correlation observed for the system with 2 modules is



Figure 4. Throughput (16 Modules, ds 1)

Figure 5. Throughput Corr. (16 Modules)
0.95 and reduces to 0.92 as the number of modules is in-
creased to 32 [16].

We next take a closer look within the following ranges of
assignment quality: 0.9−1.0, 0.8−0.9, 0.4−0.5 and 0.0−
0.1. We vary assignment quality in steps of 0.02 within each
range. In Figure 6 we show the mean correlation (across ds
1 - 5) of memory throughput with assignment quality.

We observe that with small queue sizes the correlation
is weak in the higher ranges of assignment quality. The
extremely low correlation leads to the conjecture that the
assignment with maximum quality may not always be the
assignment that gives maximum throughput. This conjec-
ture is validated in the Markov Chain analysis (Section 6).

Based on our observations we make the following con-
clusions: assignment quality gives a good prediction of
memory sub-system throughput at a coarse level, however
assignment quality is not a good prediction of memory sub-
system throughput at a fine level within higher ranges of
assignment quality when queue sizes are small.

We define the region where memory sub-system
throughput is strongly correlated with assignment quality as
the linear region. Within the linear region, throughput can
be approximated as a linear function of assignment qual-
ity where the coefficients of the approximating polynomial
depend on the queue sizes [16].

Figure 6. Throughput Correlation in Specific
Ranges of Assignment Quality (16 Modules)

This study establishes the address space assignment
problem as a fundamental design problem towards enhanc-
ing memory sub-system throughput and that assignment
quality is a strong candidate as a performance metric when
queue sizes are not small. We will justify this conclusion
using analytical techniques in the next two sections.

5 A Queueing Network Analysis of the Open
Loop Model

To understand the observations in the previous section
we model the access stream as a Poisson process and the
module service times as exponentially distributed [10].

Let the access arrival process be Poisson(λ0) and the ser-
vice time distribution for module Mi be Exponential(µi).
Let pi be the probability that an access is directed to-
wards module Mi. Recall mi is the queue size for Mi and
µ0 =

∑p
j=1 µj is the maximum access rate supported.

We analyze the system as an open queueing network us-
ing the approximations in [11]. (The complete details of our
analysis are in [16].) The module queues are not blocked
by any downstream nodes. We approximate the probability
with which they will be full by the probability an M/M/1
queue has length greater than mi + 1: (λ0pi/µi)

mi+2 [11]
(we add ‘1’ to account for the access being served).

Next we model the input port queue as a Hyperexponen-
tial distribution [11], and the expected service time is given
by: τ =

∑p
i=1 pi(λ0pi/µi)

mi+2/µi. For the maximum ar-
rival rate supported, τ = 1/λ0 and λ0 must be maximized.

We are able to solve this problem using Lagrange mul-
tipliers when all queue sizes are equal. The solution is:
pi = µ

1+1/(m+2)
i /

∑p
i=1 µ

1+1/(m+2)
i . As m increases,

pi → µi/µ0 (the assignment with maximum quality).
This confirms that at small queue sizes the assignment

that gives maximum expected throughput differs from the
assignment with maximum quality, however the respective
assignments converge as queue sizes are increased.



Figure 7. Assignment Quality Giving Maxi-
mum Expected Throughput

6 A Markov Chain Analysis of the Open
Loop Model

In this analysis we build and analyze a discrete parameter
Markov Chain for the open loop memory sub-system model
and an i.i.d. access trace. We define the state of the system
as the length of the queue and number of pending clocks
for the access being served on each module, along with the
destination of the access at the head of the input port queue.
We can hence list the state space. From the module access
frequencies we get the transition probability matrix and then
the stationary probability vector and expected throughput.
A demonstration of this procedure on some simple cases is
available in [16], here we shall only present the results.

First, consider a memory sub-system having two identi-
cal modules (M1 and M2) with queues of size m1 and m2

respectively. Let each access be directed towards M1 with
probability x, then the expected throughput is given by:

R = 2 −
1 + γm1+m2+1

1 + γ + γ2 + . . . + γm1+m2+1

where γ = (1−x)
x . The maximum of this function is attained

at assignment quality q = 1.0 for all queue sizes.
Next, consider a system with two modules with service

times 1 and d and having equal queue size m. For d = 2
and m = 1, we have observed that the throughput attains
its maximum at x = 0.746 (accuracy up to three places of
decimal), whereas the assignment with maximum quality is
at x = 0.667 [16]. In Figure 7 we present the assignment
quality giving maximum expected throughput (q∗) for d =
2, 4, 8 and m varying from 1 to 32.

We again find that at small queue sizes the assignment
that gives maximum throughput differs from the assignment
with maximum quality, and there is a convergence as queue
sizes are increased. This explains the observed empirical re-
sults and confirms the important role that assignment qual-
ity plays in capturing memory sub-system throughput.

Figure 8. Execution Time Observations

7 A Memory Sub-system Simulator for
Multi-processor Systems: A Case Study

We have developed a memory sub-system simulator [15]
which incorporates the simulation model introduced in Sec-
tion 2 and works on the Augmint platform [14] (which is
a simulation framework for multi-processor systems using
the Intel x86 processor). The system clock is assumed to
be the processor clock. The user can write application pro-
grams in C using a multi-threaded format.

We use the simulator to understand the dependence of
application performance on assignment quality as well as
judge the validity of the open loop memory sub-system
model as a means of predicting SoC performance. We have
selected two applications for this case study: matrix mul-
tiplication and bubble sort (the details are in [16]). In our
experiments, we have split the address space into 32 distinct
memory spaces using the 3rd to 7th LSBs of the virtual ad-
dress (since the last two bits are always 00).

In our experiments we consider memory sub-systems of
size 2, 4 and 8 modules. The memory sub-system has a
single input port and a single output port, all arbiter and
distributor cycle times are two clocks, and all wires have
a single stage. We vary module latencies as follows: half
of the modules have latency d0 clocks and the remaining
have latency r × d0 clocks. We consider d0 = 2, 5, 10, 20
and r = 1, 2, 10. We keep all queue sizes equal for an ex-
periment and vary the queue size as 2, 8, 32. For each mem-
ory sub-system configuration we generate approximately 30
different address assignments, such that they span the as-
signment quality axis well.

In Figure 8, we show as a representative plot, applica-
tion execution time versus assignment quality for the bubble
sort application on the memory system with 4 modules for
d0 = 10, r = 1. In Table 1 we tabulate the correlation of
application throughput (reciprocal of execution time) with
assignment quality for the bubble sort application on the
memory sub-system with 4 modules, for each of the mem-
ory configurations. The rest of the correlation tables are
available in [17] and identical trends are seen.

We find a strong correlation when memory latencies are



d0, r queues: 2 queues: 8 queues: 32
2,1 0.96 0.97 0.96
2,2 0.93 0.92 0.92

2,10 0.93 0.94 0.93
5,1 0.98 0.99 0.99
5,2 0.96 0.98 0.98

5,10 0.95 0.98 0.98
10,1 0.98 0.99 0.99
10,2 0.97 0.99 0.99

10,10 0.94 0.98 0.99
20,1 0.99 0.99 0.99
20,2 0.97 0.99 0.99

20,10 0.93 0.98 0.99

Table 1. Appl. Throughput v/s Ass. Quality:
Correlation

greater than five clocks, and when queue-sizes are equal to
or greater than eight. We hence infer that the concept of a
linear region in the design space is applicable to this model
as well. (The coefficients of linear regression are in [16].)

We conclude this case by reiterating that application
throughput is strongly correlated with assignment quality
in large regions of the design space. We have also observed
a strong correlation with throughput predicted on the open
loop model in the same regions of the design space [16].

In this case study, we have explored only memory mod-
ule latencies and queue sizes as co-ordinates of the SoC de-
sign space. Using our simulator it is possible to explore the
following co-ordinates as well: number of input and out-
put ports and their connectivity, arbiter and distributor cy-
cle times, wire stages, the selection of address bits to define
the memory spaces, number of processing threads available
to the application programs and different data structures or
algorithms for the same application.

8 Conclusion

In an SoC, we expect that the memory sub-system is
likely to be a performance bottle-neck. In this paper we
have identified the address space assignment as having a
fundamental impact on memory sub-system performance
and SoC performance, and established the relationship. We
have studied an assignment quality metric and an open loop
performance model for the memory sub-system, and found
them to give a good prediction of SoC throughput (on the
cases studied) within the linear region of the design space
(namely when memory latencies are not small and either
queue sizes are not small or the quality of assignments un-
der consideration is not very high). This metric and perfor-
mance model can be used in SoC design procedures to set
up analytical optimization techniques and fast simulation
methods respectively.

In the process, we have developed a memory sub-system
simulator which can be used to explore a large number of
co-ordinates of the SoC design space and to conduct further
studies on the relationship between the assignment quality

metric and the open loop performance model with SoC per-
formance. Further, our Markov Chain analysis accurately
predicts the behaviour of the open loop model when queue
sizes are small, a deeper understanding of the observations
can extend the results to systems of larger size.
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